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Abstract

Background: In the context of infectious disease, sequence clustering can be used to provide important insights
into the dynamics of transmission. Cluster analysis is usually performed using a phylogenetic approach whereby
clusters are assigned on the basis of sufficiently small genetic distances and high bootstrap support (or posterior
probabilities). The computational burden involved in this phylogenetic threshold approach is a major drawback,
especially when a large number of sequences are being considered. In addition, this method requires a skilled user to
specify the appropriate threshold values which may vary widely depending on the application.

Results: This paper presents the Gap Procedure, a distance-based clustering algorithm for the classification of DNA
sequences sampled from individuals infected with the human immunodeficiency virus type 1 (HIV-1). Our heuristic
algorithm bypasses the need for phylogenetic reconstruction, thereby supporting the quick analysis of large genetic
data sets. Moreover, this fully automated procedure relies on data-driven gaps in sorted pairwise distances to infer
clusters, thus no user-specified threshold values are required. The clustering results obtained by the Gap Procedure on
both real and simulated data, closely agree with those found using the threshold approach, while only requiring a
fraction of the time to complete the analysis.

Conclusions: Apart from the dramatic gains in computational time, the Gap Procedure is highly effective in finding
distinct groups of genetically similar sequences and obviates the need for subjective user-specified values. The
clusters of genetically similar sequences returned by this procedure can be used to detect patterns in HIV-1
transmission and thereby aid in the prevention, treatment and containment of the disease.
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Background
In an age overwhelmed by a massive influx of data, the
need for fast and effective clustering techniques has never
been greater. This endeavour is particularly important in
genetics where the sheer volume of data renders many
popular clustering techniques prohibitive or ineffective.
The present paper aims at developing new techniques for
identifying clusters of genetically similar DNA sequences
and pays particular attention to HIV-infected individuals
from Quebec, Canada.
In a 2013 surveillance report released by the Public

Health Agency of Canada (PHAC), it is estimated that
a cumulative total of 78,511 cases of HIV have been
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reported in Canada since 1985. Of the 2090 reported HIV
cases in 2013, Quebec accounted for 21.7 %. This per-
centage is second only to the province of Ontario, which
contributed 39.6 % of the total HIV cases in the PHAC
report. Previous population-based studies involving the
phylogenetic analysis of Quebec’s primary HIV infection
cohort have revealed clusters that correlate with distinct
social networks and risk behaviours [1–3]. In other studies
performed outside of Quebec, phylogenetic clusters have
been used to provide crucial insights about the spread and
transmission of the disease [4–9].
Although there are a number of programs available for

clustering nucleotide sequences (e.g., BLASTClust [10],
UPGMA and WPGMA [11], neighbor-joining (NJ) [12],
and phyclust [13]), phylogenetic approaches have been
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ubiquitous in the literature involving HIV-1 transmis-
sion clusters. Broadly speaking, phylogenetics is the study
of evolutionary relationships among organisms or taxon
[14]. There are a number of programs for inferring phylo-
genies including, but not limited to, PAUP* [15], BAMBE
[16], BEAST [17], PHYLIP [18] RAxML [19] andMrBayes
[20]. These relationships can be represented using a phy-
logenetic tree wherein branch lengths commonly reflect
the estimated number of nucleotide substitutions between
organisms. In the present study, the ‘tips’ (i.e., external
nodes) of the tree represent sampled HIV-1 pol sequences
and internal nodes can be viewed as the source of a chain
of infections. We refer to all sequences rooted by a com-
mon interior node as descendants to the so-called ancestor
node.
In the case of HIV, a transmission cluster describes

a nonrandom aggregation of sequences from patients
believed to share a recent common ancestor [21]. Graph-
ically speaking, a transmission cluster corresponds to a
particular branch (or monophyletic clade) in the phy-
logenetic tree. These transmission clusters are typically
ascertained on the basis of high support—measured
either by bootstrap percentages or Bayesian posterior
probabilities—and sufficiently small genetic distances.
One drawback of this procedure is that there is an onus
on the user to determine the appropriate support/distance
thresholds. In studies involving HIV, these have been
reported to range anywhere from 70–99 % for bootstrap
values, and 1–4.5 % for the genetic distance cutoff [21].
In addition to being data and user-specific, threshold
values can also be affected by the statistical approach
used to measure support. Namely, in a formal investiga-
tion conducted in [22], posterior probabilities were higher
than their corresponding bootstrap values on average.
Furthermore, reconstructing phylogenetic trees can be
computationally intensive, especially when a large number
of sequences are being considered. Despite these short-
comings, phylogenetic analysis has greatly improved our
understanding of the epidemic, and remains at the fore-
front of cluster analysis on HIV sequences.
Herein, we present a new clustering algorithm, called

the Gap Procedure, for identifying distinct clusters of
genetically similar sequences in DNA data. This efficient
and automated approach bypasses the need to estimate
phylogenies and requires no user-specific threshold val-
ues. This distance-based clustering procedure relies on a
dissimilarity matrix constructed using popular models for
nucleotide substitution and returns a partition of the input
data. Gaps in sorted pairwise distances are used to suggest
groups of genetically related sequences. The frequency of
these groupings are subsequently used to identify phylo-
genetic clusters. The efficacy and efficiency of the Gap
Procedure is demonstrated on both simulated and HIV-1
pol sequence data.

Methods
Notation
Before discussing the details of our algorithm, we intro-
duce the following notation. Let X = (X1, . . . ,XN ) be
a collection of N aligned sequences of length L where
Xi = (xi1, . . . , xiL). The jth position of the ith sequence,
xij, is recorded as an alignment gap ‘–’ or one of the Inter-
national Union of Pure and Applied Chemistry (IUPAC)
codes: A, C, G, T, R, Y, M, K, S, W, H, B, V, D or N [23].
Let D be a N × N distance matrix whose ijth element is
equal to the genetic distance between sequence Xi and
Xj denoted by d(Xi,Xj). In reference to sequence Xi, let
di = (

d(Xi,X[1]), d(Xi,X[2]), . . . , d(Xi,X[N−1])
)
denote the

sorted vector of pairwise distances between Xi and Xj
(for all j �= i) such that d(Xi,X[1]) ≤ d(Xi,X[2]) ≤
· · · ≤ d(Xi,X[N−1]). We denote the difference between
two adjacent elements in di by δij = d(Xi,X[j+1]) −
d(Xi,X[j]). Finally, we denote a partition of the data by
M = {X1, . . . ,XG} where Xg is the set of sequences
classified to the gth group.

The algorithm
The Gap Procedure is a distance-based clustering algo-
rithmwhich relies solely on amatrix of pairwise distances.
There are a number of freely available packages for R
[24] which can be used for evolutionary analysis. For
instance, the ape package [25] contains the dist.dna()
function which can compute a pairwise distance matrix
for eleven substitution models; options include Jukes and
Cantor 1969 (jc69) [26], Kimura 1980 (K80) [27]
and Tamura and Nei 1993 (TN93) [28]. One potential
drawback of this function is that it ignores sites with
ambiguous nucleotides (i.e., the symbols R through N in
the 15 letter IUCPAC nomenclature). Herein, distances
are computed using adjusted versions of the K80 distance
formula that allow fractional values for counts on the
number of transitional/transversional substitutions per
site. These adjusted distances—which we will refer to as
aK80 distances—are described in Additional file 1.
For each individual sequence, the Gap Procedure

defines a set of nearest neighbours that are subsequently
used to determine a partition of the data. To be more spe-
cific, let ci = max {δi1, δi2, . . . , δik}, where k < N ∗ 0.9. In
other words, ci corresponds to the largest ‘gap’ in the first
90 % of di values. As discussed in Additional file 2, this
restriction was established to mitigate the effect of outly-
ing observations. If we define k∗ such that δik∗ ≥ δik for all
k �= k∗ and d∗

i = d(Xi,X[k∗]), then the nearest neighbour
matrix N = {nij} can be defined as an indicator matrix
whose ijth element is given by

nij =
{
1 if d(Xi,Xj) ≤ d∗

i ,
0 otherwise. (1)
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If nij = 1, Xj is said to be a neighbour to Xi. Notice that
N is not necessarily symmetric. A graphical representation
of this definition is provided in Fig. 1. In essence, the num-
ber of times observations share a neighbour contribute to
their probability of being assigned to the same group. The
precise details of this partitioning procedure are codified
in Algorithm 1.

Algorithm 1 The Gap Procedure
Inputs: N aligned sequences X = (X1, . . . ,XN )

Output: A partition of the dataM = {X1,X2, . . . ,XG}

Steps
1: procedure GAP PROCEDURE(X)
2: Compute the pairwise distance matrix DN×N
3: for i = 1, . . . ,N do
4: Obtain the sorted pairwise vectors di·
5: Find the largest gap, ci = max{δi1, δi2, . . . , δik},

where k < N × 0.9
6: FindXi’s nearest neighbours, i.e., computeN as

defined in (1).
7: end for
8: Construct a unique neighbours matrix UM×N

(M ≤ N) which comprise the unique rows of N.
9: Multiply the rows of U by the number of times it

is duplicated in N; store it in PM×N = {pmi}.
10: Divide the columns of PM×N by their correspond-

ing sum; store it in ZM×N = {zmi}.
11: if zmi > zm′i ∀ m′ �= m then
12: Assign Xi to clusterm
13: end procedure

Assessing clusters
The efficacy of the Gap Procedure requires that sequences
belonging to the same cluster are sufficiently similar and
that the diversity between clusters is sufficiently large. In
the literature, there are a variety of validation measures
that can be used to test the compactness and separabil-
ity of clusters, e.g., the Dunn index [29], the Calinski-
Harabasz index [30], the C-index [31], the McClain-Rao
index [32] and average Silhouettes [33, 34], to name a
few. Herein, we assess the within-cluster distances with
respect to the gth cluster, defined as Sw(g) = {d(Xi,Xj) |
i, j ∈ Xg , i < j} and the corresponding between-cluster
set, Sb(g) = {d(Xi,Xj) | i ∈ Xg , j /∈ Xg , i < j}. As a gen-
eral guideline, we suggest that the Gap Procedure only be
used when the 25 percentile of Sb(g) is larger than the 75
percentile of Sw(g) for all g = 1, . . . ,G. Graphically speak-
ing, the side-by-side boxplots of Sw(g) and Sb(g) should
display little to no overlap for each group found using the
Gap Procedure (see Additional file 3 for examples). Future
work will aim at determining if numerical validation mea-
sures, such as the indices mentioned above, can be used in
place of this visual diagnostic.

Implementation and availability
The Gap Procedure algorithm can be implemented
using the GapProcedure package available on GitHub
(https://github.com/vrbiki/GapProcedure). This R pack-
age includes functions for plotting the side-by-side box-
plots mentioned in Section “Assessing clusters” as well
as a vignette providing a step-by-step description of
the algorithm and a quick demonstration. The GapPro-
cedure package has been tested on Mac, Linux, and
Windows.

Fig. 1 Plots the sorted pairwise distances and nearest neighbours with respect to a sequence Xi . Plots the sorted pairwise distances with respect to
the first sequence from a random run taken from Simulation 1. The vertical grey line identifies k∗ (the position in which the largest gap is observed);
the vertical red line represents ci (the largest gap between sorted pairwise distances); the horizontal blue line represents d∗

i (the largest pairwise
distance observed before the gap). The nearest neighbours are denoted by ‘N’s

https://github.com/vrbiki/GapProcedure
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Results and discussion
In this section, we compare the results of the Gap Pro-
cedure with those obtained by the gold-standard phylo-
genetic threshold approach. In the threshold approach,
clusters are ascertained on the basis of high clade sup-
port and low genetic distance. More precisely, given the
topology of a phylogenetic tree, sequences are clustered
together only if: (a) they belong to the same clade, (b)
clade support (bootstrap values or posterior probabilities)
exceeds Tc, and (c) the maximum within-cluster pairwise
genetic distance is below Td. As mentioned previously, the
exact values of Tc and Td vary between analyses. Clus-
tering results are assessed using the Adjusted Rand Index
(ARI) which measures the agreement between two parti-
tions while accounting for chance [35]. In this particular
analysis, a value of 1 corresponds to perfect agreement
with the ‘true’ (i.e., simulated or expert-verified) clusters,
whereas a value of 0 would be expected if clusters have
been assigned at random.
Herein, phylogenetic trees were estimated using Ran-

domized Axelerated Maximum Likelihood (RAxML) [19]
and MrBayes [20]. RAxML is a program for inferring
maximum likelihood trees with bootstrap support values
whereas MrBayes performs a Bayesian analysis and pro-
duces summary trees with posterior probabilities. RAxML
was implemented using the GTR+� model with 20 maxi-
mum likelihood searches and 100 bootstrap replicates (see
RAxML manual for details). MrBayes was executed using
the GTR+I+� substitutionmodel and run until the aver-
age standard deviation of split frequencies—the statistic
used by MrBayes to monitor convergence—droped below
a value of 0.01. For notational convenience, we refer to
the clusters obtained using the threshold approach on
the respective trees as ‘RAxML clusters’ and ‘MrBayes
clusters’. Although we used in-house code to imple-
ment the threshold approach, RAxML/MrBayes clusters
could also be extracted using a program such as Clus-
terPicker [21]. All figures in this section were produced
in R [24].

Simulation studies
Using the seqgen() function available in the phyclust
package [13], data were simulated by mutating DNA
sequences along phylogenetic trees. The topology of the
trees were generated at two stages via the ms program
[13, 36]; for more details see Additional file 4. Sequences
were mutated according to a General Time Reversible
model which assumed rate heterogeneity and a propor-
tion of invariable sites, i.e., the GTR + I + � model. For
our simulation, sequences of length 800 were generated
along trees made up of 4, 6, 20, or 50 transmission groups
comprised of roughly 25 sequences per group1. For each
G-group simulation, 100 random trees—thus 100 random
data sets—were generated. Further simulations involving

tree topologies different than the ones considered herein
are explored in Additional file 5.
When applied to the simulated data, the Gap Procedure

achieved close to perfect classification (see Table 1).
Accordingly, the average ARI values were close to 1
and the average number of clusters—where “clusters”
are defined to contain two or more members—roughly
equalled the number of generated transmission clades
(G). As expected, the average number of singletons, i.e.,
unclustered sequences, was close to 0 for all simulations.
Aside from achieving excellent clustering results, the aver-
age computation time was less than a second for Simula-
tions 1, 2, and 3, and less than 7 seconds for Simulation 4.
Note that the analysis was performed using an Intel Xeon
E5-1650 (3.5 GHZ) processor and includes the calculation
of the pairwise distance matrix.
The results presented here correspond to RAxML and

MrBayes clusters extracted using a clade support thresh-
old (Tc) of 90 % and a distance threshold (Td) of either
0.3 or 0.6 (the corresponding results for Td = 0.4, 0.5 are
given in Additional file 6). Due to the computational com-
plexity of these procedures, the results were based on a
single run. The graphical representation of the RAxML
andMrBayes clusters for Simulation 1 are shown in Figs. 2
and 3, respectively. High (≥ 90), medium (50–90) and low
(< 50) clade credibility values are denoted by yellow, grey
and white rectangles, respectively. The true (i.e., simu-
lated) transmission clusters are designated using coloured
edges whereas clusters found by the threshold proce-
dure are provided using coloured tip labels (singletons are
written in black). Note that the results for RAxML con-
tain fewer observations, since the algorithm requires that
duplicated sequences be removed before analysis.
Tables 2 and 3 summarize the results obtained using the

threshold approach on the phylogenetic trees estimated
using RAxML and MrBayes, respectively. As the results
indicate, a distance threshold value of 0.3 was inadequate
to capture the simulated clusters and resulted in poor ARI
values. However, when Td was raised to a value of 0.6, the

Table 1 Clustering results for the Gap Procedure on simulated
data

Data Average

Sim N G Time (in sec) # clusters # singletons ARI

1 100 4 0.1108 4.25 0.04 0.9854

2 150 6 0.1370 6.39 0.04 0.9856

3 500 20 0.6073 22.49 0.13 0.9750

4 1250 50 6.6194 58.11 0.43 0.9694

The average clustering results (taken over 100 runs) obtained by the Gap Procedure
when applied to the simulated data. The dissimilarity matrix was calculated using
the aK80 distance formula and sequences (of length 800) were mutated according
to a GTR + I + � model
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Fig. 2 Clustering Results for RAxML with Tc = 90, Td = 0.6. The maximum likelihood phylogenetic tree (n = 94) produced by RAxML for Simulation
1. High, (≥ 90) medium (50–90) and low (< 50) bootstrap values are denoted by yellow, grey and white rectangles, respectively. Cluster indices are
represented by coloured tip labels; singletons are denoted in black
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Fig. 3 Clustering Results for MrBayes with Tc = 90, Td = 0.6. The maximum likelihood phylogenetic tree (n = 100) produced by RAxML for
Simulation 1. High, (≥ 90) medium (50–90) and low (< 50) posterior probabilities are denoted by yellow, grey and white rectangles, respectively.
Cluster indices are represented by coloured tip labels; singletons are denoted in black
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Table 2 Clustering results for RAxML on simulated data

Sim Tc Td Time (in sec) # clusters # singletons ARI

RAxML

1 90 0.3 2479.0 13 21 0.3662

2 90 0.3 4654.0 13 10 0.7054

3 90 0.3 41584.6 61 33 0.6206

4 90 0.3 271593.7 167 70 0.4889

1 90 0.6 2479.0 7 4 0.8757

2 90 0.6 4654.0 9 5 0.8945

3 90 0.6 41584.6 24 6 0.9764

4 90 0.6 271593.7 54 2 0.9922

The clustering results (for a single run) obtained by RAxML when applied to the
simulated data. The quoted run times represent the time it takes RAxML to produce
a phylogenetic tree and obtain clade support values (conducted using 100
bootstrap replicates). RAxML clusters are obtained using a clade support threshold
equal to Tc and distance thresholds of Td . The ARI scores in bold indicate which runs
performed better than the average score obtained using the Gap Procedure

ARI score improved dramatically and both methods out-
performed the Gap Procedure in some cases. Although
potential gain in ARI values can be achieved by adopting
the threshold approach, we remark that the corresponding
efficacy depends greatly on the user-specified Td values.
Furthermore, the programs used for estimating phyloge-
netic trees take substantially longer to run than the Gap
Procedure. For instance, the trees produced for Simula-
tion 4 took 3 days 3 hours 26 minutes for RAxML to
complete and over 15 days for MrBayes. In stark con-
trast, the complete analysis for the Gap Procedure took
an average of 6.6 seconds. Note that the exact gain in
computational time will vary depending on the data.

Quebec HIV-1 pol sequence data
Multiple studies have been conducted to improve our
understanding of the HIV transmission dynamics in

Table 3 Clustering results for MrBayes on simulated data

Sim Tc Td Time (in sec) # clusters # singletons ARI

MrBayes

1 90 0.3 3324.7 13 3 0.4642

2 90 0.3 4243.6 19 7 0.5129

3 90 0.3 144284.8 54 11 0.6565

4 90 0.3 1328253.9 134 25 0.6269

1 90 0.6 3324.7 8 2 0.8419

2 90 0.6 4243.6 10 3 0.9011

3 90 0.6 144284.8 24 6 0.9768

4 90 0.6 1328253.9 52 3 0.9927

The clustering results (for a single run) obtained by MrBayes when applied to the
simulated data. The quoted run times represent the time it takes MrBayes to
estimate a phylogenetic tree with clade support (i.e., posterior probability) values.
MrBayes clusters are obtained using a clade support threshold equal to Tc and
distance thresholds of Td . The ARI scores in bold indicate which runs performed
better than the average score obtained using the Gap Procedure

Quebec [1–3]. Through the molecular surveillance of
HIV-1 pol sequence data, researches were able to link
high rates of onward transmission to acute/early infec-
tion. Phylogenetic analysis was performed using maxi-
mum likelihood methods via BioEdit [37] and MEGA2
[38]. High bootstrap values (> 98 %) and sufficiently
long branches on neighbour-joining (NJ) trees [12] were
used to determine cluster membership. Manual inspec-
tion of polymorphisms and mutational motifs were used
to validate clusters.
This section aims at rediscovering these transmission

clusters using the automated Gap Procedure. The data,
which was obtained from the provincial genotypic testing
program (introduced in 1997) and the Quebec PHI cohort
(established in 2001), has since been expanded to include
1517 sequences, each of length 810. Ethical approval
for this cohort was granted by the Laboratoire de santé
publique du Québec, and the Quebec Ministry of Health
committee on confidentiality and access of information.
Several subsets of this data (summarized in Table 4) were
considered for the analysis. To test the efficacy of our
approach, the resulting clusters were compared with those
obtained by Brenner and colleagues. We henceforth refer
to the latter as the ‘true’ or ‘gold-standard’ clusters.
Table 5 summarizes the clustering results obtained by

the Gap Procedure when applied to the six subsets of the
HIV-1 data summarized in Table 4. The number of cor-
rectly and incorrectly identified singletons are given under
the heading “1 �” and “1 ✗”, respectively. The adjacent
columns provide the total number of small clusters (2–4
members) and big clusters (≥ 5 members); the total num-
ber of sequences belonging to the corresponding heading
is reported in parentheses. Note that true singletons were
removed before the ARI scores were calculated.
As indicated by the high ARI scores, there is a strong

agreement between the true clusters and those found
using our approach. In terms of cluster size, the Gap
Procedure experienced some difficulty in distinguish-
ing between small clusters and singletons. Consequently,
when compared with the gold-standard, our approach
found a greater number of small (2–4 member) groups.
Despite this discrepancy, the Gap Procedure did well in
identifying big (≥ 5member) clusters and obtained anARI
greater than 0.9 on all data sets considered.
In addition to its excellent clustering performance,

this algorithm was extremely fast when compared with
the competing approaches. For example, the Gap proce-
dure took less than a second to run on the mibc data
(N = 627, L = 810). To produce the phylogenetic trees
for the same data, RAxML and MrBayes took roughly 15
and 126 hours, respectively. In terms of clustering perfor-
mance, the results of RAxML and MrBayes were highly
variable (for a complete summary see Additional file 7).
Using a range of threshold values, the ARIs produced by
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Table 4 A summary of the subset data taken from the HIV-1 sequence data

Cluster size

Name Description N Gb 1 2–4 ≥ 5

all Entire set 1517 169 533 108 (311) 61 (673)

men Only males 1391 152 488 96 (276) 56 (627)

non.sing Clustered sequences 984 169 0 108 (311) 61 (673)

nsm Clustered males 903 152 0 96 (276) 56 (627)

biga Sequences clustered to biga clusters 673 61 0 0 (0) 61 (673)

mibc Males clustered to biga clusters 627 56 0 0 (0) 56 (627)

The total number of small and large-sized clusters are listed under the headings (2–4) and (≥ 5). The corresponding number of sequences belonging to each heading is
given in parenthesis
a‘big’ clusters are defined to have ≥ 5 members
bthe number of clusters having ≥ 2 members

RAxML ranged anywhere from 0.0081 (with Td = 0.01
and Tc = 99) to 0.8977 (with Td = 0.07, 0.08, 0.09 or 0.1
and Tc = 90). For MrBayes clusters, the ARI ranged from
as low as 0.0123 (with Td = 0.01 and Tc = 98) to as high
as 0.9969 (with Td = 0.09 and Tc = 99).

Conclusion
A distance-based clustering algorithm for genetic HIV-1
sequence data has been presented. Unlike the competing
threshold approach, the Gap Procedure is fully automated
(i.e., it does not require any user-specific threshold val-
ues) and relies solely on pairwise distances. Results were
obtained using the GapProcedure package wherein pair-
wise distances are calculated using adjusted K80 distance
formula. Although this is the default setting of the algo-
rithm, alternative dissimilarity matrices may be used in its
place.
When compared with RAxML and MrBayes, our algo-

rithm showed dramatic gains in computational time,
owing greatly to the fact that it bypasses the construc-
tion of a phylogenetic tree. The resulting gains in effi-
ciency supports the quick analysis of large genetic data
sets. When applied to both simulated and HIV-1 pol
sequence data, the Gap Procedure uncovered clusters that
closely agreed with true or expert-verified clusters. These

Table 5 Clustering results for the Gap Procedure on HIV-1 data

Subset Time (in sec) 1 ✓ 1 ✗ 2–4 ≥ 5 ARI

all 10.56 sec 237 16 244 (619) 61 (645) 0.9170

men 8.261 sec 225 18 215 (536) 60 (612) 0.9097

non.sing 3.086 sec – 12 125 (351) 57 (621) 0.9325

nsm 2.470 sec – 11 109 (303) 54 (589) 0.9320

big 0.807 sec – 3 5 (14) 61 (656) 0.9523

mibc 0.634 sec – 3 5 (14) 56 (610) 0.9492

The ARI scores and running times of the Gap Procedure when performed on
subsets of the HIV-1 data. The number of correctly (and incorrectly) identified
singletons are listed under “1�" (and “1✗"). The total number of for small and
large-sized are listed under the headings (2–4) and (≥ 5). The corresponding
number of sequences belonging to each class is given in parentheses

encouraging results suggest that burdensome procedures
involving the estimation of phylogenetic trees may not
be required to infer distinct clusters of genetically similar
DNA sequences.

Endnote
1Group membership is assigned according to a

multinomial distribution.
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