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Abstract

Background: Inflammatory bowel disease (IBD) consists of two main disease-subtypes, Crohn’s disease (CD) and
ulcerative colitis (UC); these subtypes share overlapping genetic and clinical features. Genome-wide microarray data
enable unbiased documentation of alterations in gene expression that may be disease-specific. As genetic diseases
are believed to be caused by genetic alterations affecting the function of signalling pathways, module-centric
optimisation algorithms, whose aim is to identify sub-networks that are dys-regulated in disease, are emerging as
promising approaches.

Results: In order to account for the topological structure of molecular interaction networks, we developed an
optimisation algorithm that integrates databases of known molecular interactions with gene expression data; such
integration enables identification of differentially regulated network modules. We verified the performance of our
algorithm by testing it on simulated networks; we then applied the same method to study experimental data derived
from microarray analysis of CD and UC biopsies and human interactome databases. This analysis allowed the
extraction of dys-regulated subnetworks under different experimental conditions (inflamed and uninflamed tissues in
CD and UC). Optimisation was performed to highlight differentially expressed network modules that may be common
or specific to the disease subtype.

Conclusions: We show that the selected subnetworks include genes and pathways of known relevance for IBD; in
particular, the solutions found highlight cross-talk among enriched pathways, mainly the JAK/STAT signalling pathway
and the EGF receptor signalling pathway. In addition, integration of gene expression with molecular interaction data
highlights nodes that, although not being differentially expressed, interact with differentially expressed nodes and are
part of pathways that are relevant to IBD. Themethod proposed here may help identifying dys-regulated sub-networks
that are common in different diseases and sub-networks whose dys-regulation is specific to a particular disease.
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Background
Inflammatory bowel disease (IBD), including ulcerative
colitis (UC) and Crohn’s disease (CD), arises from a break-
down in the normally symbiotic relationship between
intestinal microflora and mucosa in individuals with
a given genetic background. A recent Genome Wide
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Association Study has revealed 163 susceptibility loci that
may contribute to development of IBD [1].
Genetic diseases are often believed to be caused by the

combined alterations of genes that influence a common
component of the cellular system [2]. Patterns in differen-
tial gene expression between healthy and diseased states
may highlight pathological pathways; however, they are
not informative about what upstream molecular inter-
actions and signaling events control such gene expres-
sion changes [3–5]. Integration of gene expression data
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with databases of known molecular interactions may pro-
vide several advantages in terms of uncovering functional
pathways driving disease specific expression signatures,
identification of ‘hidden nodes’ that, although not being
differentially expressed, may play an important role in
connecting differentially expressed genes, and increased
statistical robustness since differential expression is eval-
uated at a network level rather than for each gene individ-
ually [2, 3, 6].
Although the modularity of cellular systems is widely

accepted, there is as yet no agreement on a unique math-
ematical definition of a network module. In the con-
text of disease networks, network modules are typically
defined as subsets of highly interconnected genes show-
ing a significant overall differential expression in disease
as compared with control cells [2].
If the network is modular, then a group of nodes that

are more closely associated with themselves than with the
rest of the network, called communities, should define
network modules with similar biological roles [7]. Since
the search for optimal sub-networks cannot exhaustively
explore the search space, optimisation requires a heuris-
tic strategy [5, 8]. One such approach may be using
evolutionary algorithms which are well-suited for global
optimisation strategies in discrete search spaces [9].
Evolutionary algorithms are optimisation algorithms

based on the Darwinian principle of natural selection [10].
The quantities to be optimised are described as individu-
als that are sampled within a population. Each individual
is associated with a fitness function which is optimised
through natural selection (survival of the fittest).
In this article we propose an evolutionary algorithm

whose aim is to identify overlapping and non-overlapping
disease modules with highest differential expression
under two conditions.
Several algorithms have previously been developed

to optimise differentially regulated subnetworks from
transcriptomic or phosphoproteomic data [5, 8, 11].
Other approaches have focused on identifying commu-
nity structure in general complex networks [12–14].
However, these two methodologies define genetic repre-
sentations and optimisation operators that do not inte-
grate with one another. In fact, the operators used in
algorithms for community detection allow the identi-
fication of network clusters, but do not enable selec-
tion of optimal subnetworks. Conversely, the algorithms
proposed by Ideker et al. [5], Klammer et al. [8] and
Chuang et al. [11] do not account for community struc-
ture and the genetic algorithm proposed by Klammer
et al. does not account for maintenance of network con-
nectivity. In our study we integrate differential expres-
sion and community detection by defining evolutionary
optimisation operators generating connected subnetwork
communities.

The algorithm performance was verified on simulated
networks with topological features resembling the ones
of experimental networks. Optimisation was then applied
to real networks that were built by integrating molecu-
lar interaction databases with microarray data obtained
from single endoscopy pinch biopsies from areas of unin-
flamed or inflamed mucosa in patients with CD and UC
[4]. Subnetworks with statistically significant differential
expression were identified by varying subnetwork size; in
addition, functional analysis of the most frequently iden-
tified nodes showed crosstalk among enriched pathways
and several hidden nodes. Several overlapping and non-
overlapping differentially expressed subnetworks in CD
and UC patients were detected, highlighting small over-
lap among the most frequently identified nodes between
inflamed and uninflamed tissues. These optimal solutions
included cross-talk among enriched pathways, mainly the
JAK/STAT signalling pathway, EGF receptor signalling
pathway, Gonadotropin releasing hormone receptor path-
way and p38 MAPK pathway.

Methods
Optimisation algorithm
In this section we outline the operators of our optimi-
sation algorithm. These operators are defined for the
purpose of identifying connected dysregulated protein
interaction subnetworks integratingmolecular interaction
data with transcriptomic data generated from CD and UC
patients. Since these diseases share partially overlapping
genetic features, the focus of our algorithm is to high-
light which active network modules are common to the
two disease subtypes and which are specific to a partic-
ular disease subtype. The algorithm input consists of a
network of known protein interactions and of the z-scores
calculated from the p-values of two lists of differentially
expressed genes; the latter are derived from biopsies of
patients affected by CD against controls (healthy patients)
and biopsies of patients affected by UC against controls
(see section “Data pre-processing” for more details). The
network is defined by associating a gene and its corre-
sponding protein product with each node, whereas each
edge represents an interaction between two proteins. Two
z-scores are assigned to each node representing its differ-
ential expression under two conditions. Our evolutionary
algorithm is based on an adaptation of the operators of a
genetic algorithm on networks where the genetic opera-
tors have been modified in order to maintain connectivity
of the optimised subnetworks (active network modules).
Optimisation is performed by sampling a set of subnet-
works, where each subnetwork is defined as an ‘individual’
and the set of subnetworks as a ‘population’, assigning a
quality score to each subnetwork (‘fitness function’) and
applying evolutionary algorithm operators (‘crossover’,
‘mutation’, ‘selection’) that we adapted to optimisation
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of networks as described below. A schematic diagram
outlining these operators is presented in Fig. 1.

Individual representation and selection
Each individual of the population is defined as a subnet-
work with a single connected component and predefined
size. A tournament selection is performed as implemented
by Deb et al. [15] including elitism on the best two
individuals.

Fitness functions
The goal of the optimisation is to identify subnetworks
that are differentially expressed and that define highly
interconnected network modules. We first assign a z-
score to a subnetwork S defining it by

z(S)N = 1√|N |
∑
i∈N

|zi|, (1)

where zi is the z score of node i, N is the set of nodes in
the subnetwork, and |N | its size [5, 8]. We then define two
fitness functions accounting for the cases in which optimi-
sation aims at finding one differentially expressed network
module under two conditions or two different commu-
nities. In the first case the fitness function is defined by

F∩ =
∣∣∣z(S1)N

∣∣∣ +
∣∣∣z(S2)N

∣∣∣ + 〈C〉 (2)

where z(S1)N , z(S2)N are the z-scores of the subnetworks S1, S2
and 〈C〉 is the average clustering coefficient. In the second
case it is defined by

F∪ =
∣∣∣z(S1)N

∣∣∣ +
∣∣∣z(S2)N

∣∣∣ + Q (3)

where Q is the modularity of the network given by S1 ∪ S2
[7]. When the modules are two, Q is defined by

Q = 1
2E

⎛
⎝∑

i,j∈N

[
A(S1∪S2)
ij − Rij

]⎞⎠ , Q ∈ [−1, 1] (4)

where A(S1∪S2)
ij is the adjacency matrix of the subnetwork

S1 ∪ S2 with E edges and the matrix R = (Rij) defines the
null model against which the network is compared. The
matrix element Ri,j is given by

Ri,j = kikj
2E

where ki = ∑
j A

(S1∪S2)
ij is the degree of node i. The

objective function is then maximised by minimising the
function

F̄ = 1
1 + F

, with F = F∩ or F∪.

Mutation
The mutation operator iteratively selects a random node
of an individual and verifies if removal of this node main-
tains the connection of the remaining network by applying
a depth first search algorithm. If such a node has been
identified within a fixed number of iterations, this node
is removed and it is replaced with a nearest neighbour
of another randomly selected node. When the algorithm
is set to search for two different differentially expressed
communities, node removal and substitution occurs in
each of the two disjoint sets of nodes.
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(a) Initialisation (b) Mutation (c) Crossover

Fig. 1 Schematic of our evolutionary algorithm. Individuals are defined as connected subnetworks and are initialised using a depth first search
algorithm; the selection path is represented with directed arrows starting from an initial node highlighted with a blue border (a). Optimisation is
performed by applying mutation and crossover operators. The mutation operator randomly changes a node by maintaining network connectivity
(b). The crossover operator merges two parent subnetworks, represented with green and yellow nodes, into a connected one and generates two
new subnetworks applying a depth first search algorithm to an initial, randomly selected node; the selection paths generating the offspring are
represented with blue and red directed arrows starting from initial nodes highlighted respectively with blue and red borders (c)
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Crossover
The crossover operator is active only when two individ-
uals share a common node. In such case the two sets of
nodes are merged to define a connected network. Two
nodes are then randomly sampled within this network and
two new individuals are initialised by applying a depth
first search algorithm. Similarly to what was defined for
the mutation operator, when the algorithm is set to search
for two separate differentially expressed communities, the
two new individuals are selected to maintain the same
number of nodes associated with each community.

Initialisation
The algorithm is initialised to search either for one com-
munity which is differentially expressed under two condi-
tions or for two different communities each differentially
expressed under a condition. In order to guarantee that
each individual is sampled as a single connected compo-
nent, initialisation is performed by randomly selecting one
node of the network and applying a depth first search algo-
rithm starting from this node. The algorithm is stopped
when the search reaches the predefined size. When the
algorithm is set to search for two different differentially
expressed communities, each individual is sampled in
order to be composed of a network comprising two dis-
joint sets of nodes, each defining a single connected com-
ponent. A C implementation of our algorithm is reported
in Additional file 1.

Results and discussion
In what follows we firstly describe how the experimental
and synthetic data were pre-processed, we then present
the evaluation of the performance of our optimisation
algorithm on synthetic data and finally an application to
the experimental data set.

Data pre-processing
Experimental data
Microarray data were downloaded from the NCBI Gene
Expression Omnibus website [16] and normalised using
the GEO2R R script [17].
These data were obtained by using high-density

oligonucleotide microarrays that interrogate 10,000 full-
length genes to compare gene expression patterns in CD,
UC and a third non-IBD colitis group. Endoscopic biop-
sies of inflamed and uninflamed intestinal tissue from
patients with IBD or controls were obtained from var-
ious regions of the colon whose sites of biopsy were
categorised as sigmoid, transverse, ascending, descend-
ing colon; splenic flexure; hepatic flexure. The samples
were labelled as ‘affected’, when taken from an area that
appeared grossly affected (inflamed), or as ‘unaffected’,
when taken from an area that appeared disease free
(uninflamed) and was 10 cm from diseased areas. The

dataset includes a total of 36 expression profiles from 4
colonoscopic biopsies from normal adults, 7 from adults
with inflamed colon with CD, 12 from adults with non-
inflamed colon with CD, 5 from adults with inflamed
colon with UC, 4 from adults with non-inflamed colon
with UC, 2 from adults with inflamed colon with bacterial
infectious colitis, 1 from an adult with inflamed colon with
indeterminate colitis, 1 from an adult with non-inflamed
colon with indeterminate colitis. In our analysis we only
considered expression profiles derived from CD patients,
UC patients and healthy controls. Differentially regulated
genes were selected as follows.
The Benjamini and Hochberg false discovery rate

method was selected by default to adjust p-values for mul-
tiple testing. We selected as differentially expressed genes
those whose p-value was minor than 0.05, log2 mean
expression index was greater than 6.64 and logarithmic
fold change was greater than 1. The threshold for the log2
mean expression index was selected following the thresh-
old chosen by Wu et al. [4], this threshold being higher
than the log2 mean expression in the microarray data
(mean = 6.5).
The interactome was obtained from iRefWeb [18], a web

interface to protein interaction data consolidated from 10
public databases (BIND, BioGRID, CORUM, DIP, IntAct,
HPRD, MINT, MPact, MPPI and OPHID). Two networks
associated with inflamed and uninflamed tissues were
built by selecting all interactions containing at least one
differentially regulated node and such that nodes that are
not differentially regulated act as link between two differ-
entially regulated nodes; this enables inclusion of indirect
interactions, as suggested by Rossin et al. [19].
The inflamed network comprised 666 interactions and

312 nodes of which 105 were differentially expressed in at
least one condition; the uninflamed network included 645
interactions and 304 nodes of which 74 were differentially
expressed in at least one condition.
These two networks include a single connected com-

ponent with average degree approximately equal to 4.2
(Additional file 2: Figures S1 and S2 and Additional
file 3). Following Ideker et al. [5], Z-scores of differentially
expressed nodes were evaluated from their correspond-
ing p-value, calculated under each condition, whereas the
other nodes were given the zero value.

Synthetic data
Simulated networks were generated by applying the
benchmark proposed by Lancichinetti et al. [20]. This
benchmark extends the one proposed by Girvan and
Newman [21] accounting for the distributions of node
degrees and community size; both degree and commu-
nity size distributions are assumed to be power laws and
the modularity of the community structure depends on a
mixing parameter γ specifying the fraction of links that
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each node shares with other nodes that are not part of its
community. Simulated gene expression data were gener-
ated as follows. Firstly, we selected the first community
size among the ones of size sc1, where sc1 is the largest size
which is smaller or equal than the average of all the com-
munity sizes. We then selected the second community
size sc2 either to be the closest bigger, when we simulated
two different differentially expressed communities, or to
be the same community, when we assumed that the same
community was differentially expressed under both con-
ditions. Simulated z-scores were then generated as follows

zi ∼
{ ±N (μ1, σ) if i is differentially expressed,

N (μ2, σ) otherwise i = 1, . . . ,N

(5)

where N = 300 is the number of nodes, μ1 = 3, μ2 = 0
and the sign is randomly chosen. Networks were gener-
ated by varying the parameters γ and σ within the range
0.1, 0.2, . . . , 0.5. When varying one parameter the other
was maintained at the fixed value 0.1. In addition, four
networks were generated for each parameter choice with
average degree given by 〈k〉 = 4, 6, 8, 10. All of the net-
works obtained were composed of a single connected
component. A representation of a simulated network is
presented in Fig. 2.

Optimisation of synthetic networks
In order to verify the performance of our algorithm we
generated a synthetic data set so that the solution found

can be compared with a known optimal solution. We
calculated two performance metrics: the prediction accu-
racy (PA) and the normalised mutual information (NMI).
The first metric was applied to evaluate the optimisation
performance when searching for differentially regulated
subnetworks [8], the second one was shown to be appro-
priate for network partitioning [13, 22]. The prediction
accuracy of an optimised subnetwork SO, compared with
an actual subnetwork SA, is given by

PA(SO, SA) = 1 − FN + FP
TN + TP

,

where FN, FP, TN, TP denote the number of false neg-
atives, false positives, true negatives and true positives
respectively.
We evaluated the average performance of 30 runs of our

optimisation algorithm in each synthetic dataset using the
parameters reported in Table 1.
Under all perturbations the prediction accuracy was

found to be larger than 0.8, showing higher performance
in networks with lower average degree (see Additional
file 2: Figure S3). In particular, this metric was larger than
0.9 when evaluated from networks with average degree
approximately equal to the one of the experimental net-
works (〈k〉 = 4).
We then evaluated the performance of the same opti-

mised subnetworks using the normalised mutual infor-
mation. Denoting by PO, PA the partitions defined by the
subnetworks SO, SA respectively, the normalised mutual

Condition 1

Condition 2

Fig. 2 Synthetic data set. A simulated network with simulated differential expression in network communities under two conditions. Differentially
expressed communities are highlighted within a rectangular box; node colours represent simulated p-values
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Table 1 Algorithm parameters. Parameters used in all runs of our
evolutionary algorithm

Parameter Value

Number of generations 100

Population size 200

Crossover rate 0.1

Mutation rate 0.9

information is given by [13]

NMI(PO,PA) =
−2

∑cPO
i=1

∑cPA
j=1 Cij log

(
CijN
Ci·C·j

)
∑cPO

i=1 Ci· log
(
Ci·
N

)
+ ∑cPA

j=1 C·j log
(
C·j
N

)

where C is the confusion matrix; cPO , cPA are the number
of groups in the partitions PO, PA; Ci·, C·j are the sum of
elements of C in row i and column j and N is the number
of nodes. Networks with average degree 〈k〉 = 4 presented
a normalised mutual information approximately equal to
1 when varying the parameter σ , whereas they showed
a decrease in performance when γ approached the value
at which the community structure is lost, γ = 0.5 (see
Additional file 2: Figure S4).

Optimisation of CD and UC networks
After having evaluated the performance of our evolution-
ary algorithm on synthetic data sets, we applied it to
the experimental data set for the purpose of identifying
dys-regulated modules in CD and UC. We then anal-
ysed the optimisation results by varying sub-network size
and identified enriched pathways and biological processes
under different conditions, these being inflamed and
uninflamed tissues in CD and UC patients. We ran our
algorithm by varying subnetworks sizes within the range
10, 15, . . . , 40 with 30 runs per size. All of the optimal
sub-networks found had statistically significant z-scores
relatively to their corresponding condition (|z| > 5.8,
p-value < 6.10−7) confirming their association with
disease.
As exemplar solutions, we report the best subnetworks

found of size 10 in Figs. 3, 4 and 5.
The algorithm enabled the identification of subnet-

works which are differentially expressed both in CD and
UC (see Figs. 3a,b and 4a,b) and of connected pairs of
subnetworks, each composed of 10 nodes, forming a dif-
ferentially expressed subnetwork in CD biopsies and a
differentially expressed subnetwork in UC biopsies (see
Figs. 3c,d and 5a,b). We then wondered whether we
could highlight a particular subnetwork size by analysing
its functional homogeneity. To this end, for each sub-
network found, we calculated a functional similarity score
to examine if, within this range, there was a clear opti-
mal size in terms of similarity in biological processes (see
Additional file 2: Figures S5 and S6) [7, 23]. Since no

such particular size was identified, we then evaluated the
frequency of occurrence of each node in the optimal solu-
tions when varying sub-network size. Fixing a frequency
threshold > 0.3 and mapping the selected nodes on the
interaction network, we derived the subnetworks whose
largest connected components are depicted in Additional
file 2: Figures S7 and S8.
Such networks show several overlapping and non-

overlapping nodes in CD and UC patients and small over-
lap among the most frequently identified nodes between
inflamed and uninflamed tissues (see Additional file 3).
The solutions found highlight cross-talk among

enriched pathways, mainly among the JAK/STAT
signalling pathway, EGF receptor signalling pathway,
Gonadotropin releasing hormone receptor pathway and
p38 MAPK pathway (see Additional file 2: Figures S9,
S10 and S11). The EGF receptor signalling pathway acts
by phosphorylating the Janus kinases (JAK) resulting
in the activation of Signal Transducer and Activator of
Transcription proteins (STATs) and plays a role in regu-
lating inflammation, in particular during colitis [24, 25].
Although the exact role of STAT3 in the pathogenesis of
CD is not understood, mice with tissue-specific disrup-
tion of Stat3 showCD-like pathogenesis and constitutively
phosphorylated STAT3 is found in intestinal T cells from
patients with CD. These results support the notion that
dys-regulation of STAT3 signalling might be involved in
fuelling inflammation in CD [26]. p38 is a member of the
mitogen-activated protein kinase (MAPK) family, which
is composed of ubiquitously expressed kinases playing
important roles in various signal transduction pathways
in mammalian cells [27–30].
We found that nodes in the averaged overlapping

subnetwork in inflamed tissues were enriched in the
JAK/STAT signalling pathway, whereas nodes in unin-
flamed tissues were mainly enriched in the EGF recep-
tor signalling pathway, Gonadotropin releasing hormone
receptor pathway and p38 MAPK pathway (see Addi-
tional file 2: Figure S9). Nodes in the averaged non-
overlapping subnetworks associated with CD in inflamed
tissues were enriched in the JAK/STAT and EGF recep-
tor signalling pathway components, the same being true
for nodes associated with UC (see Additional file 2: Figure
S10). Nodes in the averaged non-overlapping subnetworks
associated with CD in uninflamed tissues were mainly
enriched in the EGF receptor signalling, Gonadotropin
releasing hormone receptor and p38 MAPK pathway,
whereas no enriched pathways were found comprising
nodes associated with UC (see Additional file 2: Figure
S11). Enrichment in biological processes highlighted
involvement of several metabolic, developmental and cell
communication processes in the networks above men-
tioned (see Additional file 2: Figures S12, S13 and S14).
From the network topology viewpoint, the subnetworks
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Fig. 3 Best solutions found in affected tissues (size 10). Best subnetworks found within the results of 30 optimisation runs among subnetworks of
size 10 and with differential expression evaluated from biopsies taken from affected tissues. (a), (b) Overlapping network module which is
differentially expressed both in CD and UC. (c), (d) Non-overlapping network modules that are differentially expressed either in CD or in UC; the
black line indicates the boundary between nodes associated with CD and nodes associated with UC. Node colours are proportional to the node
p-value in CD (a), (c) and UC (b), (d). Node size is proportional to its identification frequency when applying our evolutionary algorithm by varying
network size (see section Results and discussion)

selected comprise several hubs and hidden nodes, these
are reported in Additional file 3 together with the list of
subnetwork nodes.
In order to compare the results of our method with

existing methods for gene set enrichment, we tested
the algorithm Gene Set Enrichment Analysis (GSEA) on
the CD-UC microarray data set [31]. GSEA is a com-
putational method that determines whether an a priori
defined set of genes shows statistically significant, con-
cordant differences between two biological states (e.g.
phenotypes) and enables the identification of core mem-
bers of high scoring gene sets that contribute to the
enrichment score (Leading-Edge Subset). GSEA may not

identify dysregulated subnetworks and communities but
it may identify dysregulated sets of genes that can be
compared with the subnetworks optimised with our algo-
rithm. The gene set database was obtained from the
Molecular Signatures Database (MSigDB), which is a col-
lection of annotated gene sets for use with the GSEA
software, and includes gene sets that represent cell states
and perturbations within the immune system [32]. We ran
GSEA on four phenotypes: inflamed tissues in CD versus
control, inflamed tissues in UC versus control, uninflamed
tissues in CD versus control and uninflamed tissues in
UC versus control. We extracted the leading edge subsets
for gene sets with FDR q-val < 0.01. STAT1, STAT3
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subnetworks of size 10 and with differential expression evaluated on unaffected tissues; the module is differentially expressed both in CD and UC.
Node colour is proportional to the node p-value in CD (a) and UC (b). Node size is proportional to its identification frequency when applying our
evolutionary algorithm by varying network size (see section Results and discussion in the main text)

and JAK2 were included in the leading edges obtained
from inflamed tissues in CD, whereas STAT1, STAT3were
found in the leading edges obtained from inflamed tis-
sues in UC. We then selected all genes in these leading
edge subsets and analysed their over-representation in
the nodes of our averaged networks: overlapping nodes
in CD and UC in inflamed and uninflamed tissues, non-
overlapping nodes in CD in inflamed and uninflamed
tissues, non-overlapping nodes in UC in inflamed and
uninflamed tissues (Fisher’s exact test). Five of six lists
of network nodes were found to be significantly enriched
(p-value < 0.01) except for the list of non-overlapping
nodes in UC in uninflamed tissues (see Additional file 2:
Figure S15).
Some of the nodes identified by our optimisation algo-

rithm have been identified in GWAS for CD and UC [33]
(see Table 2); moreover, STAT3, NOS2, PSMB10 were pri-
oritised by a previous network analysis based on GWAS
data [34]. Defects in autophagy pathways have been impli-
cated in Crohn’s pathogenesis and we found autophagy
related genes in our optimised subnetworks: AKAP9,
AKT1, ATM, BNIP3L and NCOA2 (Autophagy Database
[35]) (see Table 3). Accumulating data suggest mito-
chondria as integrators of autophagy and inflammation
signalling pathways; consequently it is possible that mito-
chondrial stress participates in the pathology of IBD [36].
The genes BAD and TAP1, identified by our optimisation,
are reported in theMITOCARTA database, which collects
1013 genes encoding proteins with strong support of

mitochondrial localisation based on homology to mouse
MitoCarta genes [37] (see Table 3). Other identified genes
are related to theMHC class I antigen processing pathway,
namely PSMB9, PSMB10 and TAP1 [4] which is interest-
ing given the recent identification of CD8 T cell signatures
linked to inflammation in Crohn’s [38]. Some of the genes
discussed above and identified by our subnetworks were
not identified by the GSEA Leading-Edge Subsets for the
corresponding experimental condition, these being the
GWAS reported gene GABBR1 and the Mitocarta and 33
genes AKAP9, AKT1, BAD; in addition, NCOA2 was also
not identified by GSEA in affected tissues. Notably AKT1
(autophagy related) and BAD (mitochondrial localisation)
act as hidden nodes that, although not being differen-
tially expressed, play a role in connecting differentially
expressed genes (see Additional file 2: Figure S8c).

Conclusions
The availability of large scale interactome data enables
unbiased analysis of gene expression data from a network
perspective. Optimisation algorithms aimed at identify-
ing differentially expressed network modules may help
to highlight interactions among known molecular path-
ways not yet reported in pathway databases. Because of
the computational complexity of such an optimisation
problem, stochastic algorithms have been suggested as
useful approaches to extract such information [5, 8]; in
particular, evolutionary algorithms are a suitable choice
for this purpose since they are able to identify close to
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Fig. 5 Best non-overlapping modules found in unaffected tissues (size 10). Best non-overlapping modules found after 30 optimisation runs among
subnetworks of size 10 and with differential expression evaluated on unaffected tissues. The modules are differentially expressed either in CD or UC.
The black line indicates the boundary between nodes associated with CD and nodes associated with UC. Node colour is proportional to the node
p-value in CD (a) and UC (b). Node size is proportional to its identification frequency when applying our evolutionary algorithm by varying network
size (see section Results and discussion in the main text)

Table 2 GWAS genes

Genes GWAS Subnetworks

STAT3 CD OV_A, CD_A

GABBR1 CD OV_A, CD_A

PSMB9 CD OV_A, CD_A

NOS2 CD OV_A, CD_A

PSMB10 CD CD_A

IL7R UC OV_A

IL6ST CD OV_U, CD_U

Genes identified by our optimisation algorithm and reported in GWAS studies in CD
and UC. CD_A: CD affected (inflamed), UC_A: UC affected (inflamed), OV_A:
(overlap) CD and UC affected (inflamed), CD_U: CD unaffected (uninflamed), UC_U:
UC unaffected (uninflamed), OV_U: (overlap) CD and UC unaffected (uninflamed)

Table 3 Mitocarta and autophagy genes

Genes Autophagy Mitocarta Subnetworks

AKAP9 Y N CD_A

AKT1 Y N OV_U, CD_U

ATM Y N OV_A, CD_A, UC_A

BAD N Y CD_U

BNIP3L Y N OV_U, CD_U

NCOA2 Y N OV_A, CD_A, UC_A, OV_U, CD_U, UC_U

TAP1 N Y OV_A, CD_A, UC_A

Genes identified by our optimisation algorithm and reported in the Mitocarta and
Autophagy databases [35, 37]. CD_A: CD affected (inflamed), UC_A: UC affected
(inflamed), OV_A: (overlap) CD and UC affected (inflamed), CD_U: CD unaffected
(uninflamed), UC_U: UC unaffected (uninflamed), OV_U: (overlap) CD and UC
unaffected (uninflamed)
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optimal solutions in fitness functions with several local
minima [8].
We have proposed an evolutionary algorithm to iden-

tify dys-regulated network modules in microarray data
derived under two disease conditions. The algorithm inte-
grates a molecular interaction network with gene expres-
sion data and optimises differentially expressed network
modules accounting for community structure. The algo-
rithm performance was first evaluated on synthetic data
sets resembling the topological structure of networks
reported in biological databases and it was then applied
to an experimental dataset comprising a human inter-
actome and microarray data generated from biopsies in
patients with CD and UC [4]. Optimisation was per-
formed by varying the subnetwork size and differential
expression of the identified subnetworks was found to
be statistically significant in all of the evaluated sizes.
Analysis of occurrence of the nodes identified by varying
network size showed that the most frequently identi-
fied nodes comprised network hubs and hidden nodes
whose role is maintenance of network connectivity. The
solutions found highlighted cross-talk among enriched
pathways and the nodes identified may warrant biological
investigation.

Additional files

Additional file 1: Code.zip— Folder including the C code used in our
optimisation. (ZIP 727 kb)

Additional file 2: Supporting_Information.pdf— PDF document
including supplementary. Text and figures as referred to in the main text.
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Additional file 3: Supplementary_Workbook.xls — Excel workbook
comprising the interaction networks described in the main text and
in the Supporting Information. Legends of each workbook sheet are
included in the workbook ‘Summary’ sheet. (XLSX 210 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DM participated in the design and performed the analysis. AS participated in
the design of the analysis, provided funding and directed the project. Both
authors read and approved the final manuscript.

Acknowledgements
D. Muraro and A. Simmons gratefully acknowledge the Sir Jules Thorn
Charitable Trust for financial support through grant HBRWGDO. We wish to
acknowledge the Computational Biology Research Group, Radcliffe
Department of Medicine, Oxford for use of their services in this project. We
also thank Professor Charlotte Deane for helpful comments.

Received: 22 June 2015 Accepted: 8 January 2016

References
1. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al.

Host-microbe interactions have shaped the genetic architecture of
inflammatory bowel disease. Nature. 2012;491(7422):119–24.

2. Cho DY, Kim YA, Przytycka TM. Chapter 5: Network Biology Approach to
Complex Diseases. PLoS Comput Biol. 2012;8(12). e1002820.

3. Kim YA, Przytycka TM. Bridging the Gap between Genotype and
Phenotype via Network Approaches. Front Genet. 2013;3:227.

4. Wu F, Dassopoulos T, Cope L, Maitra A, Brant SR, Harris ML, et al.
Genome-wide gene expression differences in Crohn’s disease and
ulcerative colitis from endoscopic pinch biopsies: insights into distinctive
pathogenesis. Inflamm Bowel Dis. 2007;13(7):807–21.

5. Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics.
2002;18. Suppl 1:S233–40.

6. Huang SS, Fraenkel E. Integrating proteomic, transcriptional, and
interactome data reveals hidden components of signaling and regulatory
networks. Sci Signal. 2009;2(81):ra40.

7. Lewis AC, Jones NS, Porter MA, Deane CM. The function of communities
in protein interaction networks at multiple scales. BMC Syst Biol. 2010 Jul
22;4:100.

8. Klammer M, Godl K, Tebbe A, Schaab C. Identifying differentially
regulated subnetworks from phosphoproteomic data. BMC
Bioinformatics. 2010;11:351.

9. Goldberg DE. Genetic algorithms in search, optimization and machine
learning. Upper Saddle River: Addison-Wesley; 1989.

10. Eiben AE, Schoenauer M. Evolutionary computing. Information
Processing Letters. 2002;82(1):1–6.

11. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification
of breast cancer metastasis. Mol Syst Biol. 2007;3:140. Epub.

12. Amiri B, Hossain L, Crawford J. A hybrid evolutionary algorithm based on
HSA and CLS for multi-objective community detection in complex
networks. Proceedings of the 2012 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining ASONAM. 2012;2012:
243–247. doi: http://doi.ieeecomputersociety.org/10.1109/ASONAM.
2012.49.

13. Pizzuti C. A multiobjective genetic algorithm to find communities in
complex networks. IEEE T Evolut Comput. 2012;16(3):418–430.

14. Gong M, Ma L, Zhang Q, Jiao L. Community detection in networks by
using multiobjective evolutionary algorithm with decomposition. Physica
A: Statistical Mechanics and its Applications. 2012;391(15):4050–4060.

15. GA: software developed at Kanpur Genetic Algorithms Laboratory. http://
www.iitk.ac.in/kangal/codes.shtml. Accessed 15 November 2001.

16. NCBI Gene Expression Omnibus - GSE6731. http://www.ncbi.nlm.nih.gov/
geo/.

17. GEO2R R script. http://www.ncbi.nlm.nih.gov/geo/geo2r.
18. Turner B, Razick S, Turinsky AL, Vlasblom J, Crowdy EK, Cho E, et al.

iRefWeb: interactive analysis of consolidated protein interaction data and
their supporting evidence. Database. 2010:baq023. http://wodaklab.org/
iRefWeb. Accessed 19 September 2013.

19. Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, et al.
Proteins Encoded in Genomic Regions Associated with
Immune-Mediated Disease Physically Interact and Suggest Underlying
Biology. PLoS Genet. 2011;7(1):. e1001273.

20. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing
community detection algorithms. Phys Rev E. 2008;78:046110.

21. Girvan M, Newman ME. Community structure in social and biological
networks. Proc Natl Acad Sci USA. 2002;99(12):7821–6.

22. Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community
structure identification. J Stat Mech. 2005P09008.

23. Pandey J, Koyutürk M, Subramaniam S, Grama A. Functional coherence in
domain interaction networks. Bioinformatics. 2008 Aug 15;24(16):i28–34.

24. Dubé PE, Yan F, Punit S, Girish N, McElroy SJ, Washington MK, et al.
Epidermal growth factor receptor inhibits colitis-associated cancer in
mice. J Clin Invest. 2012;122(8):2780–92.

25. Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H, Rustgi AK.
EGFR-induced cell migration is mediated predominantly by the JAK-STAT
pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest
Liver Physiol. 2004;287(6):G1227–37.

26. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system.
Nat Rev Immunol. 2003;3(11):900–11.

27. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature.
2001;410(6824):37–40.

28. Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades
activated by stress and inflammation. J Biol Chem. 1996;271(40):24313–6.

29. Hollenbach E, Neumann M, Vieth M, Roessner A, Malfertheiner P,
Naumann M. Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling
suppresses inflammatory bowel disease. FASEB J. 2004;18(13):1550–2.

http://dx.doi.org/10.1186/s12859-016-0886-z
http://dx.doi.org/10.1186/s12859-016-0886-z
http://dx.doi.org/10.1186/s12859-016-0886-z
http://doi.ieeecomputersociety.org/10.1109/ASONAM.2012.49
http://doi.ieeecomputersociety.org/10.1109/ASONAM.2012.49
http://www.iitk.ac.in/kangal/codes.shtml
http://www.iitk.ac.in/kangal/codes.shtml
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://wodaklab.org/iRefWeb
http://wodaklab.org/iRefWeb


Muraro and Simmons BMC Bioinformatics  (2016) 17:42 Page 11 of 11

30. Waetzig GH, Seegert D, Rosenstiel P, Nikolaus S, Schreiber S. p38
mitogen-activated protein kinase is activated and linked to TNF-alpha
signaling in inflammatory bowel disease. J Immunol. 2002;168(10):
5342–51.

31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL,
Gillette MA, et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc Natl
Acad Sci USA. 2005 Oct 25;102(43):15545–50.

32. HIPC. The signatures were generated by manual curation of published
studies in human and mouse immunology as part of the Human
Immunology Project Consortium. http://www.immuneprofiling.org.

33. Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK,
et al. A Catalog of Published Genome-Wide Association Studies. Available:
http://www.genome.gov/gwastudies. Accessed December 2014.

34. Muraro D, Lauffenburger DA, Simmons A. Prioritisation and network
analysis of Crohn’s disease susceptibility genes. PLoS One. 2014;9(9):.
e108624.

35. Autophagy Database. http://autophagy.info/autophagy/index.html.
36. Rath E, Haller D. Mitochondria at the interface between danger signaling

and metabolism: role of unfolded protein responses in chronic
inflammation. Inflamm Bowel Dis. 2012 Jul;18(7):1364–77.

37. MITOCARTA database. http://www.broadinstitute.org/pubs/MitoCarta/
human.mitocarta.html.

38. Lee JC, Lyons PA, McKinney EF, Sowerby JM, Carr EJ, Bredin F, et al. Gene
expression profiling of CD8+ T cells predicts prognosis in patients with
Crohn disease and ulcerative colitis. J Clin Invest. 2011;121(10):4170–9.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://www.immuneprofiling.org
http://www.genome.gov/gwastudies
http://autophagy.info/autophagy/index.html
http://www.broadinstitute.org/pubs/MitoCarta/human.mitocarta.html
http://www.broadinstitute.org/pubs/MitoCarta/human.mitocarta.html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Optimisation algorithm
	Individual representation and selection
	Fitness functions
	Mutation
	Crossover
	Initialisation


	Results and discussion
	Data pre-processing
	Experimental data
	Synthetic data

	Optimisation of synthetic networks
	Optimisation of CD and UC networks

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Competing interests
	Authors' contributions
	Acknowledgements
	References



