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Abstract

Background: One of the most important application spectrums of transcriptomic data is cancer phenotype
classification. Many characteristics of transcriptomic data, such as redundant features and technical artifacts, make
over-fitting commonplace. Promising classification results often fail to generalize across datasets with different
sources, platforms, or preprocessing. Recently a novel differential network rank conservation (DIRAC) algorithm to
characterize cancer phenotypes using transcriptomic data. DIRAC is a member of a family of algorithms that have
shown useful for disease classification based on the relative expression of genes. Combining the robustness of this
family’s simple decision rules with known biological relationships, this systems approach identifies interpretable, yet
highly discriminate networks. While DIRAC has been briefly employed for several classification problems in the original
paper, the potentials of DIRAC in cancer phenotype classification, and especially robustness against artifacts in
transcriptomic data have not been fully characterized yet.

Results: In this study we thoroughly investigate the potentials of DIRAC by applying it to multiple datasets, and
examine the variations in classification performances when datasets are (i) treated and untreated for batch effect; (ii)
preprocessed with different techniques. We also propose the first DIRAC-based classifier to integrate multiple
networks. We show that the DIRAC-based classifier is very robust in the examined scenarios. To our surprise, the
trained DIRAC-based classifier even translated well to a dataset with different biological characteristics in the presence
of substantial batch effects that, as shown here, plagued the standard expression value based classifier. In addition, the
DIRAC-based classifier, because of the integrated biological information, also suggests pathways to target in specific
subtypes, which may enhance the establishment of personalized therapy in diseases such as pediatric AML. In order
to better comprehend the prediction power of the DIRAC-based classifier in general, we also performed classifications
using publicly available datasets from breast and lung cancer. Furthermore, multiple well-known classification
algorithms were utilized to create an ideal test bed for comparing the DIRAC-based classifier with the standard gene
expression value based classifier. We observed that the DIRAC-based classifier greatly outperforms its rival.

Conclusions: Based on our experiments with multiple datasets, we propose that DIRAC is a promising solution to the
lack of generalizability in classification efforts that uses transcriptomic data. We believe that superior performances
presented in this study may motivate other to initiate a new aline of research to explore the untapped power of
DIRAC in a broad range of cancer types.
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Background
High-throughput genomic technologies have dramatically
expanded the breadth of biological information available
for the analysis and characterization of disease. One of
the most important application fields of transcriptomic
data is classification, where a multitude of promising
results have been reported in classification literatures with
near perfect classification accuracy for given datasets.
Yet, despite this progress, the reliability of these results
has been proven illusory, as the seemingly promising
results often fail in reproducing, inextricable yet largely
unachieved goal, in new datasets [1]. This is mainly due
to the fact that a single transcriptome contains tens of
thousands of features, while a limited number of sam-
ples are available for analysis. A large number of redun-
dant, irrelevant features and technical noise added during
the data generation process make classifiers susceptible
to over-fitting [2]. In some cases, even a small change
in data preprocessing can lead to substantial changes in
downstream analyses [3]. The obvious and ideal remedy
of increasing the sample size is often infeasible, leav-
ing researchers in a quandary about how to increase the
models’ reliability. Thus, the search for a robust classi-
fier in clinical application becomes a notoriously difficult
endeavour.
In recent years, there has been a burgeoning interest

in system methods that incorporate network information
into classification algorithms for biomarker discovery in
personalized medicine [4–7]. The general hope is that
the application of hard-earned biological domain knowl-
edge can improve the typical low reproducibility of the
biomarkers. A promising example, the topic of this article,
is the Differential Rank Conservation (DIRAC) algorithm
proposed by Eddy et al. (2010) [4].
Here, our intention is not to re-introduce DIRAC, but

rather to explore some of the undocumented characteris-
tics of a DIRAC classifier in common genomic classifica-
tion scenarios. We aim to broaden researchers’ familiarity
with the pros and cons of DIRAC, especially in identifying
robust cancer subtype specific network signatures that are
robust against unwanted variations stemming from dif-
ferences in preprocessing, platforms, batches, and other
confounding variables.

DIRAC overview
DIRAC is a member of a family of algorithms that work
with the relative expression of genes [8, 9]. Since DIRAC
uses the relative rather the absolute expression of genes
for disease classification, algorithms fall in the latter cate-
gory populated the journal landscape, it has potentials to
be robust against ancillary sources of variation in high-
dimensional molecular data.
Philosophy of DIRAC based classifier can be summa-

rized as follows:

• It tried to capture the biological system as a whole
instead of reporting a list of individual parts as the
conventional classifier does.

• Focus on genesets (pathways) as opposed to
individual genes. Hence, valuable gene-gene
interaction could be harvested.

• Resulting genesets (pathways) from the DIRAC based
classifier is more intuitive to biologist.

DIRAC is composed of a set of measures to quantify dif-
ferential expression variability between conditions using
subsets of genes. These subsets generally correspond to
predefined gene networks or pathways. The rationale for
composing the analysis using these subsets comes from
the perspective of systems biology. The contextualization
of expression changes in functional units is viewed as
more informative than looking at gene-level changes in
isolation. Briefly, DIRAC transforms the rank ordering of
genes within a network into a binary vector of pairwise
gene comparisons (Fig. 1). A more complete discussion of
DIRAC can be found in Eddy et al. (2010) [4]. Each ele-
ment of the Rank Template is 1 if the probability of the
gene comparison at that position else 0, i.e., vij = [ gi < gj].
This binary vector is then used to create a most likely
binary vector termed the Rank Template. Each element of
the Rank Template is 1 if the probability of the gene com-
parison at that position is greater than 50 % under a given
condition, i.e., RTij = [P(gi < gj|C) > 0.5]. The Rank
Template for each condition is then used in classification
to generate a Rank Matching Score. This is effectively one
minus the Hamming distance between an unknown sam-
ple’s pairwise gene comparison and the Rank Template,
i.e., RMS = ∑

[RTij = vij]/|RT |. Traditionally, classifi-
cation can then be done by comparing distances, and
classifying the unknown sample as the condition with the
closest Rank Template. In this study, DIRAC is extended
to multiple networks by using the vector of Rank Differ-
ence Scores (i.e., RMSC1 − RMSC2 ) as a feature vector in
a pre-trained Support Vector Machine. This formulation
also allows us to trivially and robustly extend DIRAC to
multi-class 1-vs.-Rest classification.
We find it necessary to point out that the DIRAC is

not a classification algorithm. It falls within the realm of
data transformation, i.e. project samples that are originally
in the gene space to a much lower dimensional pathway
space. The hope is that the difference between groups
under investigation will be pronounced in the new space.
The transformed data can be combined with any exiting
classification algorithm.

Results and discussion
We first perform the pathway and GEV signatures iden-
tification for each cytogenetic subtype. Then, the signa-
tures are used in later stage to evaluate their robustness
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Fig. 1 Overview of DIRAC method for constructing multi-network classifier

against different preprocessing techniques and repro-
ducibility in independent datasets in presence of batch
effect, respectively. Performances of the two classifiers
are measured by calculating their sensitivity, specificity
and F-score. The F-score, that equals 2(sensitivity ×
specificity)/(sensitivity + specificity), is a harmonic mean
of the former two. It ranges from 0 to 1, with one being the
perfect classification.

Signature identification for cytogenetic subtypes using the
pediatric1 AML dataset.
The pediatric1 AML dataset was used to identify both
gene expression and pathway signatures for each cytoge-
netic subtype. The mean prediction accuracy of 100 OCV
iterations from the gene expression based and the DIRAC-
based classifiers are shown in Fig. 2. The prediction accu-
racies on the validation set with the optimal signature
lists are also given. We observed that the GEV-based clas-
sifiers render higher prediction sensitivities both on the
discovery and the validation sets compared to the DIRAC-
based classifiers. The specificities from two approaches,
however, are comparable.

GEV signatures
• MLL: C10orf140, DEXI, HOXA7.
• t(8;21): RUNX1T1, POU4F1, CACNA2D2.
• inv(16): MN1, TM4SF1, MYH11, CLIP3, SPARC,

AK5, PTRF, FAM171A1, AK022033, LOC100506388.
• t(15;17): STAB1, FGF13, LGALS12, PTGDS.
• NUP98.NSD1: VENTX, PRDM16, FAM92A1.
• CEPBA.dm: LRRC28, CNRIP1, ST8SIA1, MSS51,

SLC14A1, LGSN.
• NPM1: HOXB-AS3, HOXB3, SMC4, SEPP1, LTBP1,

CLIC2, HOXB4, TWISTNB, HIST1H2BC, SIAE,
PIEZO2, HLF, ELL2, LOC100507520, HOXB2,
FOXC1, HOXB6, HOXB5, EMR1, SNCAIP, RPL39L,
USP44, BEX1, TTC27, PTPRC, HENMT1,
AK027199, COL4A5, NAP1L5, TIAM1, NPDC1,
CLEC11A, SCD5, CCL1, FTO, AK093529,
ENSG00000184551, CDKN1B, FAM105A, PHLDA1,
HOXA-AS5, LOC100506591, GMDS, TOM1L1,
IL12A, DMXL2, SDPR, FOXF1.

DIRAC considers a pathway to be tightly regulated
under a given condition if, for that condition, the rank



Obulkasim et al. BMC Bioinformatics  (2015) 16:305 Page 4 of 11

Fig. 2 Classification performances of the DIRAC-based and GEV-based classifiers on the pediatric1 AML dataset. The x-axis shows the cytogenetic
subtypes present in the data, the y-axis shows the classification accuracy quantified as F-score. For the DIRAC.discovery and GEV.discovery each
value represents the mean of 100 OCV

ordering of the genes in that pathway are highly corre-
lated; loosely regulated if they are less correlated. We
noticed that, the pathway signatures (Table 1) specific
to AML subtype represent salient signal transduction
pathways with known roles in cell proliferation and/or
differentiation. In particular, it is noteworthy that the
subgroups characterized by inv(16), t(15;17) and CBPA
double mutations, NPM1 mutations are characterized by
one or more tightly regulated MAP kinase pathways,
P38MAPK, KERATINOCYTE and/or MAPK. This sug-
gests that inhibition of MAP kinase activity within these
pathways may be a way to effectively target these cells,
which needs further biological validation studies. Another
pathway of interest is the BIOPEPTIDES (Bioactive Pep-
tide Induced Signaling) pathway, which is characterized
by the RAS, JAK and STAT signal transduction route.
This pathway appears to be tightly regulated in subgroups
characterized by t(8;21), Inv(16) and NUP98/NSD1. Sur-
prisingly, AML with MLL rearrangements were not clas-
sified by any tightly regulated pathway, but rather by three
loosely regulated pathways. This may be explained by the
relative heterogeneity of this subgroup, which contains
several MLL translocation partners, in particular AF6,
AF9 and AF10, which have strikingly different clinical
characteristics [10].
These pathway signatures may be options for

understanding specific disease mechanisms and provide
a key for the design of new treatment. For example,
one may seek network aware intervention to adjust
the signature pathways in each subtype to its normal
non-leukemic cell behavior and, consequently, to control
clinical presentation.

Assessing the robustness of the DIRAC-based and
GEV-based classifiers against different preprocessing
techniques
Multiple preprocessing methods for gene expression data
have been proposed [11]. However, none of them are
reported to be uniformly better than the other. Schmidt
et al. (2011) [3] reported that findings in gene expression
data analysis significantly depend on the preprocessing
method used. Here, we examined the effect of a mundane
but indispensable task of ‘data normalization’ on classifi-
cation.We compared the robustness of the two competing
approaches when the data was preprocessed with differ-
ent methods. Specifically, a classifier was trained with the
pathway and gene expression signatures obtained from
the pediatric1 dataset and were used to predict subtype
labels of the same dataset that has been preprocessed
using six well-known methods. This is meant to be rep-
resentative of a situation where a researcher intends to
combine or compare transcriptomic profiles from two
studies where the preprocessing methods were different
and the original unprocessed data is not available. Ide-
ally, one would have the original data and use the same
preprocessing methods on those data sources, but this is
not always an option. The six preprocessing methods are:
M1) CEL file transformed to raw expression data using
Robust multi-array average expression measure (RMA);
M2) Raw data obtained with RMA and normalized with
quantile normalization; M3) CEL file transformed to raw
expression data using Affymetrix’s MAS 5.0 expression
measure (MAS5); M4) Raw data obtained with MAS5 and
normalized with scale normalization; M5) CEL file trans-
formed to raw expression data using Robust multi-array
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Table 1 The rank matching scores (RMS) (see Fig. 1) of the signature pathways generated by the DIRAC-based classifier

Pathways MLL t(8;21) inv(16) t(15;17) NUP98.NSD1 CEPBA.dm NPM1

AGR -0.011 0.001

ALK -0.036

AT1R 0.001

ATRBRCA 0.041

BCR -0.018

BIOPEPTIDES 0.018

CELLCYCLE 0.037

CHREBP2 0.005 0.015

EIF -0.018

FCER1 0.030

GPCR 0.029

INTEGRIN -0.027

KERATINOCYTE -0.011 0.012 0.038 -0.001

MAPK 0.021 0.012 0.018

NO1 -0.008

P38MAPK 0.002 0.020 0.011

PPARA 0.013 0.019

TNFR1 0.000

In each column, numbers denote the difference between the mean RMS of samples in a particular subtype and the mean RMS of remaining samples (e.g. RMSMLL - RMSRest ).
Numbers in red denote the pathway is tightly regulated in a subtype compared to the test, and opposite applies to the pathway in blue

average expression measure with help of probe sequence
(GCRMA); M6) Raw data obtained with GCRMA and
normalized with quantile normalization.
Figures 3 and 4 display results from the two classi-

fiers in the aforementioned six scenarios. Apparently,
the DIRAC-based classifier was largely invariant against

the preprocessing methods. The highest variations were
observed in the NUP98.NSD1 and CEPBA.dm subtypes.
We believe this mainly due to small sample sizes. The gene
expression based classifier was, on the other hand, very
sensitive to preprocessing method. In practice the latter
appears to be of limited use.

Fig. 3 Evaluation of the robustness of the pathway signatures generated by the DIRAC-based classifier on the pediatric1 dataset that has been
underwent different types of preprocessing. The x-axis shows the cytogenetic subtypes in the data, the y-axis shows the classification accuracy
quantified as F-score
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Fig. 4 Evaluation of the robustness of the gene signatures generated by the GEV-based classifier on the pediatric1 dataset that has been underwent
different types of preprocessing. The x-axis shows the cytogenetic subtypes in the data, the y-axis shows the classification accuracy quantified as
F-score

Assessing the robustness of the DIRAC-based and
GEV-based classifiers against batch effect
Genomic data often contain batch effects, i.e. differences
in sample sources and other technical variations. Many
algorithms have been proposed to remove these arti-
facts, but this (often) comes along with the potential cost
of removing between-group biological heterogeneity and
consequently salient genomic signatures [12]. Note that,
in this work we refer to the batch effect as differences
between datasets that have: generated in different plat-
forms or different labs, included in two different studies.
To demonstrate the robustness in translating trained

predictor across independent datasets, we analyzed per-
formance characteristics of the DIRAC-based classifier as
well as the GEV-based classifier on the pediatric2 and the
adult AML datasets. The GEV-based classifier relies on
expression values and reflects commonly used practice
when no additional knowledge is available. Both path-
way and gene expression classifiers were trained using
all samples in the pediatric1 dataset and used to pre-
dict the subtype labels of the two independent datasets.
We observed strong batch effects between the pediatric1
and the two new independent datasets (see Figure S1 and
Figure S2 in the Additional file 1). We tested our trained
classifiers against these datasets both with and without
batch effect corrections [13]. Results from these two sce-
narios are shown in Figs. 5 and 6. In both datasets, we
observed that the stellar performance of the GEV-based
classifier disappeared in the presence of batch effects.
Without batch correction, the classifier was completely
‘confused’, as reflected by the fact that it classified all new
samples as a single category, resulting in extremely poor
specificity. The performance of the classifier improved

significantly after batch correction in both datasets. The
DIRAC-based classifier exhibited stable performances in
the adult AML dataset, and in the pediatric2 AML dataset
its showed similar performances only in the MLL and
t(15;17) subtypes.
In order to better comprehend the prediction power

of the DIRAC-based classifier in general, we conducted
performance comparison using publicly available datasets
from breast and lung cancer (see Additional file 1). Also,
multiple well-known classification algorithms were uti-
lized to create an ideal test bed for comparing the two
competing approaches. We obtained two indenpedent
breast cancer datasets with substantial batch-effect. Simi-
lar to the classification settings mentioned above, we used
one of them used for signature discovery (discovery set)
and the second one for testing the signature reproducibilty
(test set).We observe that the DIRAC classifier performed
similarly in the discovery set, but greatly outperformed
the standard GEV-based classifier in test set without batch
effect correction. These results corroborate our findings
in the AML datasets.

Where does the power of the DIRAC-based classifier come
from?
To investigate whether the more stable cross-batch per-
formance of the DIRAC-based classifier stems from the
pathway information used or due to the use of relative
expression, we repeated aforementioned analyses only
using genes’ relative expressions without pathway data.
Specifically, in each sample we ranked genes according
their expression values (low to high). Then, the rank
matrix, instead of the original of gene expression values,
was used to construct classifiers. Classification results are
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Fig. 5 Validation of the previously obtained subtype signatures (gene and pathways) using the pediatric2 AML dataset. The validation is performed
with batch effect present and batch effect corrected cases, separately. Accuracies from the DIRAC, GEV, and GEV Rank based classifiers are shown for
each subtype. The x-axis shows the cytogenetic subtypes, the y-axis shows the classification accuracy quantified as F-score

shown in Fig. 7.We observed that the rank-based classifier
produced comparable results with the DIRAC-based clas-
sifier, and in some subtypes, even better. Based on these
results, we concluded that more robust performances
of the DIRAC-based classifier in these subtypes are

seemingly attributed to its nature of rank-based measures.
This makes it invariant to batch correction (Figs. 5–6)
and preprocessing techniques (Fig. 8) that leave the rela-
tive ranks unchanged, while many other techniques that
use absolute gene expression values are obviously sensitive

Fig. 6 Validation of the previously obtained subtype signatures (gene and pathways) using the adult AML dataset. The validation is performed with
batch effect present and batch effect corrected cases, separately. Accuracies from the DIRAC, GEV, and GEV Rank based classifiers are shown for each
subtype. The x-axis shows the cytogenetic subtypes, the y-axis shows the classification accuracy quantified as F-score
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Fig. 7 Performances comparison between the GEV rank-based and GEV-based classifiers using the pediatric1 AML dataset. The x-axis shows the
cytogenetic subtypes present in the data, the y-axis shows the classification accuracy quantified as F-score. For the GEV.discovery and
GEV_Rank.discovery each value represents the mean of 100 OCV

to 5. The similar performance between using ranks
directly andDIRAC is unsurprising given that recent stud-
ies have shown that DIRAC is strongly related to (and
trivially transformed to) Kendall’s Tau rank correlation
statistic [14].

Conclusion
Clearly, the DIRAC-based classifier is robust against most
of the major ancillary sources of variation in the data.
We attribute this to the robustness of relative expression
compared to absolute expression values used [15] and the
ability to tap the orchestrated behaviour of genes within
transcriptome using the domain knowledge.

According to the no-free-lunch theorem [16] no clas-
sification algorithm is uniformly better than the others.
Hence, we do not claim that DIRAC is a panacea for all
types of genomic classification problems. As we showed
in this study, there are cases in which the GEV-based
classifier outperforms the DIRAC-based classifier. The
focal point is, however, placed on the robustness of the
latter. We recommend the DIRAC-based classifier when
the choices of preprocessing and batch effect correc-
tion methods are not obvious, either by limited statistical
resources or due to limited data availability. It is, for
example, often the case that raw data (e.g. CEL files) are
not publicly available. Thus, albeit numerous databases

Fig. 8 Evaluation of the robustness of the gene signatures generated by the GEV_Rank-based classifier on the pediatric1 dataset that has been
underwent different types of preprocessing. The x-axis shows the cytogenetic subtypes, the y-axis shows the classification accuracy quantified as
F-score
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exist to store tremendous amounts of genomic data, it is
surprisingly difficult to find a dataset that has been pre-
processed in exactly the same way as the one from which
new findings (e.g. subtype signatures) were discovered and
are in need to be validated. As we demonstrated in this
study, these issues, to a large extent, are ameliorated when
the DIRAC-based classifier is used. To our surprise, the
trained DIRAC-based classifier even translated well to a
dataset with different biological characteristics (e.g. adult
AML) in the presence of substantial batch effects that,
as shown here, plagued the standard GEV-based classi-
fier. In addition, the DIRAC-based classifier, because of
the integrated biological information, also suggests path-
ways to target in specific subtypes, whichmay enhance the
establishment of personalized therapy in diseases such as
pediatric AML.
In this study, we investigate the performance of the

DIRAC-based classifier using multiple AML datasets. We
believe that its superior performances presented in this
study may motivate other to explore the untapped power
of DIRAC in different types of cancer or may even open a
new line of application.
In summary, through this study we have demonstrated

the robustness of DIRAC in classification, which has pre-
viously been undocumented and underestimated. While
this is not the first multi-class DIRAC method pro-
posed [17], we have demonstrated the first multi-network
classification method using DIRAC. We believe that the
robustness, simplicity and biological interpretability of
the DIRAC-based classifier make it not only an attractive
alternative to existing algorithms, but often a preferred
choice.

Methods
In this study we investigate the potentials of DIRAC in
multiple scenarios frequently appear in analyzing high-
dimensional transcriptomic data. The number of conceiv-
able applications of DIRAC is possibly large, hence we
do not claim to provide exhaustive list. Instead, the focus
is on classification problem that has been the subject of
bioinformatics research for long time. Reported exper-
imental results from multiple real-world datasets serve
two ends: 1) to illustrate the benefits of the DIRAC-
based classifier, 2) to clarify what makes the DIRAC-based
classifier superior than exiting approaches. In the follow-
ing sections we describe the datasets that are considered
in this study, and the experimental setups, i.e. how we

compare performance of the DIRAC-based classifier with
exiting approaches in an unbiased way.

Gene expression datasets
Three publicly available acute myeloid leukemia (AML)
datasets (Table 2) were used to assess the performance
of the DIRAC-based classifier, and compare it with the
traditional gene expression value (GEV) based classi-
fier. The three AML gene expression datasets of well-
characterized cytogenetic and molecular subtypes of
AML are depicted in Table 3. In this study, samples were
limited to those with one of seven major cytogenetic sub-
types [18]. For the pediatric1 AML dataset, which was
generated in our lab, the raw data (CEL files) were also
available [18]. Details of the datasets and preprocessing
are given in the Additional file 1. In each dataset, the
probe-level data are transformed into the gene-level by
taking the mean of probes that interrogate a single gene
on which downstream analyses were performed.

Pathway source
In this study, 217 manually curated (comprised of 1279
unique genes) BioCarta pathways from the Molecular Sig-
natures Database (MSigDB version 4.0, updated May 31,
2013) were used to construct the DIRAC-based classifier.
For each dataset, genes were grouped according to their
presence in these pathways. To reliably represent the path-
ways, only those pathways that have at least 30 % of associ-
ated genes presented in a given dataset were retained. The
minimum fraction of genes that are present both in indi-
vidual pathways and gene expression data is: 70 % in the
pediatric1 and adult AML datasets, 57 % in the pediatric2
AML dataset. Note that, for the DIRAC-based classifier
only those genes that belong to the retained pathways
were used. For the GEV-based classifier the full list of
genes, not just the pathway mapped subsets, was used.
Note that, the number of genes used for the GEV-based
classifier is far more exceeds the number of pathways
used for the DIRAC-based classifier. This means, the for-
mer has a larger search space to find the discriminative
features compared to the latter.

Classifier construction and signature identification
We used the pediatric1 AML dataset (Table 2) to gen-
erate gene (pathway) signatures specific to each cytoge-
netic subtype (i.e., via 1-vs.-Rest multiclass classification
scheme) using Support Vector Machines (SVM). Our

Table 2 Summary of AML datasets used in this study

Dataset Reference # Samples Usage

Pediatric1 AML Balgobind et al. 2011 [18] 199 Signature identification

Pediatric2 AML Radtke et al. 2009 [21] 58 Signature validation

Adult AML Verhaak et al. 2009 [22] 323 Signature validation
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Table 3 Cytogenetic and molecular characteristics of the AML
datasets included in this study

Cytogenetic subtypes Pediatric1 AML Pediatric2 AML Adult AML

MLL 68 15 34

t(8;21) 30 20 38

inv(16) 35 16 42

t(15;17) 20 7 25

NUP98.NSD1 13

CEPBA.dm 13 26

NPM1 20 158

strategy to extract both signatures is similar to the one
used in Balgobind et al. (2011) [18]. Specifically, the
dataset is randomly divided, subject to stratification that
maintains the proportionality of the subtypes, into a dis-
covery set (2/3 samples) and validation set (1/3 samples).
The discovery set is used to select the subtype specific
signatures, and the validation set serves as independent
validation cohort. Importantly, the validation set is not
used at any point in classifier training.
To obtain reliable results, we performed 100 outer-

cross-validation (OCV) and 100 inner-cross-validation
(ICV) on the discovery set (Fig. 9). In each of 100 OCV
iterations the following steps were taken: the discovery
set was further randomly divided into a training set (2/3
samples) and a test set (1/3 samples). Then, 100 ICV iter-
ations were performed on the training set. In each of 100
ICV iterations the training set was further divided, again
subject to stratification constraints, into an inner-training
(2/3) and an inner-test (1/3) set. We applied an empirical

Bayes linear regression model [19] on the inner-training
set to select top 50 features that discriminate each AML
subtype under consideration from the rest.
The selected features (50 genes/pathways) were pro-

cessed in following ways to obtain reduced set of GEV and
pathway signatures. For each subtype, the GEV (pathways)
signatures were ranked (from best to worst) according to
their association with the subtype via the global test [20].
Subsequently, an SVM classifier was trained (e.g. MLL vs.
Rest) using the 50 genes (pathways) and predictive per-
formance on the inner-test set was gauged. The size of
the signature list was then reduced from 50 by removing
the gene located at the bottom of the list of ranked genes
(pathways), and the classification was re-run. This process
was repeated until there were no more than 3 genes (path-
ways) remaining and mean sensitivity (across subtypes)
was recorded. Finally, the list that corresponds to the
median sensitivity over the 3 ICV train-test procedures is
chosen.
At the end of 100 ICV iterations, a signature list

of smallest size that renders highest prediction sensi-
tivity was determined. Among the three optimal lists
generated via 3-fold CV using the discovery set, the
one with the median prediction sensitivity was taken
as the optimal signature list for one OCV iteration.
The final classifier was trained using the signature list
that produced the highest prediction sensitivity in 100
OCV iterations and subsequently used to predict the
labels of the validation set. Balgobind et al. (2011)
[18] argued that this double-loop CV avoids over-fitting
and leads to stable signatures with highest prediction
accuracy.

Fig. 9 Schematic of the classifier construction and signature identification
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