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Abstract

Background: Amplicon pyrosequencing targets a known genetic region and thus inherently produces reads highly
anticipated to have certain features, such as conserved nucleotide sequence, and in the case of protein coding DNA,
an open reading frame. Pyrosequencing errors, consisting mainly of nucleotide insertions and deletions, are on the
other hand likely to disrupt open reading frames. Such an inverse relationship between errors and expectation based
on prior knowledge can be used advantageously to guide the process known as basecalling, i.e. the inference of

nucleotide sequence from raw sequencing data.

Results: The new basecalling method described here, named Multipass, implements a probabilistic framework for
working with the raw flowgrams obtained by pyrosequencing. For each sequence variant Multipass calculates the
likelihood and nucleotide sequence of several most likely sequences given the flowgram data. This probabilistic
approach enables integration of basecalling into a larger model where other parameters can be incorporated, such as
the likelihood for observing a full-length open reading frame at the targeted region. We apply the method to 454
amplicon pyrosequencing data obtained from a malaria virulence gene family, where Multipass generates 20 % more
error-free sequences than current state of the art methods, and provides sequence characteristics that allow generation

of a set of high confidence error-free sequences.

Conclusions: This novel method can be used to increase accuracy of existing and future amplicon sequencing data,
particularly where extensive prior knowledge is available about the obtained sequences, for example in analysis of the
immunoglobulin VDJ region where Multipass can be combined with a model for the known recombining germline
genes. Multipass is available for Roche 454 data at http://www.cbs.dtu.dk/services/MultiPass-1.0, and the concept can
potentially be implemented for other sequencing technologies as well.
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Background

DNA sequencing during the last three decades has been
dominated by the Sanger method [1], for which the main
type of sequencing error is nucleotide substitutions [2].
Recently, many new massively parallelized sequencing
methods have become available, amongst those pyrose-
quencing, implemented in a commercial product by
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Roche 454 (Roche 454 Sequencing, http://www.454.com/)
[3]. 454 pyrosequencing is distinguished from other avail-
able high throughput methods by its long read length, as
well as the main error type inherent to the method which
is insertions and deletions (indels), occurring at a rate
around 1 % [4].

The initial step in 454 pyrosequencing is attachment
of sequencing adaptors to template DNA, known as li-
brary preparation, for example by shearing of genomic
DNA and subsequent ligation of adaptors. Emulsion
PCR is then performed with primer coated capture
beads in a specific concentration ratio so a single tem-
plate library sequence is clonally amplified on the sur-
face of one bead. Each bead is loaded in one of 1.6
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million wells on a picotiter plate (PTP) where DNA syn-
thesis takes place. The PTP is exposed to flows of PCR
reagents across the open wells with one nucleotide type
at a time. A typical sequencing run consists of 200 cycles
of four flows (TACG). Each flow results in a number of
incorporated nucleotides matching the template, which
releases a proportional amount of pyrophosphate that
through enzymatic reaction gives rise to a light signal in
each well, where the intensity indicates the number of
nucleotides incorporated in the read [3]. The measured
raw light intensities from each flow are normalized and
corrected for artifacts, amongst other pertaining to well
position on the PTP and gradual build-up of asynchrony
along the read. Furthermore, low quality sequence is
identified and removed using various strategies [5].
Hence, each read is given as a sequence of 800 pre-
processed light intensities, known as a flowgram, where
each flow value gives the length of a homopolymer (HP)
in the read.

Basecalling is the process of inferring the DNA se-
quence that gave rise to a given set of sequencing data.
To achieve this in 454 pyrosequencing, bases can be
called directly from each flowgram by rounding flow
values to the nearest integer. This process, however,
throws away information that can be useful for error
correction, if several reads exist from identical templates,
which is often the case. The AmpliconNoise [6] package
is a widely used package for 454 basecalling, which ini-
tially clusters and aligns flowgrams from identical tem-
plates, and uses all flowgrams in the alignment to call
the most likely nucleotide sequence.

A now widely used technique for measurement of bio-
and genetic diversity is amplicon sequencing, where a
variable target region is PCR amplified using region spe-
cific PCR primers designed with sequencing adaptor ex-
tensions allowing direct sequencing of the amplicon. 454
pyrosequencing is often used for amplicon sequencing
due to simple adaptor design and long reads. The fact
that the target sequence is known to some extent gives
an expectation about which features the amplicon se-
quences should possess. For example a region of a gene
encoding a protein with an important function in the or-
ganism could be highly expected to have a full-length
open reading frame (FRF).

We present here a probabilistic framework for pyrose-
quencing basecalling, named Multipass since it passes
on multiple sequence alternatives, as well as their likeli-
hood given the flowgram data, for integration in a larger
model. Using Multipass we demonstrate how the expect-
ation of a full-length open reading frame in amplicon
sequences can be used in such a model, to improve se-
quence quality. The method can furthermore take ad-
vantage of bi-directional pyrosequencing data, which
assures quality sequence in both ends of the read.
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Finally, Multipass reports useful parameters for estima-
tion of the quality of the called sequence, which allows
creation of a high confidence error-free sequence set.

Methods

To exemplify the use of the novel basecalling method,
we applied it to amplicon pyrosequencing data obtained
from 12 samples composed of the Plasmodium falcip-
arum laboratory reference strains 3D7, HB3, and DD2
(Additional file 1: Table S1). Three main steps of data
processing were performed: calculation of the most
likely basecalls from the raw sequencing data using Mul-
tipass; integration of the basecalls in a probabilistic
model that takes prior knowledge into account to im-
prove basecalling accuracy; and finally definition of a
subset of high quality sequences.

Pyrosequencing

Var gene DBLa PCR amplification for pyrosequencing

DNA from Plasmodium falciparum reference strain la-
boratory cultures was extracted using the DNeasy Blood
and Tissue kit (Qiagen, France) according to the manu-
facturer’s recommendations, and eluted in 100 pL of elu-
tion buffer per 200 uL of whole blood. We performed
PCR amplification of the DBLa domain of the var genes
using fusion primers for multiplexed 454 Titanium se-
quencing. We coupled template-specific degenerated pri-
mer sequences targeting homology block 2 and 3 [7, 8]:
DBLaAF, 5-GCACGMAGTTTYGC-3" and DBLaBR, 5-
GCCCATTCSTCGAACCA- 3. Specifically, forward and
reverse primers were designed by adding GS FLX Ti-
tanium Primer sequence and 10 bp multiplex identifier
(MID) tags published by Roche (Roche 454 Sequencing
Technical Bulletin No. 013-2009; 454 Sequencing Tech-
nical Bulletin No. 005-2009). These MID’s have been
engineered to avoid misassignment of reads and they
are tolerant to several errors. Every 40 pL reaction mix
was composed of 3 pL of each primer (10 pM), 1.4 pL
dNTP mix (2 mM), 4 pL buffer 5X, 2 pL of MgCI2,
0.6 pL Taq polymerase (Promega, GoTaq polymerase,
5UI/uL) and 1 pL of isolate. Amplifications were car-
ried out in a thermal cycler using the following reaction
conditions: 30 cycles of 95 °C for 40 s, 49 °C for 1 min
30 sec, 65 °C for 1 min 30 sec, and a final extension
step of 65 °C for 10 min. These tagged primers were
validated for amplification of sequences of the appro-
priate length using P. falciparum 3D7 genomic DNA.
PCR amplification was confirmed visually by nucleic
acid staining (EZ VISION™ DNA Dye, Ambresco)
followed by gel electrophoresis (2 % agarose in 0.5x
TBE buffer) demonstrating a band of the appropriate
size (~477 bp). Negative controls (no template) were
performed for quality assurance.
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Amplicon library preparation and 454 Titanium sequencing
The PCR products were first purified using solid-phase
reversible immobilization (SPRI) method (Agencourt,
AMPure XP). Then, PCR amplicon concentrations were
measured using the Quant-iT PicoGreen dsDNA kit per
manufacturer’s instructions (Invitrogen). Known concen-
trations of control DNA were prepared as directed by
the Roche Technical Bulletin (454 Sequencing Technical
Bulletin No. 005-2009). We assayed fluorescence inten-
sity using a Perkin-Elmer VICTOR X3 multilabel plate
reader, with fluorescein excitation wavelength of
~480 nm and emission of ~520 nm wavelength. We pre-
pared PCR amplicon library pools, each containing equi-
molar amounts of the PCR amplicons with unique MID
tags. These pools were sequenced in forward and reverse
directions on segregated regions using 454 GS FLX
Titanium chemistry (Roche). Sequencing was performed
by Seqwright Genomics (Houston, TX, USA) and New
York University Genome Technology Center (New York,
NY, USA).

Sequence data processing

Demultiplexing and flowgram clustering

MID-tags and primers were identified (exact match) and
trimmed off the flowgrams, reverse reads were reverse
complemented, and a dat-file with the resulting flow-
grams was created for each MID, using BioPython v1.57.
Flowgram clustering was performed using the Ampli-
conNoise package v1.25 [9]. This method thus takes ad-
vantage of bi-directional sequencing, as reads in both
directions are included in each cluster, so the forward
reads will give high quality in the 5’-end of the target se-
quence, and the reverse reads will improve the 3’-end
quality. A future improvement of the method could be
to weight reads of each direction differently in the se-
quence ends during basecalling.

Homopolymer flow distributions in 454 pyrosequencing

The challenge in 454 basecalling is to estimate homopol-
ymer lengths from flow signals. In the probabilistic
framework employed in this paper, an important step in
accomplishing this, is to compare observed flow values
to empirical probability distributions that indicate how
likely different possible flow values are for any given
homopolymer length. Such flow value distributions ob-
served for different homopolymer lengths have previ-
ously been described for 0 to 5 nucleotides, and an
extrapolation for longer homopolymers was suggested
(normal distributions with =4 and o¢=0.06856/ +
0.03494, where & is the homopolymer length) [10].
When we performed maximum likelihood fitting of nor-
mal distributions to flow signal distributions from ho-
mopolymers longer than 5 nucleotides present in the Pf
DBLa-tag reference sequences, we found that these
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homopolymers gave lower flow signals than what was
expected from the Balzer extrapolation, and that normal
distributions shifted towards zero described the 454 data
more accurately (Additional file 1: Figure S1). Homopoly-
mers of length >9 were better described by normal distri-
butions with mean according to the equation y = 0.525 &
+4.177, and variance as suggested in [10].

Since the distant tails of (log-)normal distributions do
not describe empirical flow distributions well, and due
to the presence of noise in the flow signals, a minimal
probability P(s|x<h<x+0.1)=10"° was employed for
any given flow interval of length 0.1 flow units.

Multiple flowgram alignment

We developed a program for pairwise flowgram align-
ment in the language C based on the Needleman—
Wunsch global alignment algorithm. For this purpose
we need a scoring matrix that, for each possible pair of
flow values, assigns a score indicating how likely it is
that the two flows should be aligned. In analogy to se-
quence alignment, the scoring matrix we employ con-
sists of log-odds scores, where the numerator of the
odds-ratio is the probability that a pair of flow signals
originate from the same homopolymer, while the de-
nominator is the probability of observing the flow sig-
nals irrespective of their origin. The details of how to
compute these values are as follows: We have two flow
signals s;, s, of flow type N;, N, respectively (where
“flow type” means the nucleotide used for the flow).
These flow signals originated from homopolymers of
length /; hy and type n;, n,, respectively. The log-odds
score is then calculated as S(s;,s5,N;,N5) = log(OR). The
odds-ratio can be found as follows:

:P(h1 = hy,ny = ny, 51,5, N1,Ny)

OR
P(s1,52,N1,N3)

P(hy = hy,my = mylsy, 82, N1,No) (1)
P(h1 = h2|Sl,Sz)P(?I1 = }’lz‘Nth)

h
P

(}’l] = HZ‘NI,NZ)ZP(hl = l|Sl)P(h2 = i|S2)
i=0

In this derivation we have used the definition of condi-
tional probability, the assumption that homopolymer
lengths are independent of flow types, and the law of
total probability. #,,,, was set to 30. Since it is nearly
impossible that a flow signal originates from a nucleotide
type different from the flow type, we defined:

107100, if N1=N,
1-1071 if N} =N,

P(l’ll = 1’12|N17N2) = { (2)

Using Bayes’ theorem, the probability of a homopoly-
mer length / given a signal s was calculated as:
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D(s|h)P(h)
> Plsl)PG)

where P(h) is the probability of encountering a homo-
polymer of length / in a flowgram, and P(s|k) was deter-
mined from the homopolymer distributions (Additional
file 1: Figure S1, and Additional file 2). A gap penalty of
log(10'°) was used. For each pairwise alignment, a con-
sensus flowgram was calculated with a mean flow for
each alignment position. Using such pairwise alignment,
we developed a script that performs multiple flowgram
alignment, by iteratively aligning the two most similar
flowgram profiles, the same approach as used by the
multiple sequence alignment program Clustal [11].

P(H]s) = (3)

Basecalling from multiple flowgram alignments

The likelihood of a nucleotide sequence being the cor-
rectly basecalled sequence (CBS) given the flow values of
the flowgram alignment, was calculated as:

L
P(CBS|flows) = [ [ P(hlS)) (4)
=0

where L is the flowgram alignment length, /4; is the
homopolymer length at alignment position /, and S,
represents all flow values at position /. The probabil-
ity of a given homopolymer length /4, at position
[ with flow values S, was calculated using Bayes’
theorem as:

_PSIRPt)
Z/ "o P(Silj)P(j)
P P(simlit)

S [POTTE PGl

where M is the number of flowgrams in the alignment,
and s, is the flow value at position [ in sequence m.
The probability of a flow value s given the homopoly-
mer length &, P(s;,,,|1), was derived from the normal and
log-normal distributions obtained by fitting to empirical
data as described above (Additional file 1: Figure S1).
The N most likely nucleotide sequences were thus
calculated from each aligned flowgram cluster using
Equation 4. The state of the expected sequence feature
was then determined in these nucleotide sequences, i.e.
the presence or absence of a forward full-length open
reading frame was established, or sequences were scored
by alignment to a profile hidden Markov model (see the
two following sections). Finally, the probability that a se-
quence was correctly basecalled was calculated for each
of the N most likely sequences. For a sequence to be
correctly basecalled, it both has to be so in the sense
that it gave rise to the sequencing flows (CBSg,.,), as

P(h|S;) =

(5)
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well as in the sense that it came from the amplified gen-
omic target region and therefore has certain sequence
features (CBSgaure). Hence, the most likely correctly
basecalled sequence was selected as the one with the
maximal joint probability:

P(CBS|flows, feature)

= P(CBSfows: CBSfeature |flows, feature) (6)
=P (CBSﬂows WOWS)P(CBSﬁmWe[feature)

where it is assumed that CBSp,,,; and CBS ;. are condi-
tionally independent given flows,feature, that CBSg,,, and
feature are conditionally independent given flows, and that
CBSgeature and flows are conditionally independent given
Seature. P(CBSg,u.|feature) is the probability that the se-
quence is correctly basecalled given the state of the feature
in the sequence. In this study P(CBSgau.|feature) equals
either P(CBS|ERF) or P(CBS|Spami)-

Calculating sequence likelihoods using full-length open
reading frame as feature

A sequence was considered to have a full-length open
reading frame if any of the three forward reading
frames lacked a stop codon. The probability of each
of the N =10 most likely basecalls being a true DBLa
sequence given the presence of a full-length ORF was
calculated using Bayes theorem:

P(FRF|CBS)P(CBS)

P(CBS|FRF) = P(FRF) 7)

where the likelihood of presence of a FRF given a true
DBLa sequence P(FRF|CBS) =0.9979 was determined as
the frequency of FRFs in DBLa-tags from 227 Illumina
sequenced Plasmodium falciparum genomes [12]. 6799
out of 6813 DBLa-tags had a full-length open reading
frame, however the actual frequency may be even higher
since we can not exclude the possibility of Illumina se-
quencing errors, and a random SNP is more likely to
disrupt than create a FRF. The prior likelihood of ran-
domly choosing the true DBLa sequence was set to
P(CBS) ~1/N =0.1 since we are selecting one out of ten
sequences and the correct basecall of nearly all control
sequences was found among the ten most likely base-
calls. Finally, the normalization likelihood of any basecall
having a full-length open reading frame P(FRF) = 0.204,
was determined as the frequency of FRFs in 5,550 base-
calls (10 most likely basecalls for 555 multiple flowgram
alignments). Ultimately this gave P(CBS|FRF) =0.489,
and in a similar way the likelihood of a sequence being
correctly basecalled if no full-length ORF was present,
was calculated to P(CBS|noFRF) = 2.58e-4.
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Calculating sequence likelihoods using HMM match as
feature

Checking for the presence of an open reading frame is
one way of ensuring that the called base sequence con-
forms to expectations based on prior knowledge (in this
case, the very minimal requirement that the sequence
can most probably be translated). Another way of using
prior knowledge is to check how well the called base se-
quence matches the family of sequences of interest (in
this case malaria DBLa-tags). To achieve this, we trained
an HMM on a set of DBLa-tags, and then determined
the relationship between possible HMM scores, and the
probability that a sequence with this score is correctly
called. HMMer v3.1 (Eddy, et al. 2013, http://hmmer.-
org/) was employed to train an HMM on 262 translated
DBLa-tags from Asia, South America, as well as East
and West Africa [13, 14]. This HMM was first used to
score 6636 DBLa-tags from 227 genomes [12] and then
the 10 most likely basecalls from 555 flowgram align-
ments. In both cases, the bit-scores were rounded to
nearest integer, and set to zero if the sequence did not
have a full-length open reading frame. All bit-scores
St 2170 were collected in one bin to assure, that un-
known sequences scoring higher than any of the se-
quences used to make the score distributions, still
benefit from the high score. A pseudocount of 1/10,000
was used for all integer scores, and for 0 < Sgyr< 170
the distributions were smoothed using a window size of
21 (Additional file 1: Figure S2). The likelihood of a se-
quence being correctly basecalled given any HMM score
St (rounded to nearest integer) in the interval
[0,170] was then calculated as:

(SHmm|CBS)P(CBS)
P(Summ)

P(CBS|Sm) = d (8)

where the likelihood of an HMM score given a true
DBLa-tag P(Sgaa| CBS) was determined from Additional
file 1: Figure S2A, and the likelihood for encountering
such a score in any of the ten most likely sequences
P(Sgarar) was determined from Additional file 1: Figure
S2B. The prior likelihood of randomly picking the correct
basecall was again P(CBS) ~ 1/10.

Post-processing of nucleotide sequences to remove PCR
artifacts

For each isolate, the most likely correctly basecalled nu-
cleotide sequences, found using equation 6, were first
clustered by 96 % identity using Usearch v5.2.32 with
seeds (cluster member with highest number of replicate
reads) as output [15]. Then chimeras were removed as
described below, and finally a coverage threshold of
three reads per variant was used to remove the least
supported sequences.
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Removal of chimeras

Chimeras were removed using Uchime implemented
in Usearch v5.2.32 [15, 16], first in de-novo mode
where chimera detection is based on read abundance,
all parents are expected to be present in the sequence
set, and candidate parents must be at least 2x more
abundant than the chimera candidate sequence. Sub-
sequently, database mode was applied, where se-
quences are searched against self and chimeras are
found irrespective of the abundance of the parents.

Predicting sequences with errors

Several prediction methods were tested to generate a
sequence set with high confidence error-free se-
quences. The predictions were based on a set of se-
quence characteristics, including those provided by
Multipass for each basecall alternative: P(CBS|flows),
P(CBS|feature), number of sequences and maximal
positional flow variance in the flowgram alignment,
the ranking of the sequence according to flowgrams
alone, and a Boolean value indicating if the sequence
was unanimously selected as the most likely sequence
with regard to both flows and features. From these
sequence characteristics it was possible to distinguish
sequences that were less likely to contain errors, and
thus create a high confidence and quality subset of
sequences.

Known control sample sequences were used in the
training of classifiers implemented in mlpy v3.5.0 [17] to
distinguish between sequences with and without error.
The characteristics pertaining to each sequence were
scaled to the interval [0, 1] prior to classification. To de-
termine the optimal value for the diagonal linear dis-
criminant analysis (DLDA) regularization parameter A
[18], the logistic regression and support vector machine
(SVM) cost of constraints violation parameter C, and
the SVM radial basis function (RBF) kernel parameter vy,
two rounds of 20 iterations 10-fold cross-validation were
carried out with parameter value grid search in the
range [27'%, 2%°], first round using a coarse grid and next
using a local fine grid around the initial optimum. The
discriminant threshold (probability of belonging to ei-
ther class) was set so all error-sequences in the training
set were classified correctly, and the F, measure was cal-
culated to evaluate classifier performance. The Fp meas-
ure is the weighted harmonic mean of sensitivity and
precision, with =2 giving more weight to sensitivity
[19]. Thus, optimal parameter values were selected as
the ones giving the highest mean F, score over the last
20 iterations cross-validation. The optimal parameters
were used for training during leave-one-out cross-
validation, as well as for the final classifier training on all
control sample sequences.
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Assembly of genomic Illumina sequencing data

European Nucleotide Archive (ENA) accession numbers
for 227 samples published in ([12] Additional file 1:
Table S12) was used to download the raw Illumina read
sequences from the published study. Samples containing
multiple accession numbers, hence referring to several
separate sequencing experiments, were merged into one
read file dataset. A few ENA accession numbers did not
contain any data and were disregarded. Using a de
Bruijn graph-based de-novo assembler, Velvet (v1.2.07)
[20], all samples were de-novo assembled. We did not
perform any quality trimming prior to the de-novo as-
sembly, as a small benchmark showed that it reduced
the amount of genes of interest. For each dataset several
assemblies were run using the procedure published in
[21]. This implies that for each dataset velveth was exe-
cuted using k-mer sizes in the range from 33 to 80 % of
the average read length. Next, the velvetg step was run
using the parameters: cov_cutoff = 5, exp_cov = auto and
min_contig_lgth = 100. Based on the number of contigs,
the best cumulative rank for N50 and the length of the
largest contig, the final best assembly was selected.

Results

Combining Multipass with models for protein coding

DNA

Three Plasmodium falciparum laboratory reference
strains were resequenced multiple times using bi-
directional 454 FLX Titanium amplicon sequencing (12
samples containing one or mixtures of isolates 3D7,
DD2 and HB3). Specifically, a ~370 nucleotide region
(st.dev. 25 nt, min. 319 nt, max. 468 nt) in the hyper-
variable var gene family was targeted, encoding the mal-
aria antigen PfEMP1, of which each parasite has 50-60
variants. The flowgram data was demultiplexed, MID-
tags and primer sequences were removed, and reverse
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flowgrams were reverse complemented as described in
the Methods section. The resulting median sample
coverage was 2956 reads (Additional file 1: Table SI).
Flowgrams from each sample were then subjected to dif-
ferent basecalling methods as described below, and the
resulting nucleotide sequences were subjected to denois-
ing and chimera removal to eliminate PCR artifacts. This
resulted in a total yield from the 12 samples of between
548 and 599 sequence variants, with varying degrees of
accuracy compared to the known reference database se-
quences (Fig. 1).

Direct 454 basecalling of each read into nucleotides,
by deriving homopolymer lengths from flow values
rounded to nearest integer, and subsequent denoising,
resulted in a set of var sequences where 37.0 % matched
the known database sequences perfectly (Fig. 1) while se-
quences in average had 1.49 errors (st.dev. 1.99, max.
14) (Additional file 1: Figure S3). In this approach, reads
originating from the same template sequence was deter-
mined only by clustering after flowgram basecalling, and
this yielded 548 sequence variants.

The current state of the art method AmpliconNoise
clusters and aligns the flowgrams before calculating the
most likely nucleotide sequence from each alignment.
Applying AmpliconNoise to the combined forward and
reverse flowgrams nearly doubled the number of error-
free sequences to 68.8 % (Fig. 1), and a mean error count
of 0.935 (st.dev. 2.04, max. 13) was observed (Additional
file 1: Figure S3). Flowgram clustering increased the
yield to 597 variants, most likely because the more cor-
rect sequences gave larger clusters during denoising,
leading to a higher number passing the cluster size
threshold of 3 reads.

Multipass was then tested, using the initial flowgram
clustering of AmpliconNoise, but with novel implemen-
tation of flowgram alignment and calculation of the N

100

% of obtained sequences

1

Number of errors in 454 sequence

Fig. 1 Accuracy of Plasmodium falciparum reference strain amplicon resequencing using different basecalling methods. Shown for each
basecalling method is the fraction of all sequences (provided in the legend as N) with a given number of errors. See Additional file 1: Figure S3
with log-scale for detailed frequencies of sequences with multiple errors

454 (N=548)
AmpliconNoise (N=597)
Multipass (N=599)
Multipass_RF (N=592)
Multipass_ HMM (N=593)
Multipass_RFhip (N=598) |

T
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most likely nucleotide sequences from each alignment.
Multipass uses updated probability distributions for flow
signals originating from homopolymers with length >5
nucleotides (see Methods). Hence a considerable im-
provement in sequence accuracy was observed for this
dataset by simply selecting the most likely nucleotide se-
quence given by Multipass, increasing the fraction of per-
fectly basecalled sequences to 81.8 % (Fig. 1) and reducing
the mean number of errors per sequence to 0.258 (st.dev.
0.644, max. 5) (Additional file 1: Figure S3).

Using Multipass to calculate the most likely nucleotide
sequences from each flowgram alignment revealed that,
especially for low coverage sequences, a considerable
fraction of correct basecalls were ranked not as the most
likely, but in the top ten most likely sequences (Fig. 2).
Therefore, Multipass was set to calculate the N=10
most likely sequences, and in order to give the correctly
basecalled sequences more support, expected sequence
features were employed. So for each of the 10 most
likely sequences, the likelihood of the sequence being
correct given the flowgrams P(CBS|flows) was combined
with the likelihood of the sequence being correct
given a sequence feature P(CBS|feature), to give
P(CBS|flows feature) by which the most likely correct
basecall was chosen. Any sequence feature enabling
discrimination between correct and incorrect basecalls
could be utilized.

The first feature used in the model was the presence
or absence of a full-length open reading frame, where
the probability of having a FRF in a correctly basecalled
sequence P(FRF|CBS) was determined by the frequency
of FRFs in ~6800 DBLa-tag sequences obtained by
whole genome Illumina sequencing [12]. Out of the 10
sequences provided by Multipass, the one with highest
likelihood given flowdata and presence of full-length
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open reading frame P(CBS|flows,FRF) was selected. This
approach raised the basecalling accuracy to 91.2 % cor-
rect sequences (Fig. 1, RF), and a mean of 0.189 errors
per sequence (st.dev. 0.671, max. 5). Since the Illumina
sequences used to establish P(CBS|FRF) may contain er-
rors disrupting the full length reading frame, the true
P(FRF|CBS) could be higher than the one used above.
Therefore we tried an arbitrary high P(FRF|CBS) = 1-1e-
150, which gave an increase to 92.0 % correct sequences
(Fig. 1, RFhip), however the mean number of errors per
sequence also increased to 0.192 (st.dev. 0.700, max. 5),
indicating that this model aggravated the condition of
erroneous sequences (Additional file 1: Figure S3).

The second feature tried in the model was the match
to a profile hidden Markov model (HMM) of the ex-
pected amino acid sequence, generated from DBLa-tags
obtained from a small global selection of field isolates.
This feature should be even more sensitive to frame-
shifts than FRF, since the HMM score is lowered even if
the full-length open reading frame is retained upon
introduction of an indel. The likelihood of a sequence
being correctly basecalled given an HMM match score
of a certain magnitude P(CBS|Sgaas) was determined
from score distributions (Additional file 1: Figure S2) as
described in the Methods section. By selecting the most
likely sequence given flowgrams and HMM match
P(CBS|flows,Syammr), the accuracy reached 91.4 % correct
sequences (Fig. 1), and a mean of 0.189 errors per se-
quence (st.dev. 0.673, max. 5).

Generation of high confidence error-free sequence subset
In some cases it may be desirable to only work with se-
quences that are virtually free of errors, for example to
enable translation of DNA sequences with low risk of
obtaining amino acid sequence from the wrong reading
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Fig. 2 Ranking of the correct basecall according to P(CBS|flows). Upon flowgram clustering and alignment, Multipass was employed to calculate
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frame. Multipass provides a list of characteristics for
each of the most likely basecalled sequences, such as
P(CBS|flows) and maximal positional flow variance in
the flowgram alignment. These characteristics are good
sequence quality indicators, and they were used together
with sequence feature characteristics to train a predictor
to distinguish sequences with low likelihood of error,
and thus create a high confidence and quality subset of
sequences.

A set of 592 known control sample sequences, of
which 51 contained errors, was used to train various
predictors to distinguish between sequences with and
without error. Optimal training parameter values were
found for each method by parameter grid search and 10-
fold cross-validation. Leave-one-out cross-validation
with the found optimal parameters resulted for diagonal
linear discriminant analysis (DLDA) in a single mis-
classification of an error sequence (sensitivity = 98.0 %)
and a specificity of 79.5 %, thus scoring higher than lo-
gistic regression (sensitivity = 98.0 %, specificity = 76.7 %)
and a kernel support vector machine (sensitivity =
94.1 %, specificity =75.4 %). Finally, a DLDA model
trained on all control sample sequences and tested on
the training sequences, gave a sensitivity of 100 % with
specificity 79.5 %, compared to a specificity of 76.9 % for
logistic regression and 75.4 % for the kernel support vec-
tor machine (Fig. 3). Thus, the DLDA classifier was
found to generate a slightly larger error-free sequence
set than the other two classifiers. Using the DLDA
model on the sequence characteristics, a high confidence
error-free subset of sequences could be delineated, miss-
ing only 20 % of the correct sequences.
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Discussion

As our knowledge about genomics and genetics in-
creases we can more confidently predict what occurs in
those realms, and when prior knowledge becomes so
substantial that our expectations can outweigh the un-
certainties of novel raw sequencing data, it makes sense
to take advantage of both types of information in the in-
terpretation of such new data.

Prior knowledge about the sequencing target region has
not previously been employed in the basecalling process,
in some cases due to the limited availability of such know-
ledge, though most likely also because it requires custom
treatment of each individual sequencing project and no
tools have been available for this purpose.

Basecalling uncertainties have hitherto mainly been
given as positional quality scores, however such notation
does normally not provide information about the nature
(insertion, deletion, or nucleotide type) and likelihood of
the alternative sequences, so this format omits informa-
tion potentially important in downstream modelling.

Multipass generates the most likely sequences given
the sequencing data in a fully probabilistic fashion,
retaining information about both type and quantity of
the sequence data uncertainty for downstream modelling
and hypothesis testing. Each of the ten most likely se-
quences are hypotheses about the identity of the original
template sequence in the sample, and we estimate the
support for each hypothesis taking both sequencing sig-
nals and prior knowledge into account.

The Plasmodium falciparum genome contains a
high concentration of long homopolymers [22], and
even though the concentration is lower in coding
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DNA, it is still high compared to other common ge-
nomes (Additional file 1: Figure S4). Long homopoly-
mer tracts are prone to indels, most likely due to
polymerase slippage [23], and the high prevalence of
these regions in var genes could potentially be a
mechanism by which parasites generate antigenic diver-
sity. However, disruption of the full-length open reading
frame was rarely found in six thousand DBLa-tags from
227 field isolates. In yeast wildtype cells with functional
DNA mismatch repair machinery, indels causing frame-
shift are efficiently repaired [24, 25]. It seems likely that a
similar mechanism exists in Pf, which maintains a full-
length ORF in more than 99.9 % of DBLa-tags.

The reduced intensity and high variance signal we ob-
tained from long homopolymers may in part be caused
by polymerase slippage during target PCR amplification
and emulsion PCR (where no DNA mismatch repair ma-
chinery is present), possibly in combination with other
factors such as incomplete incorporation of nucleotides
during the flow (in marked cases visible in flowgrams as
splitting of flows into multiple cycles, which was ob-
served more frequently for long homopolymers).

Multipass was developed for Roche 454 pyrosequenc-
ing, and can with minor alterations be adapted to the
similar IonTorrent flowgram data. The concept of calcu-
lating the most likely basecalls and their probability
could also be implemented for other unrelated sequen-
cing technologies, which would enable more optimal
handling of sequencing uncertainties in downstream
modeling. It would also be advantageous to use prior
knowledge about the target region to assist basecalling
in other sequencing technologies. Any sequencing pro-
ject where excessive prior knowledge is available can po-
tentially benefit from this approach in the form of
higher sequence accuracy. One particularly exciting ap-
plication of amplicon sequencing in a setting with exten-
sive prior knowledge is the deep sequencing of human
immune repertoires. In such a project, Multipass could
be employed to provide detailed information about
sequence uncertainties in a probabilistic model of VD]
recombination, to explore how germline gene repertoires
are associated with immune target specificity.

Conclusions

Here we show that Multipass can make more accurate
basecalls for amplicon pyrosequencing data using updated
flow signal distributions. In addition, it is demonstrated
how this probabilistic framework facilitates downstream
modeling that takes sequence uncertainties into account,
and how a model can be built that further improves se-
quence accuracy using prior knowledge about the target
region. Hopefully the methods described in this paper will
be used to improve basecalling accuracy, and inspire new
ways to incorporate sequencing uncertainties in modeling
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and hypothesis testing, both in the analysis of future
sequencing data, as well as in reanalysis of the substantial
amount of existing data.
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