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Background: The impressively low cost and improved quality of genome sequencing provides to researchers of
genetic diseases, such as cancer, a powerful tool to better understand the underlying genetic mechanisms of those
diseases and treat them with effective targeted therapies. Thus, a number of projects today sequence the DNA of
large patient populations each of which produces at least hundreds of terra-bytes of data. Now the challenge is to

provide the produced data on demand to interested parties.

Results: In this paper, we show that the response to this challenge is a modified version of Spark SQL, a distributed
SQL execution engine, that handles efficiently joins that use genomic intervals as keys. With this modification, Spark
SQL serves such joins more than 50x faster than its existing brute force approach and 8x faster than similar
distributed implementations. Thus, Spark SOL can replace existing practices to retrieve genomic data and, as we
show, allow users to reduce the number of lines of software code that needs to be developed to query such data by

an order of magnitude.
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Background

In this paper, we present an enhancement to Apache
Spark, which is a distributed computing framework,
to accommodate efficiently SQL queries on genomic
datasets. Although one can use existing technologies to
import genomic datasets as SQL tables, the poor perfor-
mance of those technologies to common genomic queries
has made them an unattractive choice among users of
Next Generation Sequencing (NGS) data.

As sequencing costs drop, more and more research cen-
ters invest in massive sequencing projects that aim to
build huge databases of thousands of genomes and their
associated phenotypic traits. For example the Oregon
Health and Sciences University (OHSU) and the Multi-
ple Myeloma Foundation (MMRF) are sequencing 1000
patients with Acute Myeloid Leukemia (AML) and Mul-
tiple Myeloma respectively [1, 2]. In another example, the
International Cancer Genome Consortium (ICGC) [3] is
in the process of sequencing over 25,000 pairs of tumor
and normal samples in order to catalogue the genetic
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abnormalities of 50 different cancer types. Each whole
genome sequencing run with Illumina’s technologies pro-
duces more than 200 GB of data.

Access to those data, though crucial for the advance-
ment of cancer treatment, remains a challenge for
researchers and data scientists.

Today there are two tiers of data access: a top and bot-
tom tier. The top tier involves the downloading of FASTQ,
BAM, or VCF files from an archive such as the SRA [4]
or CGHUB [5] that contain reads or variants from the
sequencing either of a person or a population. Although
those archives use the state of the art of file sharing tech-
nology to reduce file transfer latencies over the Internet -
as is the case of CGHUB that uses GeneTorrent [6] - the
size of the files that need to be transfered makes down-
loading slow. For example, the downloading of a 250 GB
BAM with a 60x coverage of Whole Genome Sequenc-
ing (WGS) over a 100 Mbps Internet link takes 8 h. On
the other hand, the bottom tier involves extractions of
subsets of the downloaded data. A user either develops
software from scratch to navigate through the data, or
they use a combination of shell scripts in combination
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with commands of either of vcftools, samtools, and BED-
tools. This practice adds a layer of complexity between
data and the user for three reasons:

1. Scripts must be created to analyze these experiments

2. It requires users to manually parallelize the execution
of those tools in distributed environments which get
adopted to serve the increasing amounts of generated
data.

3. It creates storage overheads with the possible creation
of intermediate files that are used to transform files.

Assuming that genomic data in the order of Terabytes
and Petabytes reside in distributed environments as in
[7], we propose that a more efficient alternative to both
tiers of data access is a distributed data retrieval engine.
Such an interface on the top access tier can provide data
on demand by eliminating the network traffic and the
need for secondary level processing at the user end. Even
if owners of genomic data repositories are reluctant to
provide such a feature, a data retrieval interface is still
useful for the productivity of an end user at the bottom
layer. With such an interface end users will not have to
worry about scripting their way to retrieve and compare
data from datasets of different origin, such as raw reads,
variants, and annotation data.

In this work we use Spark SQL which is the distributed
SQL execution engine of the Apache Spark [8] framework.
Spark is a user friendly high performance framework; it
abstracts distributed collections of objects and it provides
around 80 operators that either transform those objects
through opeators such as map, filter, and groupBy, or per-
form actions on them through operators such as reduce,
count, and foreach. Spark organizes a cluster in a Master-
Slave architecture, where the driver (i.e., the master) exe-
cutes a main program and transfers code to workers (i.e.
slaves) to execute on those parts of the distributed objects
that they contain.

Data model
In this work we assume that all genomic data are in
ADAM format. ADAM [9, 10] is an open source software
that separates genomic information from its underlying
representation and is currently used as the main compu-
tational platform in the NIH BD2K center for big data
in translational genomics [7]. Such a separation removes
from data users the burden of how data is represented.
Thus, an ADAM user can operate on distributed stor-
age without having to parse complicated files, given that
ADAM supports and replaces all levels of genomic data
that are currently represented by the legacy FASTQ, BAM,
and VCF formats.

ADAM records consist of serializable objects that are
stored in a distributed friendly column based format. It
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uses Apache AVRO [11] as a data serialization system,
which relies on schemas and stores them together with
the data. The serialized data are stored with the use of
Apache Parquet [12] system, which is a columnar stor-
age system based on Google Dremel [13]. Parquet creates
storage blocks by grouping sequences of records and it
stores sequentially all columns of each block. Finally, given
that Parquet provides built in support for writes and reads
from the Hadoop File System (HDFS), ADAM transpar-
ently supports distributed environments that are built
over HDFS.

Spark SQL fully recognizes Parquet files and conse-
quently ADAM files as relational tables and it also infers
their schemas. This allows users to natively query ADAM
files from SPARK SQL.

The problem

Although Spark SQL provides impressive expressive
power and thus it can execute any genomic query, the
main obstacle for its adoption to query genomic data has
been its slow performance on two of the most frequently
encountered queries: 1) random range selection, and 2)
joins with interval keys. Random range selection in a
collection of aligned reads took several minutes to run
in a small cluster, which is embarrassingly slow given
that samtools need only a few seconds. Fortunately, the
rapid evolution of the open source libraries that we use
(in particular Parquet on which ADAM files depend and
whose API Spark SQL uses for their filtering) improved
the execution of those queries by an order of magni-
tude as we show in the results section. Regarding the
execution of interval joins between two tables, Spark
SQL uses the obvious execution of filtering on their
cross product. However, given the sizes that are involved
in genomic data such an approach is unrealistic. If we
consider for example an interval join between 1 billion
aligned reads with 1 million variants, the cross product
between them is 10! records and it is prohibitively slow to
compute.

The contribution of this paper addresses the second per-
formance bottleneck: joins on interval keys. We present
a modification to Spark SQL that enhances the efficiency
of interval joins and it thus makes it suitable to query
genomic data. For this reason we use interval trees to
interval join two tables in a distributed setting.

Related work

The first generation of tools that access genomic data
involves packages such as Samtools [14], vcftools [15],
BAMtools [16] and BEDtools [17]. While powerful,
these tools require extensive programming expertise to
open and parse files of different formats, assign buffers,
and manipulate various fields. In addition, given that
these tools are optimised for single node computational
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performance, a user needs to manually parallelize them in
a distributed environment.

The second generation of relevant software involves the
Genome Query Language (GQL) [18], which provides a
clean abstraction of genomic data collection through a
SQL-like interface. However, the support of GQL is only
limited to queries on a small subset of fields of the entire
SAM specification and it also requires extra manual effort
to support distributed environments.

The third generation leverages the Hadoop ecosystem
to easily provide data on demand on a distributed set-
ting. For example, the GenomeMetric Query Language
(GMQL) [19] uses Apache Pig, which is a high level lan-
guage that abstracts map-reduce operations, to support
metadata management and queries between variants and
annotation data. In another example, NEXTBIO [20] uses
HBase, which is Hadoop’s NoSQL key-value store, to sup-
port data of similar nature. The scope of these tools
however excludes raw data either in the FASTQ or in the
BAM format.

Implementation

This section describes how we modified Spark SQL to
add support for range based joins. The first step of the
modification involves the grammar of Spark SQL, which
we extended to simplify the syntax of those queries.
Next, before describing our modification to the execution
engine of Spark SQL, we provide a brief description of the
interval tree and interval forest data structures which this
modification utilizes.

Syntax

Although the existing syntax of Spark SQL suffices for
a user to describe a join between two tables on interval
overlap condition, it looks complex and counter intuitive
for a user of genomic collections that routinely uses this
operation. If we consider for example tables A (aStart:
long, aEnd: long, aChr: String) and B (bStart: long, bEnd:
long, bChr: String), then according to the current syntax
of Spark SQL, an interval join looks like the following:

SELECT * FROM A JOIN B ON (
aChr = bChr AND
aStart < aEnd AND bStart < bEnd
AND (
aStart < bStart AND aEnd >
bStart OR
bStart < aStart AND bEnd >
aStart)

)

To eliminate the complexity of such a frequent oper-
ation, we enhanced the vocabulary of Spark SQL
with two extra keywords, namely RANGEJOIN and
GENOMEOVERLAP. In case of an interval based join, the
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former keyword replaces JOIN and the latter, which is fol-
lowed by two tuples as arguments, specifies the overlap
condition and is the only argument of the ON condition.

Using those new keywords, one can type the query of
the previous example as follows:

SELECT * FROM A RANGEJOIN B ON
GENOMEOVERLAP (( aStart , aEnd, aChr), (
bStart, bEnd, bChr))

Interval trees

The most expensive part of a Join evaluation involves a
search for overlaps between two arrays of intervals. Our
implementation utilizes the interval tree data structure,
which is a binary tree that is built from a collection of #
intervals in O (nlog #) time and it takes O (log#) time to
find which of the intervals of its collection overlap with
a given query interval. Note that a brute force execution,
which is what Spark SQL uses up to date, of the same
operation takes quadratic time.

At this point we remind interested readers how an
interval tree is constructed and searched.

Each node of the tree contains two objects. The first is
the key that is the mid point of the union of the collection
of intervals that are stored in the subtree which is rooted
at a node. The second object is an overlapping list that
contains those intervals that overlap with the key. Con-
sider for example the interval tree of Fig. 1 which stores

18
[16,19]

Fig. 1 An example interval tree. This is the interval tree that stores
intervals [1,5],[7,15], [ 16,19], [ 20, 25], and [ 22, 28]. Each node
consists of two parts: The top part is the key of the node, which is the
midpoint of the concatenation of all intervals of the subtree and the
bottom part is a list of intervals that overlap with the key. So, in this
example, the concatenation of all intervals is [ 1, 28] and since the
midpoint of that is 13, the root of the tree is keyed by 13 it stores
interval [ 7, 15] as it is the only interval of the collection that overlaps
with 13. The intervals that do not overlap with the midpoint are used
to build the left and right subtrees recursively such that all intervals of
the left subtree end before and all intervals of the right subtree start
after the midpoint
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intervals [1,5], [ 7,15], [ 16, 19], [ 20, 25] and [ 22, 28]. The
key of the root is 13 because that is the mid point of the
union of all intervals which is [1,28]. This key overlaps
only with interval [ 7, 15], which is the only content of the
overlapping list of the root.

The subtrees of a node store those intervals that do not
overlap with its key. The left subtree contains all intervals
the end points of which are less than the key; symmet-
rically, the right subtree contains all intervals with start
points greater than the key.

To search whether a particular interval overlaps with
any of the intervals of an interval tree, one scans linearly
the overlapping list of the root to search for intervals that
might overlap with the query and continues traversing the
tree according to the relevant position of the query inter-
val and the keys of the encountered nodes. When the input
interval ends before the key of a node the search continues
only to the left subtree. Respectively, when the start of the
query interval is greater than the key the search continues
only to the right. In case of overlapping between an input
interval and a key, the search continues to both subtrees.
Assume for example a search for all overlapping inter-
vals with [ 17, 23] with the interval tree of Fig. 1. Starting
from the root, after a quick scan of the overlapping list of
the root returns the empty set, a comparison between the
key of the root and the interval indicates that the search
should continue towards the right subtree, which is rooted
at the node with 22 as key. A quick scan of the overlapping
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list of the node detects that [ 20,25] is part of the solu-
tion and since the query interval overlaps with the key of
the node, the search continues towards both left and right
subtrees. Proceeding in the same way, the query returns as
a result the set of intervals [ 20, 25], [ 16, 19] and [ 22, 28].

Interval forests

The interval tree structure that we described in the previ-
ous session is not useful as is to query genomic intervals
because it does not differentiate intervals of different
chromosomes. Thus, in this work we use a forest of inter-
val trees, one per chromosome. All chromosome names
are stored in a hash table and they point to the respective
interval tree. Thus, a genomic interval lookup now con-
sists of a hash table lookup to obtain the proper interval
tree for the chromosome of interest before querying the
tree as the previous subsection describes.

Interval keyed joins on Spark SQL
Figure 2 shows the implementation of the join between
distributed tables A and B with interval keys.

In the first stage of the join between distributed tables
A and B on interval keys and assuming A is the table with
the fewest records, Spark SQL first creates distributed
table A1 which is a transformation of table A into a key-
value pair whose keys are the indices of each record.
Note those indices are easy to obtain in Spark using
the built-in function zipKeysWithindex. Then it creates

Table A
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Fig. 2 Our distributed range join architecture. In this picture, distributed table A joins with distributed table B on genomic interval overlapping.
Table A goes through a number of transformations to enable the Spark driver to create an interval forest which stores index pointers to the original
data. Next it propagates the interval forest to workers which transform table B by performing interval lookups on the forest. The result of this
operation is table T1, which contains tuples of data from table B and pointers to data of table A. To materialize this we join it with table A1 on those
pointers and we obtain table T, which is the final result of the operation. The text under each table shows the data type of the contents of each table
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table A2 which is a key-value pair where the keys are
the intervals of interest and the values are the keys of
table Al. For example, consider table A whose schema
is (id(string) chromosome(string) txStart(long)
txEnd(long) : function(string)). If table A contains entries
(“genel" : chr3 : 100 : 1000 : “functionl") and (“gene2" :
chr3 : 4000 : 5000 : “function2") then table Al is

(0 : (“genel", chr3,100, 1000, “functionl"))
(1: (“gene2", chr3,4000, 5000, “function2"))

and the contents of table A2 are

((chr3,100, 1000) : 0)
((chr3,4000, 5000) : 1)

In the second stage of the implementation, the driver of
the Spark cluster collects A2 into its local memory and it
uses it to create an interval forest according to the descrip-
tion of the previous subsections. Then the driver broad-
casts the resulted interval forest to the worker nodes.

In the third stage, Spark SQL creates table T1 with
records that consist of a tuple whose first element involves
a record from table B and its second element is one of
the index values of table A2. In order to create table
T1, Spark SQL transforms table B by using its interval
keys to look up the interval forest that all worker nodes
obtained from the previous step. For example consider
table B with schema (id(string) : chromosome(string) :
readStart(long) readEnd(long)). If table B contains
entries

(“readl" : chr3 : 150 : 250)
(“read?2" : chr4 : 3000 : 3100)
(“read3" : chrl : 1000 : 1100)

and A2 is the table that we created in the previous para-
graph whose interval keys created the interval forest, then
only the first tuple of table B will query successfully the
interval forest since its interval overlaps with the first
interval of table A2. Thus the contents of table T1 are
{{((“readl", chr3, 150, 250) : 0)}.

The last stage of the operation involves the genera-
tion of the final distributed table, which is the result
of the range join and it consists of a tuple where the
first element involves a record from table A and the
second element involves a record from table B. In order
to construct the output, Spark SQL joins table T1 with
table Al on the integer keys of Al which have to match
with the second element of the tuples of T1. So, in our
example the transformation of T1 gives table T with
contents {((“read 1", ¢hr3, 150, 250) : (“genel", chr3, 100,
1000, “functionl")) }
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Results

We demonstrate the suitability of Spark SQL on querying
genomic datasets through a series of queries that involve
random access of ranges and range joins. In our examples
we used the ADAM representation of the raw data (BAM
file of size 250 GB) of the platinum genome NA12878.
Our hardware consisted of a Spark cluster with 5 work-
ers all of which were m2.4xlarge instances on the Amazon
EC2cloud.

We start by demonstrating the maturation of the tech-
nologies that we use through a random access of a simple
range of gene NPM1. The query that we type is the
following:

SELECT start, cigar, mapq FROM
NA12878reads

WHERE chromosome=5 and start <
170770152 and start + end >
170770157

We ran the query against two different versions of
the Parquet library that comprises the storage model of
ADAM and whose API Spark SQL uses to evaluate filter
predicates on Parquet encoded files. The earlier version
of this library took 10 min to run while the latest ver-
sion took 75 s. The difference was due to the fact that
although the earlier versions of Parquet were evaluating a
predicate on every single record of a file, recent ones uti-
lize metadata to ignore retrieving unnecessary blocks of
data. Of course, a minute long latency for such a query still
seems incompetent compared to the second long latency
that samtools obtain in single node through secondary
indexes, but the observed trends make us believe that
future improvements on the used libraries are going to
bridge that gap.

In the second query, we demonstrate the efficiency of
our implementation of interval joins. Note that this query
joins all mapped reads of NA12878 which is in the order
of 10° records with all 94 K records of the clinvar vcf that
is provided at the dbsnp archive for build 142. Of course,
the brute force solution which is a filtering operation on
the cross product of the two tables is unrealistic since the
cross product consists of a number of records in the order
of 10'*, The query that we used is:

SELECT v.contigName, v.start, v.end, r.
start

FROM clinvarVcf v RANGEJOIN
NA12878reads r

ON GENOMEOVERLAP ((v.start, v.end, v.
contigName) ,

(r.start, r.end, r.contig.
contigName))

Table 1 compares the performance of our implementa-
tion with the brute force original implementation of Spark
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Table 1 Performance of different implementations of interval

keyed joins

Method Runtime (hr)
Interval Tree (this paper) 0.28

Shuffle Join (ADAM) 25

Brute force (default Spark SQL) > 14

SQL and the shuffle join approach that is introduced in
[10] as an alternative range join operation over genomic
sequences. According to this table, the interval tree based
method that we use in this paper is 9 times faster than
shuffle join while the brute force approach could not
complete the join by the time we interrupted its execution.

The next experiment demonstrates the scalability of our
range join implementation by modifying the number of
Spark workers that are used for the execution of the pre-
vious query. Figure 3 shows that the latency of the interval
tree based join drops linearly as the size of the cluster
increases.

To examine the small slope of the curve of Fig. 3, which
indicates small performance gains due to the cluster size
increase, we monitored closely the utilization of the clus-
ters. We focused mostly on the drop of the CPU utilization
at points 3:26 and 3:30 of Additional file 2: Figure S1
A. In the absence of any memory bottlenecks or intense
network activity (Additional file 2: Figure S1 B and C
respectively), such a drop in CPU utilization indicates the
existence of stranglers, i.e. a small subset of workers that
still execute their part of a task while most nodes wait
for them to finish in order to get assigned a new task.
Although a complete understanding of strangler behavior
in distributed systems is still an open research problem
[29], the nature of the dataset, which is sorted per chro-
mosome location, makes us estimate that most probably
the existence of stranglers occurs due to undesired, in this
case, data locality. Given that the Hadoop File System par-
titions data blindly and our original input was initially
sorted, it is very likely that overlapping data are grouped

Join(sec)
==Join(sec)
800
o e——
g 400
3
® 200
0 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30
Workers
Fig. 3 Scalability of range join. The execution time drops linearly as
the cluster size increases
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in the same partition and thus they are assigned to the
same worker. So, when Spark SQL attempts to perform r
ange join, it is likely that not all workers contribute equally
to the preparation of the output; those whose most of the
data do not participate in the join are going to complete
their tasks earlier than workers that produce most of the
output. We leave as a future work research on the best
possible partitioning of genomic datasets in order to get
queried as efficiently as possible.

Our final experiment stresses the tremendous savings
in programmer productivity that the use of Spark SQL
yields compared to the alternatives that researchers use
today. The query that we used in this example was:
“Are there any reads of the NA12878 dataset that
align with the reference genome only with matches or
mismatches (M CIGAR operations only), overlap with
any variant location of the clinvar dataset and contain
the respective alternate allele?”. Using existing genomic
processing software, we implemented the same query in
two steps:

1. We used the intersect feature of BEDtools to retrieve
all those alignments of NA12878 that overlap with
any locus of the clinvar dataset.

2. We wrote custom software using the samtools API to
further process the retrieved alignments and discard
those whose reads contain the reference allele.

The custom software that we wrote and we also include
as an additional file (see: Additional file 7) consists of 130
lines of C++ code. The execution of both steps took 27
min to run; BEDtools took 26 min to filter the dataset and
the resulted file was processed by our custom software
in less than a minute. On the other hand, the Spark SQL
implementation of this query requires an interval based
join between the contents of NA12878 and clinvar tables
followed by a WHERE statement that filters out rows with
either complex CIGAR strings or with sequences that do
not contain the alternate allele in the respective positions;
the resulted Spark SQL script, which we also include as
an additional file (see Additional file 6; interested read-
ers can experiment with the code of this file against small
datasets that we provide in Additional files 3, 4 and 5),
contains 11 lines of code that took 16 min to run on the
same hardware.

Table 2 summarizes the results of this experiment. They
show a decrease by an order of magnitude on the number
of lines of code that needs to be developed with Spark SQL
to implement complex queries on genomic data. In addi-
tion, the execution of the Spark SQL query was faster than
the execution of BEDtools. The reason was that the col-
umn based storage and predicate push-down capabilities
of the ADAM format that we used to represent align-
ments allowed Spark SQL to retrieve from the disk only
the absolutely necessary fields of the dataset.
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Table 2 Comparison between Spark SQL and existing software
methods that are used to retrieve genomic data. Complex
queries that today need more than a hundred lines of code to be
implemented, take an order of magnitude fewer lines of code on
Spark SQL without performance sacrifices

Software tool Lines of code Runtime (min)
Spark SQL 1 16

BEDtools: 1 26

samtols APl based code: 130 1

total: 131 27

State of the art software

Discussion

In our work we utilize the latest technologies in dis-
tributed computing, such as Spark SQL through Apache
Spark and Parquet through ADAM in order to enable
the research community to easily query heterogeneous
datasets of genomic data either against each other (for
example mixed queries between variant and raw data) or
with annotated files.

Out of the two categories of software that query large
amounts of data, NoSQL systems and distributed SQL
execution engines, in this work we use a distributed SQL
execution engine to address these needs because of its
expressive power, and its scalability. As traditional rela-
tional databases are hard to scale, large amounts of data
can be accessed via NoSQL systems such as MongoDB
[21], HBase [22], and Cassandra [23]. However, in the
light of [24] which advocates the use of relational algebra
to retrieve genomic data, access patterns to sequencing
data typically involve a combination of operators such as
projections, selections, interval joins, and aggregations;
NoSQL systems do not support all these operations. On
the other hand, distributed SQL execution engines, such
as as Hive [25], Impala nature [26], and Spark SQL [27]
provide scalable access to the data through relational
algebra based interfaces.

Of course, Spark SQL is not the only distributed SQL
execution engine, but we chose it in this work because of
its sophisticated and extensible query planner. Big Data
users have been using distributed SQL execution engines
as an abstraction of distributed operations, such as map
and reduce, through relational algebra operations. Earlier
engines, such as Shark [28], Hive [25], and Impala [26] rely
on a step-by-step execution of the SQL statements. Spark
SQL, on the other hand, provides a modular query plan-
ner and an optimizer to increase the performance of the
execution. In this work, we use the modularity of the
query planner to enhance the execution of some common
queries.

Conclusions
The central message of this paper is that a state of the art
distributed SQL execution engine, such as Spark SQL, can
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be modified to provide an interactive SQL interface on all
kinds of genomic data. Of course, other tools, such as sam-
tools and bedtools can provide similar functionality, but
Spark SQL provides a simple and expressive mechanism
of querying heterogeneous genomic data over distributed
hardware setups. And we expect that as big data technolo-
gies mature, the performance of Spark SQL is going to
match the performance of today’s popular tools.
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