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Abstract

Background: Complex disease is largely determined by a number of biomolecules interwoven into networks, rather
than a single biomolecule. A key but inadequately addressed issue is how to test possible differences of the networks
between two groups. Group-level comparison of network properties may shed light on underlying disease mechanisms
and benefit the design of drug targets for complex diseases. We therefore proposed a powerful score-based statistic to
detect group difference in weighted networks, which simultaneously capture the vertex changes and edge changes.

Results: Simulation studies indicated that the proposed network difference measure (NetDifM) was stable and
outperformed other methods existed, under various sample sizes and network topology structure. One application to
real data about GWAS of leprosy successfully identified the specific gene interaction network contributing to leprosy. For
additional gene expression data of ovarian cancer, two candidate subnetworks, PI3K-AKT and Notch signaling pathways,
were considered and identified respectively.

Conclusions: The proposed method, accounting for the vertex changes and edge changes simultaneously, is valid and
powerful to capture the group difference of biological networks.
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Background
From the perspective of network medicine, a disease
phenotype is rarely a consequence of an abnormality in
a single biomolecule (e.g. RNA, protein, metabolite), but
reflects various pathobiological processes that interact in
a complex network [1]. One single factor can exert
certain effects on disease when studying it alone, while
this effect may be vanished when studying it within one
network or pathway [2], and vice versa. Therefore, bio-
molecules should be studied in the context of biological
systems they are involved in [3]. Perhaps the abstraction
for a biological system is network, such as transcrip-
tional regulatory networks, signal transduction networks,
protein interaction networks and metabolic networks
[4]. In the biological networks, the vertices represent
biomolecules, and the edges represent functional, causal
or physical interactions between the vertices. Different

types of networks are often used to represent diverse
types of biological processes, each of which stores infor-
mation about levels and interactions related to specific
biomolecules [5]. In fact, different physiological condi-
tions may manifest as different networks. Moreover,
complex disease are multi-factorial and analyzing the
individual components is insufficient, so it is essential to
dissect how these components interact with each other
and weave into one network, and how these interactions
differ with respect to disease status. Statistical compari-
son of group difference in biological networks or path-
ways can provide new insight into the underlying disease
mechanism, and have extensive biomedical and clinical
applications [6–10]. For instance, a better understanding
of the effects of molecular interconnectedness on disease
progression may lead to superior identification of disease
related biomolecules and pathways, which may further
offer more effective targets for drug development in a
cost-effective and timely manner.
On the other hand, identifying biological and environ-

mental causes of human diseases has always been one of
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the central concerns in epidemiology. However, trad-
itional epidemiology has been pejoratively labeled as the
“black box” epidemiology [11], and increasingly suffered
from criticism partly due to the fact that too much
attention has been paid to the identification of a single
risk factor rather than the network or pathway related to
a disease, which led to difficulty to deeply explore dis-
ease mechanism [12]. It is highly desirable to unlock the
black box underlying observed associations and to illu-
minate the biological interaction mechanisms of disease-
related components hiding behind the black box. There
are unmet needs to access multi-level omics data on the
population level. Thanks to the development of recent
technological advances in high-throughput omics plat-
forms, we can enable the acquisition of omics data at
unprecedented speed and amounts, and further integrate
various omics data with traditional epidemiology to pro-
mote the development of systems epidemiology [12, 13].
It offers the potential to provide new insight into the
underlying disease mechanisms in breadth and depth at
human population level. Under the framework of sys-
tems epidemiology, the focus has been shifted from
identification of single factor to exploration of specific
networks or pathways contributing to disease [14, 15].
In a word, it is in great needs to do statistical compari-

son of biological networks. So far, several methods have
been proposed to utilize network topology information
to carry out various biomedical tasks. Langfelder et al.
[16] provided several measures for comparing network
topologies for weighted correlation networks. Zhang
et al. [17] proposed a differential dependency network
analysis to detect topological changes in transcriptional
networks between subclasses of breast cancer. Valcarcel
et al. [18] introduced a formal statistical method for the
differential analysis of molecular pair-wise associations
via network representation. Recently, Yates et al. [19]
developed an additive element-wise-based dissimilarity
measure for biological network hypothesis tests. How-
ever, most of above methods mainly focus on the differ-
ence of network topology and are unable to account for
the changes of vertices. Although in most situations, the
differences of single vertices-wise or edges-wise may be
weak, their aggregated differences can be quite strong. It
will undoubtedly lose statistical power to only consider
the connection with the topological difference between
two networks. Meanwhile, non-parametric permutation
procedures are commonly employed to perform analysis
in most existed methods, which were inevitably time-
consuming, especially for big data.
The premise for networks or pathways comparison is

to make clear the cause of biological network differ-
ence. Generally, both changes in the nodes level (e.g.
the magnitude of each gene’s expression change in
regulation network), and changes in the edges (e.g. the

strength of connection) can lead to the whole network
difference. Reverter et al. [20] presented an analytical
procedure to simultaneously identify genes that were
differentially expressed (DE) as well as genes that are
differentially connected (DC) for unweighted networks.
Their methods depend heavily on the specific defin-
ition of DE and DC, and the two-component mixture
of bi-variate normal distribution may be violated in
other biological networks, though it may be reasonable
in gene expression network. Furthermore, weighted
(correlation-based) networks are commonly encoun-
tered and increasingly relevant in biological applica-
tions [16, 21–23]. Statistical methods for detecting the
group difference in weighted biological networks are
still in great demand.
In this article, we proposed a new score-based network

difference measure (NetDifM) as a powerful test statistic
to detect group difference in weighted networks, which
simultaneously capture the difference of vertices and
edges. Various simulations were conducted to evaluate its
type I error and statistical power, compared with other
existed method. Two real data sets about GWAS of lep-
rosy and gene expression of ovarian cancer were further
analyzed to show their performance in practice.

Methods
Statistical model
A weighted biological network can be modeled as an
undirected graph G = (V, E), where V is the set of vertices
(sometimes referred to nodes) and E is the set of edges (also
called connections). Two vertices, representing biomole-
cules, are connected by an undirected edge if there is an as-
sociation between them. Each edge can be assigned a
weight resembling the strength of evidence for the
association.
We denote the two networks in two groups (cases and

controls) by GD and GC respectively, suppose both GD and
GC have the same number of vertices (M) and edges (K),
the null hypothesis test is H0 :G

D =GC. Let V(GD) and
E(GD) denote the set of all vertices and edges in GD, xi

Dxj
D

indicate the edge xDi −x
D
j (i ≠ j, i, j = 1, 2,⋯,M), βij

D represent

the strength of association between xi
D and xj

D if xi
Dxj

D

existed. For individual l (l = 1, 2,⋯,N), the trait value is

denoted as Yl, Y l ¼ 1; l∈case
0 ; l∈control

�
and the ith vertex is

denoted as xli. Under H0, networks in two groups are iden-
tical not only in the average vertices levels but also in the
connection strength. The score test vector of vertices is DV

= (D1
V,D2

V,⋯,DM
V )T, where DV

i ¼
XN

l¼1
Y l−�Yð Þxli mea-

sures the contribution of vertex xi to the disease. Analo-
gously, the score test vector of edges is DE = (D1

E,D2
E,⋯,

DK
E)T, where DE

k ¼
XN

l¼1
Y l−�Yð Þ xli−�xið Þ xlj−�xj

� �
measures
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the contribution of connection strength between xi and xj
(i.e. the kth edge) to the disease. Then the proposed overall
network difference measure can be defined as

NetDifM ¼ DTΣ−1D;

where D ¼ DV

DE

� �
; Σ = cov(D) = (σpq)(M+K) × (M +K), p, q =

1, 2,⋯, (M+K). The estimated covariance matrix of D can be

represented as
ΣV ΣVE

ΣT
VE ΣE

! 
and calculated as follows,

1) For ΣV, p, q = 1, 2,⋯,M,

σpq ¼
XN

l¼1
Y l−�Yð Þ2 cov Xp; ;Xq

� �
;Xp

¼ x1p; ; x2p;⋯; ; xNp
� �

;

2) For ΣE, p, q =M + 1,M + 2,⋯,M + K,

σpq ¼
XN

l¼1
Y l−�Yð Þ2 cov Zp; ;Zq

� �
;Zp

¼ Xi−�Xið Þ � Xj−�X j
� �

;

3) For ΣVE , p = 1, 2,⋯,M , q =M + 1,M + 2,⋯,M + K

σpq ¼
XN

l¼1
Y l−�Yð Þ2 cov Xp; ;Zq

� �
:

Naturally, for a large sample size, NetDifM has a centered
χ2(M +K) distribution under the null hypothesis (The der-
ivation of NetDifM see Additional file 1). When sample size
is small, a permutation procedure can be conducted as
follows to get the empirical P value and assess the statistical
significance. (1) calculate the test statistic NetDifM from
the original sample; (2) randomly assign subjects to one of
two groups, the sample size for each group keeps the same
as the original data; (3) perform the above steps Q times
and calculate the test statistic for each repeated sample,
NetDifMi

*, i = 1, 2,⋯,Q; (4) estimate the P value according

to p−value ¼ 1
Q

XQ
i¼1

I NetDif M�
i > NetDifM

� �
, where I(•) is

the indicator function.
Intuitively, considering the elements of one network are

not more than vertices and edges, an element-wise measure
may be expected to have the ability to identify the group
difference in biological networks. A vertices and edges wise
difference measure (VEWDM), through the simple summa-
tion of vertices difference and edges, can be constructed as

VEWDM ¼ 1
M

XM
i¼1

T 2
i þ

1
K

XM
i¼1

XM
j≠i

U2
ij

where Ti ¼ �xDi −�x
C
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var �xDið Þþ var �xCið Þp , �xDi and �xCi indicate the sam-

ple mean of xi in GD and GC respectively; Uij ¼

βDij −β
C
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var βDijð Þþ var βCijð Þp , when the strength of edges are quantified

by the Pearson correlations rij, Uij ¼ zDij −z
C
ij

� 	
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nD−3

þ 1
nC−3

q
, zij are the Fisher-transforms of the correla-

tions zij ¼ 1
2 ln

1þrij
1−rij

, nD and nC are the corresponding sam-

ple sizes. The proposed VEWDM seems to be the linear
combination of some chi-square statistics. Actually, the
asymptotic theoretical properties have been explored for
the linear combination of independent chi-squares [24].
Nevertheless, it is quite complex and difficult here to obtain
the asymptotic distribution of VEWDM, since the correla-
tions between different vertices and different edges statistics
(Ti and Uij) highly depend on the specific network struc-
ture. In other words, the asymptotic properties might be
network-specific. To solve this problem, we adopted the
strategy of a permutation test to make statistical inference.

Simulation
Simulations were designed to evaluate the type I error
rate and statistical power, and to compare the per-
formance of NetDifM, VEWDM and Yates’D (recently
proposed dissimilarity measure in Yates et al. [19])
under different sample size and network topological
structure. The statistical power is defined as the prob-
ability that the test correctly rejects the null hypoth-
esis (H0) when the alternative hypothesis (H1) is true.
It can be estimated from the empirical distribution as
the proportion of observations for which the p-value
is less than given nominal level (α = 0.05). For the
specific network with M vertices and K edges, the
simulated M-dimensional variables (vertices) were
generated from a multivariate normal distribution
NM(μ, Σ) with mean vector μ and covariance matrix Σ
using the R “mvtnorm” package. We specified the
mean vector μ = (μ1, μ2,⋯, μM) and covariance matrix

Σ = (Iijβij)M ×M, where Iij ¼ 1; xixj∈E Gð Þ
0; xixj∉E Gð Þ

�
, i ≠ j, i, j =

1, 2,⋯,M was the indicator function.
Under the null hypotheses (H0), the data was gener-

ated by setting μD = μC and Iij
Dβij

D = Iij
Cβij

C. 1000 simula-
tions were repeated to assess the type I error of the
above methods given various sample sizes under differ-
ent network scale, including network with ten vertices
and 21 edges (Fig. 1a) and another one with 20 vertices
and 45 edges (Fig. 1b). Under the alternative hypotheses,
three scenarios were considered.
For scenario 1, only vertices (average levels) were

different between GD and GC. We simulated two vertices
difference with μ3

D − μ3
C = 0.2 and μ10

D − μ10
C = 0.2 under

the network topological structure as in Fig. 1a. Three
vertices difference with μ6

D − μ6
C = 0.1, μ8

D − μ8
C = 0.2 and
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μ17
D − μ17

C = 0.2 were also designed under the relative
larger scale network as in Fig. 1b.
For scenario 2, only edges (connection strength)

were different between GD and GC. We simulated three
edges difference with β35

D − β35
C = − 0.2, β57

D − β57
C = 0.2

and β8,10
D − β8,10

C = 0.2 under the network topological
structure as in Fig. 1a. Seven edges difference with
β10,11
C − β10,11

D = − 0.2, β1,10
C − β1,10

D = β2,12
C − β2,12

D = β4,14
C

− β4,14
D = β12,19

C − β12,19
D = 0.2 and β23

C − β23
D = β7,20

C − β7,20
D

= 0.1 were also designed under the relative larger scale
network as in Fig. 1b.
For scenario 3, both vertices and edges were designed

to be different between GD and GC. Under the topology
structure as in Fig. 1a, we combined the settings in sce-
nario 1 and scenario 2 (the difference only existed for
orange vertices and red edges), so as for the topology
structure as in Fig. 1b.
For each scenario, 1000 replicates were used to evalu-

ate statistical power. P-values of the proposed NetDifM
were assessed using both the asymptotic distribution
and the empirical null distribution obtained from 1000
times permutations.
It is necessary to assess the performance of the pro-

posed statistics, given the deviation from the normal
distribution. For the network with ten vertices and 21
edges, we designed the following two scenarios, (i)
conduct the exponential transformation for five verti-
ces randomly chosen among the ten vertices; (ii) do
the exponential transformation for all ten vertices. For
each scenario, we evaluate the type I error rate and
statistical power under the same three scenarios men-
tioned as above.
Furthermore, we also provided estimated computing

time under different network with sample size 200 and
1000 permutations, using one laptop as an Intel
PentiumT4400 with a 2.2 GHz CPU and 2 GB RAM.

Application
GWAS data of leprosy
By Ingenuity Pathways Analysis, a plausible biologic net-
work underlying susceptibility to leprosy was provided
for depicting the functional relationship between some
susceptibility genes identified from GWAS of leprosy
[25]. Using the initial GWAS data with 706 cases and
514 controls, we attempted to detect the difference of
the networks including genes CARD6, HLA-DRB1,
RIPK2, CARD9 and IFNG. All participants provided
written informed consent, and the study was approved
by the ethics committees of Shandong Academy of
Medical Science [25]. These five genes located on
different chromosomes and totally contained 914 SNPs
(see in Additional file 1: Table S1), with network structure
given in Fig. 2a. Since each gene contained several SNPs,
we first employed principal component analysis and con-
ducted the statistical network comparison by treating the
first principal component as the network vertices.

Gene expression data of ovarian cancer
Tothillet al. [26] used high-density expression oligo-
nucleotide microarrays for profiling 285 well-annotated
serous and endometrioid invasive ovarian, fallopian tube,
and peritoneal cancers. The subjects were divided into a
C1 subtype, with 83 patients, and a C2–C6 subtype, with
168 patients. Complete expression data are available on
GEO (accession GSE9899). The proposed method was
also applied to detect the network difference between
these two groups (C1 versus C2–C6). Here we studied
two specific pathways (PI3K-AKT signaling pathway and
Notch signaling pathway) reported in the literatures
[27–29] to be relevant to ovarian cancer. The subnet-
work of PI3K-AKT signaling pathway from the KEGG
pathway database with 7 genes contained 26 probe sets
(see in Additional file 1: Table S2) was abstracted into

a b

Fig. 1 Weighted biological networks. a An assumed network including ten vertices and 21 edges. b An assumed network including 20 vertices
and 45 edges
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network with topological structure shown in Fig. 2b.
The subnetwork of Notch signaling pathway with 14
genes contained 45 probe sets (see in Additional file 1:
Table S2) was abstracted into network with topological
structure shown in Fig. 2c. All probe sets corresponding
to the same gene symbol were first averaged to obtain
gene-level expression measurements.

Results
Simulation
Shown in Table 1 are the estimated type I error rates of
the proposed NetDifM,VEWDM, NetDifM based on per-
mutation (NetDifMpm) and Yates’D under different sam-
ple sizes. It reveals that all type I error rates based on
permutation procedure are close to given nominal level
(α = 0.05). NetDifM tended to be slightly conservative
under small sample size, while using the asymptotic dis-
tribution maintains a good control of type I error rate
under large sample size.
Figure 3a indicates the statistical power under scenario

1 when only vertices changed with the network topo-
logical structure demonstrates in Fig. 1a. As expected,
Yates’D has no power due to that it can only capture the
edge change. NetDifM is substantially more powerful
than VEWDM, and it is slightly less powerful than its
permutation-based type. Similar trend could also be
found under the relative larger scale network (Fig. 3b).
Shown in Fig. 4 is the performance under scenario 2

(only edges change). The statistical power of all methods
monotonically increases with sample size. NetDifM has
much higher power than that of VEWDM and Yates’D.

The power of NetDifM and Yates’D keep almost the
same in the larger scale network (Fig. 4b).
Figure 5 illustrates the statistical power under the sce-

nario 3 (both edges and vertices change). Both NetDifM
and VEWDM are much more powerful than Yates’D,
and NetDifM still has the best performance.
To evaluate the scalability and computational efficiency

of the proposed methods, we also conducted simulations
using a larger network with 40 vertices and 54 edges (see
in Additional file 1: Figure S1). It is clear that the proposed
NetDifM still have the best performance (see in Additional
file 1: Figure S2; Additional file 1: Table S3).
Figure 6 indicates the results given the deviation

from the normal distribution, where the proposed

a

c

b

Fig. 2 Gene networks. a Gene interaction network of leprosy. b Subnetwork of PI3K-AKTsignaling pathway. c Subnetwork of Notch signaling pathway

Table 1 Type I error rates of four methods

Sample size NetDifM NetDifMpm VEWDM Yates’D

10 vertices & 21 edges

100 0.014 0.052 0.050 0.047

200 0.031 0.053 0.051 0.048

300 0.044 0.058 0.057 0.043

500 0.043 0.047 0.046 0.050

800 0.055 0.058 0.044 0.059

20 vertices & 45 edges

200 0.025 0.048 0.048 0.045

300 0.034 0.051 0.051 0.054

500 0.041 0.055 0.055 0.056

800 0.045 0.056 0.051 0.054

1000 0.052 0.055 0.051 0.047
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statistics still hold the relative better performance than
other method.
Table 2 presents the estimated computing time. It

indicates that the proposed NetDifM indeed runs fast,
and the computational time increases as the network
become larger.

The results of application
Network difference analysis for both the GWAS of
leprosy and gene expression data of ovarian cancer
further confirm in practice that the proposed NetDifM
captured the network changes. Shown in Table 3 are
the results of the proposed NetDifM and other methods
for detecting the network difference between two
groups. The difference of gene interaction network with
5 genes can be detected significantly at α = 0.05 by Net-
DifM, NetDifMpm and VEWDM.

Group difference of the subnetwork of PI3K-AKT sig-
naling pathway was detected significantly at α = 0.05 by
NetDifM, NetDifMpm and VEWDM. When applied to
the subnetwork of Notch signaling pathway, all four
methods can detect the network difference significantly
(Table 3). Shown in Table 4 are the results of the pro-
posed NetDifM and other methods for detecting the spe-
cific vertices, treating a vertex as well as its connected
edge as a network, under1000 permutation times.

Discussion and conclusions
Complex disease is largely determined by a number of
biomolecules interwoven into networks, rather than a
single biomolecule. Group-level comparison of network
properties (vertices level and the strength of connection
between vertices) may shed light on underlying bio-
logical processes or disease mechanisms, and benefit the
design of drug targets and drug combination for the

a b

Fig. 3 The statistical power of the four methods under the scenario only vertices was different between two groups. a The power under the network
topological structure as in Fig. 1a. b The power under the network topological structure as in Fig. 1b

a b

Fig. 4 The statistical power of the four methods under the scenario only edges was different between two groups. a The power under the
network topological structure as in Fig. 1a. b The power under the network topological structure as Fig. 1b
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therapy of complex diseases. Meanwhile, although the
conventional single-based paradigm has successfully
identified a list of risk factors, one common sense is that
there still exist an intermediate “black box” between the
exposures and the disease phenotypes (end point observa-
tions). In the “black box”, various risk factors weaved into

complicated biological networks dominating the disease
occurrence, development and prognosis. Recent advances
in high-throughput technologies and omics resources are
revolutionizing biomedical research, and allow a transition
from the traditional paradigm for biological and epidemio-
logical studies of complex diseases to a new paradigm

a b

Fig. 5 The statistical power of the four methods under the scenario both vertices and edges were different between two groups. a The power
under the network topological structure as in Fig. 1a. b The power under the network topological structure as in Fig. 1b

a b c

d e f

Fig. 6 The statistical power of the four methods given the deviation from the normal distribution. a, b, c The power under the scenario
conducting the exponential transformation for five vertices, when only vertices change (a), only edge changes (b), both vertices and edges
change (c). d, e, f The power under the scenario doing the exponential transformation for all ten vertices, when only vertices change (d), only
edge changes (e), both vertices and edges change (f)
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based on systems epidemiology [12, 13, 15]. Under this
framework, network-based analysis has been integrated
into observational study designs to organize the inter-
dependencies of biomolecules and other factors at a
human population level, expecting to open the “black
box”. A key but inadequately addressed issue is still to
develop valid statistical method to test possible differences
of the networks between two groups.
In our previous study [15], we have developed a statis-

tical method for detecting the pathway effect contribut-
ing to disease, mainly under the framework of systems
epidemiology. However, this method is limited to the
pathway with chain structure, and can only capture the
edge changes while omitting the vertex changes. Mean-
while, the nonparametric bootstrap method has to be
used to obtain the significance. At present study, we
proposed a score-based powerful statistical test to detect
the significant changes in biological networks between
two different conditions (e.g. health and disease). It can
simultaneously capture the vertex changes and edge
changes. Various simulations were conducted to assess
the reliability and statistical power of the proposed
method. It indicated that both NetDifM and VEWDM
were much more powerful than Yates’D, and NetDifM
kept the best performance under various scenarios
(Figs. 3 and 6), and it can indeed capture the perturb-
ation of vertices and edges in the network simultan-
eously. One strength for NetDifM is that we can obtain
its theoretic property, and thus can avoid the high com-
putation burden. As expected, the proposed NetDifM
indeed runs fast (Table 2). The VEWDM was used Fisher
r-to-z transformation to identify significant differences
between two correlations. Fukushima et al. [30] also devel-
oped an R package to identify differential correlations
between two conditions based on Fisher’s z-test which
affords users a simple and effective framework in omics
data. The VEWDM can be treated as a global measure to

detect the group difference of networks between two con-
ditions, accounting for not only edges difference but also
vertices difference. Even though one is interested in test-
ing particular vertex or edge rather than the whole net-
work, its connected edge should also be considered.
Two real data sets analyses further highlighted that Net-

DifM had more advantage in practice. In the GWAS data
of leprosy, we detected a candidate gene interaction net-
work containing five genes. For the gene expression data
of ovarian cancer, two candidate subnetworks, PI3K-AKT
signaling pathway and Notch signaling pathway, respect-
ively were considered and identified, suggesting that the
proposed method is capable of identifying differential gene
expression and gene-gene co-expression patterns, which
are certainly helpful for us to further understand the
underlying disease mechanism. Rao et al. [31] reported that
combined overexpression of OVA66 and MDM2 promotes
oncogenesis by enhancing activation of the IGF-1R–ERK1/
2 signaling pathway, and JAG1 enhances ovarian cancer cell
growth and cisplatin-resistance [32]. The expression of
HES1 is confirmed to be strongly associated with the patho-
genesis of ovarian endometriomas [33]. Meanwhile, de-
creased NOTCH2 expression is associated with the poorly

Table 2 Computing time (seconds) of four methods with
sample size 200 and 1000 permutations

NetDifM NetDifMpm VEWDM Yates’D

Network1 0.0015 0.91 0.76 3.83

Network2 0.0034 2.04 1.07 6.95

Network3 0.0064 3.92 2.16 12.37

Network1 ten vertices and 21 edges; Network2 20 vertices and 45 edges;
Network3 40 vertices and 54 edges

Table 3 P-values of the four methods for the two real data sets
(1000 times permutation)

Networks NetDifM NetDifMpm VEWDM Yates’D

Leprosy 0.003 0.008 0.006 0.230

Ovarian (PI3K-AKT) 0.006 0.008 0.017 0.465

Ovarian (Notch) 2.89 × 10– 6 <0.001 <0.001 0.031

Table 4 P-values of the four methods for detecting the genes
in the PI3K-AKT signaling pathway and Notch signaling pathway

Gene NetDifM NetDifMpm VEWDM Yates’D

PI3K-AKT signaling pathway

KRAS 0.19521 0.190 0.551 0.499

PIK3CA 0.49654 0.531 0.531 0.891

IRS1 0.06622 0.066 0.031 0.207

PDPK1 0.05108 0.042 0.032 0.143

AKT1 0.13639 0.146 0.065 0.712

MDM2 0.03568 0.035 0.011 0.484

TP53 0.08385 0.083 0.136 0.102

Notch signaling pathway

DLL3 0.05909 0.062 0.081 0.559

DTX2 0.42435 0.412 0.202 0.122

CREBBP 0.20470 0.220 0.191 0.650

PTCRA 0.51705 0.507 0.421 0.192

JAG1 0.03144 0.027 0.036 0.142

DVL2 0.00124 <0.001 <0.001 0.639

SNW1 0.71303 0.706 0.309 0.124

HES1 0.01032 0.002 0.035 0.995

RBPJ 0.00001 <0.001 <0.001 0.646

NOTCH2 0.00014 <0.001 <0.001 0.095

PSENEN 0.42405 0.435 0.102 0.032

ADAM17 0.00701 0.009 0.009 0.326

NUMB 0.10758 0.098 0.065 0.100

NCOR2 0.00021 <0.001 <0.001 0.344
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differentiated serous epithelial ovarian carcinoma histology
[34]. RBPJ underexpression in ovarian tumor tissue relative
to matched normal tissue [35]. Moreover, ADAM17 is one
of the several metalloproteinases that play a key role in
epidermal growth factor receptor signalling and can be a
potential target antigen to devise novel immunotherapeutic
strategies against ovarian cancer [36]. The PI3K-AKT and
Notch pathways and their abundant associated genes com-
prise complicated networks, which play a significant role in
the progressive growth of tumor cells.
Network difference can result from not only changes

of vertices but also changes of edges, and the changes of
vertices-wise and edges-wise are often closely related.
For instance, differential expression of genes may be due
to either mutation of its own gene or the effects of
expression changes of other genes in the network. How-
ever, the degree of differential expression of one gene
due to its own mutation is often lower than affected by
expressions of upstream genes in the network [37].
Reverter et al. [20] presented an analytical procedure to
simultaneously identify differential gene expression and
connectivity for unweighted gene network. In their
work, an edge between two genes is established if the
absolute value of the correlation coefficient exceeds a
fixed threshold. Consequently, if we set the threshold
less than 0.5, and the correlation coefficient between
gene A and gene B is 0.9 in cases and 0.5 in controls,
then the connection between gene A and gene B is
treated as no difference between cases and controls.
While in this situation, there exists a difference of the
strength of connection between gene A and gene B
among cases and controls, given our methods focus
mainly on weighted biological networks.
Furthermore, the covariance structure between vertex

changes and edge changes has been embedded into the
proposed score-based network difference measure. In
addition, one would be more interested in testing par-
ticular vertex or edge (genes or metabolites) rather than
the whole network or pathway. Actually, a vertex as well
as its connected edge can be treated as a subnetwork,
and the proposed network difference method can easily
be extended to identify the specific vertices. Even though
some local interventions were often generated to prevent
and cure a particular disease, it is essential to understand
the global system. The ‘think globally, act locally’ para-
digm should be strongly embedded into our mind [1].
One limitation in our paper is that we assume the

network topological structure is fixed, and little at-
tention has been paid on the network structure
learning problem. Constructing network structure
means determining every possible edge with highest
degree of data matching, and often one joint prob-
ability distribution of a number of variables can re-
flect more than one network structure. Usually,

combining experimental evidence with their experience,
most biologists and clinical researchers have a growing
awareness of the interplay between the biological compo-
nents and can depict more or less the specific network or
pathway for the corresponding biological process. Mean-
while, numerous databases (e.g. KEGG, GO, I2D) can be
further borrowed to establish the network structure. The
proposed NetDifM will do not work in its current version
under the scenario when the covariance matrix is not in-
vertible. One possible solution is to first apply a shrinkage
strategy to simplify the network, and then adopt the pro-
posed statistic. For instance, we can first remove those
edges if the correlation between the two linked vertices is
smaller than a predefined threshold, and then apply the
proposed test to the remaining network.
Statistical comparisons of group difference in biological

networks are highly desirable. The proposed network differ-
ence measure was valid and powerful to detect biological
network difference. R code to perform NetDifM, Net-
DifMpm and VEWDM is provided in the Additional file 2.

Availability of supporting data
The gene expression data of ovarian cancer were
downloaded from the GEO datasets (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE9899).
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pathway. Table S3. Type I error rates of four methods (40 vertices and 54
edges in the network). Table S4. Type I error rates of four methods given
the deviation from the normal distribution. Figure S1. A network
including 40 vertices and 54 edges. Figure S2. The statistical power of
the four methods under three scenarios. (a) only vertices change, (b) only
edges change, (c) both vertices and edges change. (PDF 140 kb)

Additional file 2: R code. (DOCX 13 kb)

Abbreviations
DC: Differentially connected; DE: Differentially expressed; GWAS: Genome-
wide association study; KEGG: Kyoto encyclopedia of genes and genomes;
NetDifM: Network difference measure; NetDifMpm: NetDifM based on
permutation; VEWDM: Vertices and edges wise difference measure.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JJ, ZY and FX conceived, designed the study and implemented the data
analysis, JJ, ZY and XZ drafted the manuscript. All authors read and approved
the final manuscript.

Acknowledgements
This work was supported by grants from National Natural Science Foundation of
China (grant number81573259 and 31200994). The funding body played no role
in the design, writing or decision to publish this manuscript. We thank the leprosy
and ovarian cancer investigators for access to their study data.

Ji et al. BMC Bioinformatics  (2016) 17:86 Page 9 of 10

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9899
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9899
dx.doi.org/10.1186/s12859-016-0916-x
dx.doi.org/10.1186/s12859-016-0916-x


Received: 11 September 2015 Accepted: 29 January 2016

References
1. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based

approach to human disease. Nat Rev Genet. 2011;12(1):56–68.
2. Bedelbaeva K, Snyder A, Gourevitch D, Clark L, Zhang XM, Leferovich J, et al.

Lack of p21 expression links cell cycle control and appendage regeneration
in mice. Proc Natl AcadSci U S A. 2010;107(13):5845–50.

3. Schadt EE. Molecular networks as sensors and drivers of common human
diseases. Nature. 2009;461(7261):218–23.

4. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional
organization. Nat Rev Genet. 2004;5(2):101–13.

5. Albert R. Scale-free networks in cell biology. J Cell Sci. 2005;118(Pt 21):4947–57.
6. Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human

disease genes. Mol Syst Biol. 2008;4:189.
7. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, et al.

Dynamic modularity in protein interaction networks predicts breast cancer
outcome. Nat Biotechnol. 2009;27(2):199–204.

8. Laenen G, Thorrez L, Bornigen D, Moreau Y. Finding the targets of a drug
by integration of gene expression data with a protein interaction network.
Mol Biosyst. 2013;9(7):1676–85.

9. Yang B, Zhang J, Yin Y, Zhang Y. Network-based inference framework
for identifying cancer genes from gene expression data. Biomed Res Int.
2013;2013:401649.

10. Wu B, Li C, Du Z, Yao Q, Wu J, Feng L, et al. Network based analyses of
gene expression profile of LCN2 overexpression in esophageal squamous
cell carcinoma. Sci Rep. 2014;4:5403.

11. Hafeman DM, Schwartz S. Opening the Black Box: a motivation for the
assessment of mediation. Int J Epidemiol. 2009;38(3):838–45.

12. Haring R, Wallaschofski H. Diving through the “-omics”: the case for deep
phenotyping and systems epidemiology. OMICS. 2012;16(5):231–4.

13. Lund E, Dumeaux V. Systems epidemiology in cancer. Cancer Epidemiol
Biomarkers Prev. 2008;17(11):2954–7.

14. de la Fuente A. From ‘differential expression’ to ‘differential networking’ -
identification of dysfunctional regulatory networks in diseases. Trends
Genet. 2010;26(7):326–33.

15. Ji J, Yuan Z, Zhang X, Li F, Xu J, Liu Y, et al. Detection for pathway effect
contributing to disease in systems epidemiology with a case-control design.
BMJ Open. 2015;5(1):e006721.

16. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. 2008;9:559.

17. Zhang B, Li H, Riggins RB, Zhan M, Xuan J, Zhang Z, et al. Differential
dependency network analysis to identify condition-specific topological
changes in biological networks. Bioinformatics. 2009;25(4):526–32.

18. Valcarcel B, Wurtz P, Seicha BNK, Tukiainen T, Kangas AJ, Soininen P, et al.
A differential network approach to exploring differences between biological
states: an application to prediabetes. PLoS One. 2011;6(9):e24702.

19. Yates PD, Mukhopadhyay ND. An inferential framework for biological network
hypothesis tests. BMC Bioinformatics. 2013;14:94.

20. Reverter A, Ingham A, Lehnert SA, Tan SH, Wang Y, Ratnakumar A, et al.
Simultaneous identification of differential gene expression and connectivity in
inflammation, adipogenesis and cancer. Bioinformatics. 2006;22(19):2396–404.

21. Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol. 2005;4(1):Article17.

22. Gill R, Datta S, Datta S. A statistical framework for differential network analysis
from microarray data. BMC Bioinformatics. 2010;11:95.

23. Kim J, Wozniak JR, Mueller BA, Shen X, Pan W. Comparison of statistical tests for
group differences in brain functional networks. Neuroimage. 2014;101:681–94.

24. Fleiss JL. On the distribution of a linear combination of independent chi
squares. J Am Stat Assoc. 1971.

25. Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, et al. Genomewide association
study of leprosy. N Engl J Med. 2009;361(27):2609–18.

26. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, et al. Novel molecular
subtypes of serous and endometrioid ovarian cancer linked to clinical outcome.
Clin Cancer Res. 2008;14(16):5198–208.

27. Fresno VJA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M.
PI3K/Aktsignalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.

28. Rose SL. Notch signaling pathway in ovarian cancer. Int J Gynecol Cancer.
2009;19(4):564–6.

29. Groeneweg JW, Foster R, Growdon WB, Verheijen R, Rueda BR. Notch signaling
in serous ovarian cancer. J Ovarian Res. 2014;7(1):95.

30. Fukushima A. DiffCorr: an R package to analyze and visualize differential
correlations in biological networks. Gene. 2013;518(1):209–14.

31. Rao W, Li H, Song F, Zhang R, Yin Q, Wang Y, et al. OVA66 increases cell growth,
invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer
cells. Carcinogenesis. 2014;35(7):1573–81.

32. Liu MX, Siu MK, Liu SS, Yam JW, Ngan HY, Chan DW. Epigenetic silencing of
microRNA-199b-5p is associated with acquired chemoresistance via activation of
JAG1-Notch1 signaling in ovarian cancer. Oncotarget. 2014;5(4):944–58.

33. Wang LL, Cai HQ, Dong XQ, Zhang LW, Jiang SS, Zhao N, et al. Differentially
expressed gene profiles in the serum before and after the ultrasound-guided
ethanol sclerotherapy in patients with ovarian endometriomas. Clin Biochem.
2015;48(16-17):1131–7.

34. Galic V, Shawber CJ, Reeves C, Shah M, Murtomaki A, Wright J, et al. NOTCH2
expression is decreased in epithelial ovarian cancer and is related to the tumor
histological subtype. Pathol Discov. 2013;1:4.

35. Kulic I, Robertson G, Chang L, Baker JH, Lockwood WW, Mok W, et al. Loss of the
Notch effector RBPJ promotes tumorigenesis. J Exp Med. 2015;212(1):37–52.

36. Sinnathamby G, Zerfass J, Hafner J, Block P, Nickens Z, Hobeika A, et al.
ADAM metallopeptidase domain 17 (ADAM17) is naturally processed
through major histocompatibility complex (MHC) class I molecules and
is a potential immunotherapeutic target in breast, ovarian and prostate
cancers. Clin Exp Immunol. 2011;163(3):324–32.

37. Xiong M, Feghali-Bostwick CA, Arnett FC, Zhou X. A systems biology approach
to genetic studies of complex diseases. FEBS Lett. 2005;579(24):5325–32.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Ji et al. BMC Bioinformatics  (2016) 17:86 Page 10 of 10


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Statistical model
	Simulation
	Application
	GWAS data of leprosy
	Gene expression data of ovarian cancer


	Results
	Simulation
	The results of application

	Discussion and conclusions
	Availability of supporting data

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References



