van der Kloet et al. BMC Bioinformatics 2016, 17(Suppl 5):195
DOI 10.1186/512859-016-1037-2

Separating common from distinctive

variation

BMC Bioinformatics

@ CrossMark

Frans M. van der Kloet', Patricia Sebastian-Ledn?, Ana Conesa’, Age K. Smilde' and Johan A. Westerhuis'™

From Statistical Methods for Omics Data Integration and Analysis 2014

Heraklion, Crete, Greece. 10-12 November 2014

Abstract

Background: Joint and individual variation explained (JIVE), distinct and common simultaneous component analysis
(DISCO) and O2-PLS, a two-block (X-Y) latent variable regression method with an integral OSC filter can all be used for
the integrated analysis of multiple data sets and decompose them in three terms: a low(er)-rank approximation
capturing common variation across data sets, low(er)-rank approximations for structured variation distinctive for each
data set, and residual noise. In this paper these three methods are compared with respect to their mathematical
properties and their respective ways of defining common and distinctive variation.

Results: The methods are all applied on simulated data and mRNA and miRNA data-sets from GlioBlastoma Multiform
(GBM) brain tumors to examine their overlap and differences. When the common variation is abundant, all methods
are able to find the correct solution. With real data however, complexities in the data are treated differently by the

three methods.

Conclusions: All three methods have their own approach to estimate common and distinctive variation with their
specific strength and weaknesses. Due to their orthogonality properties and their used algorithms their view on the
data is slightly different. By assuming orthogonality between common and distinctive, true natural or biological
phenomena that may not be orthogonal at all might be misinterpreted.

Keywords: Integrated analysis, Multiple data-sets, JIVE, DISCO, O2-PLS

Background

To understand and ultimately control any kind of
process, albeit biological, chemical or sociological, it is
necessary to collect data that functions as a proxy for
these processes. Subsequent statistical data analysis on
these data should reveal the relevant information to that
process. For hypothesis testing such an approach of
theory and measuring can be relatively straightforward
especially if the analytical instruments are designed spe-
cifically for that purpose. In lack of such hypotheses and
using generic but readily available analytical instruments,
obvious data structures are rarely observed and exten-
sive data analysis and interpretation are necessary (e.g.
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untargeted analysis [1], data-mining [2]). To make the
data-analysis even more complex, the number of obser-
vations (/) is usually much smaller than the number of
variables (J) (e.g. transcriptomics data) which prevents
the use of classical regression models. Data-analysis and
interpretation of the huge number of variables is pos-
sible when the number of variables can be summarized
in fewer factors or latent variables [3]. For this purpose
methods such as factor analysis (FA) [4] or principal
component analysis (PCA) [4] were developed.

In functional genomics research it becomes more and
more common that multiple platforms are used to
explore the variation in samples for a given study. This
leads to multiple sets of data with the same objects but
different features. Data integration and/or data fusion
methods can then be applied to improve the under-
standing of the differences between the samples. A new
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group of low level data fusion methods has recently been
introduced that are able to separate the variation in all
data-sets.

To investigate if the same latent processes underlie the
different data-sets, component analysis can be very use-
ful [5]. The construct of latent variables has properties
that enable the integrated analysis of multiple data sets
with a shared mode (e.g. same objects or variables).
With shared variation across multiple data-sets a higher
degree of interpretation is achieved and co-relations
between variables across the data-sets become (more)
apparent. Methods such as generalised SVD (GSVD),
latent variable multivariate regression (LVMR), simultan-
eous component analysis (SCA) and canonical correlation
analysis (CCA) have been used successfully in earlier
studies [6—9]. Most of these methods or applications of
these methods (i.e. CCA) focuses on the common/shared
variation across the data-sets only. The interpretation of
data however is not only improved by focussing on what
is common but likely as important are those parts that are
different from each other. These parts could include for
example, measurement errors or other process and/or
platform specific variations that would be distinctive for
each data-set.

The concept of common and distinctive variation is vi-
sualized in Fig. 1la and b in which two different situa-
tions of overlapping data-sets (Xi(/x/J;) and X5(I x J5))
are shown. The two data-sets are linked via common ob-
jects (I) but have different variables (J; and /,). The areas
of the circles are proportional to the total amount of
variation in each data-set. The overlapping parts are
tagged as C; (Ix/;) and C, (I xJ,) and describe shared
(column) spaces for both data-sets. The spaces are
not the same but are related (e.g. C;=C,W, .1 +E;
and C,=C;W;_,,+E,, in which the W's are the re-
spective weight matrices). Whether or not the resid-
uals E; and E, are truly zero, depends on the specific
method. The distinctive parts Dy (Ix/;) and D, (IxJ,)
describe the variation specific for each data-set and the
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remainders are indicated by E; (IxJ;) and E; (Ix /). In
most methods the common parts are built up from the
same latent components.

Figure la visualizes C; and C, as the intersection of
the two data-sets. The common parts do not necessarily
have to explain a similar amount of variation in each of
the sets. The schematic in Fig. 1b demonstrates the situ-
ation in which the overlap of the two matrices is propor-
tionally the same for data-set 2 (as in example A) but
not for data-set 1.

Attempts have been made to capture both common
and distinctive sources of variation across data-sets
using GSVD [10], but it has been shown that GSVD
does not yield an optimal approximation of the original
data in a limited number of components [11]. Alterna-
tives specifically designed for this purpose have been de-
veloped and complement the set of low level data fusion
methods. In this paper we compare three implementa-
tions of such methods (JIVE [12, 13], DISCO-SCA [14,
15] and O2-PLS [16, 17]) with respect to their mathem-
atical properties, interpretability, ease of use and overall
performance using simulated and real data-sets. The dif-
ferent approaches to separate common from distinctive
variation and the implications on (biological) interpret-
ation are compared. For demonstration purposes we use
mRNA and miRNA data from GlioBlastoma Multiform
cells available at The Cancer Genome Atlas (TCGA)
website [12, 18] as well as simulated data to identify the
specific properties of the methods. We will only focus
on the integrated analysis of two data-sets that are
linked by their common objects. We assume that the
data-sets are column-centered. A list of abbreviations
and definitions is included in the Appendix.

Methods

From a general point of view Joint and Individual
Variation Explained (JIVE), DIStinct and COmmon sim-
ultaneous component analysis (DISCO) and the 2 block
latent variable regression with an orthogonal filtering

a

different total variance

Fig. 1 Schematic overview of common and distinctive parts for two data-sets. a: two data-sets with equal total variance and b: two data-sets with

b
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step (O2-PLS) all use a model in which the overlap of
two (or more) data-sets is defined as common. The part
that is not common is separated into a systematic part
called distinctive while the nonsystematic part is called
residual. The sum of the common part, the distinctive
part and the residual error adds up to the original data-
set. The generic decomposition of the two data-sets
(X; IxJ1) and X, (I x J5)) in their respective common and
distinctive parts for all three methods can be viewed as:

X;=Ci+D;+E; (1)
X2:C2+D2+E2

In which C(I xJ;) and Cy(I x J,) refer to the common
parts, D;(I x J;) and Dy(I x J») to the distinctive parts and
Ei(IxJ;) and E,(IxJ;) to the residual error for both
data-sets.

In their respective papers [10, 11, 14] the various au-
thors use different terms that seem to have similar mean-
ing like distinctive, systemic and individual, common and
joint etc. For clarity purposes throughout this document
we use common for combined or joint variation across
data sets and distinctive for variation specific to each data
set. Because the decomposition itself is different for each
method, the interpretation of what is common and what
is distinctive however, should be placed in the context of
the method that is used. We will address the aspects of
the different methods in terms of approximations of real
data, orthogonalities, explained variance and we will dis-
cuss the complexity of proper model selection.

Algorithms

To compare the three different algorithms it is useful to
first briefly reiterate through the different key steps of
each method. For the specific implementation the reader
is referred to the original papers but for convenience the
algorithms are included in the Appendix. The Matlab [19]
source code is available for download. Throughout this
document the objects (i = 1..1) are the rows of the matri-
ces (Ix]) and the variables correspond to the columns
(j=1..)). A full list of used symbols and dimensions of
the different matrices can be found in the Appendix.

DISCO

After concatenation of the two matrices, X(Ix])=
[X1(I x J1)|Xa(I x )], with J=]; + J5), DISCO starts with
an SCA routine on the concatenated matrix X. This is
followed by an orthogonal rotation step of the SCA
scores and loadings towards an optimal user-defined
target loading matrix P* (ie. a matrix in which each
component is either distinctive for a specific data-set or
common for any data-set). As an example, for two data-
sets, X; (I x2) and X, (I x 3), with one common compo-
nent (c.=1) and one distinctive component for each
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data-set (c; = ¢; = 1), the total number of components ¢,
for the whole model is 3.

X = [Xy|X]
X =Ui)S) Ve
Toew = U(c,)

Psca = V(ct) S(c,)

X = TSCﬂP;cu
And P* is:
1 0 1
1 01
PP=|0 1 1
01 1
01 1

In P*, the zeros are a hard constraint while the ones
are not restricted and can be any value. The first two rows
relate to the (two) variables in the first data-set, the last 3
rows relate to the variables for the second data-set. The
first column relates to the first distinctive component (for
data-set 1). The second column is reserved for the dis-
tinctive component for the second data-set and the third
column is the loading for the common component in both
data-sets. Through orthogonal rotation the best rotation
matrix (B, (c;x c;)) to rotate the Py, loadings (P,) to-
wards the target loadings P* is found by minimizing the
squared sum of the O entries in the P, matrix. To do just
that a weight matrix (W =1 - P¥) is used, in which all the
1 entries are set to 0 and the 0 entries to 1:

Bopt in Z(W°(PscaB))2 st. B'B=1

B,,: is used to calculate the final rotated scores and
loadings (T, =T,,B,, and P,=P,B,,). Consequently
the smallest distance criterion is based only on the 0 en-
tries (in P*) and thus on the distinctive components only.
A perfect separation of the distinctive components is often
not achieved; the positions where P* is 0 are not exactly 0
in P,. Furthermore, the common variation is forced to be
orthogonal to these distinctive parts which clearly could
lead to sub-optimal estimations of this common variation.
The effects of the orthogonality constraints are discussed
later. The final decomposition of the DISCO algorithm is:

Xl = Cl + Dl + El = TCPEI + lePZl + El (2)
Xy = Cy + Dy + Ey = TP, +Ty,Py +E

The common scores (T, for both data-sets are the
same and are obtained by optimizing on the distinctive
components.
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JIVE

The JIVE algorithm is also based on an SCA of the
concatenated data-sets (X). The common parts for
both data-sets (Cj) are estimated simultaneously, C =
[C1|Cy] = TyuPses (I %)), but now with only the number of
common components (¢.) and not all the components (c,)
like in DISCO. The distinctive parts (D; and D,) are
estimated separately and iteratively based on an orthog-
onal residual (Ry - Ty, Tt.,Ry) matrix with ¢, distinctive
components. Using the same example as before;

X =Ui)S) Vi,
Tscu = U(CC>
Pscw = Vi(e)Se)

Ck =Ty P!

sca

Ry = Xj—Cx

Rk—TSCﬂT;cuRk = Udk(fk)sdk(ck)vflk(ck)

Dy = Uy, () Sa(ex) Vaiy(

Ck)
X = X-[D;|D,]

The steps are repeated until convergence of the
combined common and distinctive matrices (C + D). By
using the iterative and alternate optimization of the com-
mon and distinctinve parts, the orthogonality between the
two distinctive parts that does exist in DISCO is no longer
enforced. The resulting fit should be able to accommodate
more types of data (e.g. the data has to conform to less
criteria) than DISCO. Similar to DISCO the common
parts are estimated from an SCA on both data-sets simul-
taneously and like DISCO there is no guarantee that both
blocks take part in the common loadings Py,. As a conse-
quence, the optimal solution could for example be one
where P, (=[P;|P,]) only has values for P; and not P,
which hardly can be considered common.

The resulting decompostion (Eq. 3) in scores and load-
ings is exactly the same as for DISCO:

X1 = C1 + Dl + El = TCPEI + TdIPEil + El (3)
Xy = Cy+ Dy + Ey = TP, + Ty, P +E,

The common scores (T, for both data-sets are the
same. Because SCA is a least squares method and the
common parts are determined first, those variables with
much variance are likely to end up in the common parts.
Because JIVE is an iterative solution the initial guesses for
common and distinctive parts can change considerably
during these iterations (see Additional file 1). If however,
the distinctive variation is larger than the (combined)
common variation these iterations will not prevent the
method to mis-identify the common components.
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02-PLS

In contrast to DISCO and JIVE, that use an SCA on the
concatenated data-sets, O2-PLS starts with an SVD on
the covariance matrix (X{X, (/; x J,)) for an analysis of
the common variation. Similar to JIVE, the common
components are estimated first and from the orthogonal
remainder to P, (R;T,,), per data-set. The distinctive
component is estimated per component. When all
distinctive components are removed from the data the
common scores are updated. Using the same matrices
X, and Xo;

xgxl = PC1<CC)D<CC)P£2(CC>
Deflate X per component:
Tck = XkPCk

Ry = Xx-T, P!

k™ cx
R, T, = udk(l)sdk(l)vzlk(l)

ty, = Xxug,

-1
t t
pko = (tdk,[tdk.l) Xk tdk.l

Xk = Xi—ta, Py,

The choice of a covariance matrix seems appropriate
since we are interested in co-varying variables across the
data-sets. In case of orthogonal blocks where no com-
mon variation exists, the covariation matrix would be 0
and no common variation can be estimated. Similar to
JIVE, the distinctive parts are calculated orthogonal to
the common part for every data-set individually. Because
the common parts are estimates from the individual
blocks (not the concatenation) the algorithm itself is less
restrictive than JIVE. With different common scores per
data-set the decomposition of Eq. 1 in scores and load-
ings is almost similar to Eqs. 2 and 3;

Xi =C; +D; +E =T, P, +T,PYy +E @
X;=Cy + Dy +E =T,P. +T,P, +E,

As a post-processing step the common scores can be
combined and by means of a regression model [20], for
example an SCA of the combined common parts, global
common scores can be calculated (i.e. T, invariant for a
block) so Eq. 4 would be exactly Eqs. 2 and 3 [21]. This
would however also require recalculation of P, and P,,.

Orthogonalities

The similarity between the three methods is large in
terms of scores and loadings that are created in accord-
ance with the algorithms. The methods however are
different in terms of constraints that are applied during
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the decompositions which leads to different orthogonal-
ity properties and consequently different independence
of the different common and distinctive parts.

The similarity between DISCO and JIVE is a conse-
quence of the use of SCA in both methods. Because the
final step in DISCO involves an orthogonal rotation
of scores and loadings, the orthogonality between all
the rotated scores and loadings remains. This rotation
also forces orthogonality between the separate terms:
C,Di=0, C;D5=0, D;D5=0, C,D{=0 and C,D5=0.
The error terms (E; and E,) are orthogonal to each
respective common part and distinctive part only.
Orthogonality between the distinctive and common
part per data-set in JIVE is enforced by estimation of
the distinct components orthogonally to the common
scores (T (I-Teeo T, )R = Udk(ck)sdk(fk)vflk(ck))' There
is no restriction for orthogonality between the distinctive
parts of the different data-sets. Because the distinctive
parts are calculated as the final step, the error matrix (Ey)
is orthogonal to the distinctive part but not to the com-
mon part.

The decomposition in scores and loadings using the
O2-PLS algorithm (Eq. 4) is similar to those obtained
when using JIVE or DISCO (Eqgs. 2 and 3). The signifi-
cant difference in terms of orthogonality follows from
the fact that there is room for the common parts (i.e. C;
and C,) to have different loadings and scores. The com-
mon scores for each block (T, and T,,) themselves are
expected to have a high correlation because the SVD
was applied on the covariance matrix of the two matri-
ces. The distinctive parts are estimated under the restric-
tion that they are orthogonal to the common part per
data-set. As a consequence the common parts per data-
set share no variance with the distinctive parts. The
distinctive parts themselves are not orthogonal to the
common parts of the other data-set although the corre-
lations are very small. Similar to JIVE the residuals (E,
and E,) in O2-PLS are found to be orthogonal only to
the distinctive parts that are calculated as a final step.

A summary of the different orthogonality constraints
for the three algorithms can be found in Table 1. It is
clear that DISCO is the most strict and O2-PLS the
most lenient regarding orthogonality properties. The dif-
ferent constraints that each algorithm imposes will affect
the decomposition in different scores and loadings.
What is designated as common and what is distinctive
per method depends on these constraints. In DISCO the
common part is defined as what is orthogonal to the dis-
tinctive parts while in JIVE this is the reverse i.e., what is
distinctive is what is orthogonal to what is common.
From a semantical point of view this seems equivalent
but mathematically can generate very different results.
These constraints will therefore be of importance when
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Table 1 Summary table of all orthogonalities constraints for the
three algorithms

DISCO JIVE 02-PLS
Orthogonalities (k # /)
C.D, 0 0 0
EiC, 0 #0 #0
EiDy 0 0 0
CiD, 0 0 #0
DiD, 0 #0 #0
EC 0 #0 +0
ED, 0 0 +0
Characteristics
Fusion XX X[Xo) X2X,
First step Distinctive  Common Common

Optimization Distinctive  Common + Distinctive  Common/Distinctive

(0: orthogonal, #0: no forced orthogonality)

interpreting the data and consequently also for the appli-
cation of the method. Orthogonality properties make it
easier to come to a clear definition of these terms. Fur-
thermore, orthogonality properties make the estimation
of the separate parts easier.

The orthogonality constraints between allmost all
parts in DISCO enforce that all underlying sources of
variation can be split up in orthogonal parts, even the
distinctive parts. From a mathematical viewpont this is a
perfect separation but in biological phenomena such
behavior will be rare. The solution therefore might be
easier to find but it makes the interpretation more diffi-
cult. In JIVE the orthogonality constraint between the
distinctive parts is removed and consequently is ex-
pected to be better suitable for biological data. With the
single restriction of the distinctive parts to be orthogonal
to the common part, O2-PLS is expected to suit most
data-sets. The flexibility of O2-PLS is advantageous for
fitting the best common and distinctive parts but might
come at the expense of more loosely coupled common
parts. Furthermore, the distinctive parts in O2-PLS are
referred to as orthogonal to the counter common parts
(e.g. CiD;=0) and therefore do not optimally describe
the total variation in the residual block (Ry) which would
limit the interpretation of these distinctive parts. The
fact that we did not fully observe CiD; = 0 but still find
some small residuals originates from the updated scores
(T, = XiP,,) after deflation in the algorithm.

Explained variances

The orthogonalities discussed above imply, because of
the centering, uncorrelated structure between the dis-
tinctive and common parts. A closer look at the algo-
rithms reveals an additional layer of complexity. This is
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especially true for DISCO and JIVE where the SVD is
taken from the concatenated matrix X. The simultan-
eous decomposition in DISCO:

X = [Xi[X;]
X = TP' = TBB'PY(T,,, = TB, P,,, = PB)

X = Trot Pt

rot
X1 [Xa] = TyoP},, + [E1|Eo]
[X1|X3] = [C1|Cy] + [D1|Dy] + [E1|Ex] = C+ D +E

decomposes the concatenated data-sets together in or-
thogonal combined parts. The explained variances of
the separate parts of the combined model add up:

IXII> = ICI* + D>+ |E|* = |IC +D+E|”
(5)

| E || % is minimal for a given total number of compo-
nents (c;). The best P,,, however, is an approximation of
P* and because of orthogonality constraints, situations
can occur where the rotation is not perfect. In such
cases the elements set to zero in the original target
matrix are different from zero in P,,;. The exact estima-
tion of Xy is:

Xy = TCPEk + T,,,kP;k + Ty, Pglk +E; (6)

The cross-over (T, Py ) part of the original X, the
variation in X that is explained by the distinctive com-
ponents of the other data sets, is minimized during the
DISCO iterations and is indicative for the influence both
data-sets have on each others individual loadings and
thus affect direct interpretation. The size of the cross-
over part depends on the data and the number of dis-
tinctive components reserved for the other data-sets.
The model selection procedure is based on minimization
of this cross-over content.

Contrary to DISCO, not all parts in both JIVE and
O2-PLS are orthogonal (see Table 1). Equation 5 does
not hold and should be reduced, per data-set, to:

ICkI + IID)I* = IICx + Dl (7)

The residual Ej is not orthogonal to the common
part C; which indicates that the final solution found
for E; could still hold some information from C;. To
find the correct value for Ej type III partial explained
sum of squares for residuals should be applied by
projecting E; on C; and only consider orthogonal
parts of residual [22].
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Interpretation

Even though the fusion methods have separated com-
mon from distinctive variation the interpretation of the
results can be hampered or sometimes even prohibited
by the fact that the data-sets themselves do not conform
to the appropriate criteria. The most apparent critereon
is the link between the samples across the different
data-sets. If the different data-sets for example contain
technical replicates, the fusion can only be performed
on the averages of the technical replicates as the
technical replicates of different data sets are not dir-
ectly related. Secondly, in order to give equal chance
to all data sets to be represented in the model, large
blocks should not be favoured just because of their
size. Therefore after variable scaling, a block scaling
is usually applied such that the sum of squares of all
blocks is equal. This block scaling however lowers the
influence of the individual variables if the data-set
consists of many variables and thus could be the
cause of under-estimation.

Common variation can be thought of as variation that
is related between data-sets. Because there is no
mandatory contribution of both data-sets to the com-
mon parts when using JIVE or DISCO the results should
always be validated for a shared variation between the
data-sets. Second, for blocks where I is larger than J; the
rank of data-set Xy is bounded by the number of vari-
ables. The selection of the common score T, from the
concatenated matrix X defines a direction in the I
dimensional columnspace that may be outside the Ji-
dimensional subspace in R' defined by X;. Cy, which is
built from T, will therefore also be outside the J dimen-
sional subspace defined by X;. Thus there will be
variation in C; which is not in X;. When scores T, for
the distinctive part Dj are calculated, they are forced
to be orthogonal to T, but not forced to be in the
columnspace of X;. This means that also the distinct-
ive part D; may not be in the columnspace of X;.
Because of this, the interpretation of the loadings
from C; and D; can go wrong, as they may represent
variation that is not in X.

To check whether the distinctive and common parts
are still in the column space of the original matrix of the
separate data-sets, the projections of C; and D, on X
can be determined via:

Cr = Xk X; Ci (8)

The residual (ie. || Cx~Ci || > or |De-Dy|?) is zero
for a perfect projection and different from zero if C; or
Dy is not within the column space of X;.

The common and distinct parts of O2-PLS are
based on an SVD of the covariance matrix of X; and
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X, ([P,D,P,] =svd (X;Xl,cc ). The SVD decomposes
the covariance matrix in orthogonal contributions. P, is
expressed in terms of variables of X; and P, in terms
of variables of X,. The subsequent steps in the algo-
rithm only affect the individual blocks. Consequently,
no variation from one data-set is introduced into the
other and projection issues like in JIVE and DISCO
do not occur. If the post-processing step is performed
to calculate global common scores, variation from
other data-sets is introduced and also in this case the
projection errors need to be evaluated.

The issue that the common scores of multiple data
sets may not be in the column space of each data set
separately, and the problems this brings was already dis-
cussed earlier for multiblock PLS models [23, 24]. In the
latter paper the common score was called the super
score. It was shown that deflation of information from
the separate blocks using the super score leads to intro-
duction of variation that was never present in the block.
When information which is not present in the data set is
subtracted from that dataset, it is actually (negatively)
introduced.

Model selection

Both orthogonalities and explained variances on touch
the heart of exactly what is common and what is dis-
tinctive. The three methods are all different in this
respect. All three methods however, can only decom-
pose the data-sets if the optimal number of common
and distinctive components for the final model are
known. It is important that the selected model is
appropriate for the data-sets that are analysed and
each method has its own strategy of selecting the
appropriate model.

Model selection in DISCO is a two step process. In
the first step the total number of components (c;) is
selected based on proportion of variance accounted for
by the simultaneous components for each individual
data block. The second step finds the “best” performing
model from all possible combinations of common (c,)
and distinctive components (¢4, ) by minimizing the cross-
over parts of each data-set.

In JIVE the configuration of the model is based on
the analysis of permuted versions of the original
matrix. For the common components complete rows
of each data-set are permuted. This removes the link
between the objects from the different data-sets, but
does not remove the correlation structure inside each
block. The eigenvalues for a large number of per-
muted matrices are determined. The number of com-
mon components is defined as that number where
the eigenvalues of the original matrix (X) are (still)
larger than the permuted ones (with a certain o). For
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the distinct components per data set Xy, the rows of
each variable in that data-set are permuted to disturb
the variable object relationship. Again the eigenvalues
of the original data set are compared to the eigen-
values of the permuted data sets to find the optimal
number of distinct components for each X;. These
setting are used as input for a new start of the esti-
mation of the number of components. This process is
repeated until convergence of the number of common
and distinctive components.

The model selection of O2-PLS as described in the
papers [16, 17] is not clear about exactly which pro-
cedures to follow. We have adopted the strategy of
first selecting the number of common components
based on the covariance matrix followed by an esti-
mation of the number of individual components per
data-set using PCA cross validation after the common
parts have been removed from the data-sets using an
OPLS approach.

Experimental

To test the three methods in different conditions we
use simulated data. We will keep the model itself
small with only 1 common component and 1 (or 2)
individual component(s) per data-set. To generate the
data we use the score and loading structure from Egs. 2
and 3.

X; = TCPE, + Ty, Pfjl +E;
X, = TCPEZ + TdZsz +E,

The scores T, T, and T,, are drawn from a stand-
ard normal distribution in such a way that they are
orthogonal to each other. Then each scores vector
was scaled to length 1. The error terms E; and E,
are based on pseudo numbers drawn from a standard
normal distribution. The data-sets have 70 observa-
tions each (I = 70) and X; contains 100 variables (/; = 100)
and X, 50 variables (J,=50). The data of each data-
set is column-centered and the variance of each block
is scaled to unit variance. In our examples we have
chosen a set of spectral loadings for illustrative purposes.
In functional genomics data-sets e.g. transcriptomics or
metabolomics data a similar situation can be envisioned
when in functional groups the features are expected to
highly correlate. The latent components then describe
structured variation of the functional groups over the
objects.

The three methods will be evaluated using the model
settings that were suggested by the original model
estimation procedure of each method respectively and if
different from the actual model, with the real model
settings as well. Two different scenarios are evaluated in
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which two different situations are simulated for the two
data-sets:

1. Scenario 1, abundant variation in common loadings,
almost orthogonal loadings

2. Scenario 2, low abundant variation in common
loadings, almost orthogonal loadings

Figure 2 shows the loadings that are used to generate
the data of the two blocks for both scenarios. The
contributions of the distinctive and common parts for
the different scenarios are listed in Additional file 1:
Table S1 and Table 2 (Scenario 1: (0.66°1/0.28%! and
0.85%/0.13%), scenario 2: (0.11°'/0.88"' and 0.62%/
0.36%%)). The first scenario should give insight in the
performance of the methods under conditions well
suited to find the common variation. The second sce-
nario should reveal issues for data that is more realis-
tic like for example, the detection and removal of
batch effects.

The three methods will also be applied to experimen-
tal data from GlioBlastoma Multiform (GBM) brain tu-
mors available at The Cancer Genome Atlas (TCGA).
The mRNA (234 x 23293) and miRNA (234 x 534) data-
sets describe the messenger RNA’s and small RNA’s
profiles of 234 subjects that suffer from different kinds
of brain tumors. The same data was already analysed by
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JIVE in its original paper [12]. Here we use it for com-
parison of JIVE and the other two methods.

Results

Scenario 1, abundant common variance, almost
orthogonal loadings

The data sets in the 1* scenario did not lead to any
problems. All three methods properly select the model
of common and distinctive components (i.e. 1 common,
and 1 distinctive component for each data-set). The re-
sults of DISCO, JIVE and O2-PLS almost exactly match
the simulated scores and loadings, which from a math-
ematical point of view is also expected (see Appendix,
“Observations on JIVE, SCA and covariance”). The load-
ings are plotted in Additional file 1: Figure S3. The
correlation of the fitted scores with the original scores is
1 for all methods.

Additional file 1: Table S1 summarizes the explained
variances for the fitted results by the different models.
The different methods decompose the two data-sets into
the same common and distinctive parts. As discussed
earlier, the errors for JIVE and O2-PLS are not orthog-
onal to the common parts and therefore cannot be
calculated as the difference of X; and the common and
distinctive variance combined (Cg+ Dy). In this case
however, the data was fabricated with orthogonal
common and distinctive scores and we were able to

loadings scenario 1, data-set 1

common component
distinctive component
03
B
& 02
>
0.1
0
0 20 40 60 80 100
variable index
loadings scenario 1, data-set 2
—COMMON COMponent
distinctive component
0.3
-
= 0.2
>
0.1
0

0 10 20 30 40 50
variable index

Fig. 2 The loadings that were used to generate the data with for both scenarios
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0.3 2nd distinctive component
3
g 0.2
>
) /\/\
0 . / \ i
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g
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Table 2 Summary table of explained variances by the different
methods in the second scenario using the real model settings
(1,22)

Data-set Part Real DISCO JIVE 02-PLS
1 Common 0.11 0.11 0.83 0.11
1 Distinctive 0.88 0.88 0.16 0.88
1 Error 0.01 0.01 0.01 0.01
2 Common 0.62 062 0.00 0.62
2 Distinctive 0.36 0.36 091 032
2 Error 0.02 0.02 0.09 0.06

calculated the error as the difference. Furthermore
| CkCFEL|I* < || Ell* which implies that the projection of
E; on Cy is very small indeed.

Scenario 2, low abundant common variance, almost
orthogonal loadings

In the second scenario the model was made more
complex with less abundant common variance and more
distinctive components per data-set. The difference
between the methods already becomes apparent in the
model selection. Additional file 1: Table S2 shows the es-
timated number of component models for the different
methods. Each of the three methods selects a different
‘best’ model. With the O2-PLS cross-validation the ‘real’
model is selected. Both JIVE and DISCO select 0 com-
mon components.

For completeness, the loading plots and score as-
sessments of the decompositions of JIVE and DISCO
with the suggested model settings are included in the
Additional file 1. The estimated common and distinctive
loadings for the methods with the real model settings
(1,2,2) are shown in Fig. 3.

The DISCO results with the ‘real’ model settings show
a perfect decomposition in loadings and scores for both
data-sets. The JIVE results show that all three compo-
nents of the first data-set are fitted perfectly but that the
common component is identified incorrectly; the
component with the largest variance is identified as
common. Because of the orthogonality restriction of
C,D{ =0 and C,Dj = 0., the real common component in
data-set 2 cannot be selected anymore which results in a
score vector of zero (the blue line). The two remaining
distinctive components are used to fit the two loadings
with the largest variation.

In JIVE the first step is to select the allocated number
of common components. At this stage this selection is
only determined by the largest variance, regardless
whether or not this is ‘real’. If this selected part happens
to be the distinctive part, the ‘real’ distinctive part is des-
ignated as common variance. In these cases the JIVE
algorithm is not able to classify it as common, even after
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all the iterations. This behavior is investigated further by
generating different data-sets with increasing variation
in the common component. For each data-set the JIVE
decomposition is run and the proper identification of
the common and distinctive components is recorded
(see Additional file 1). Only when the total common
variation is larger than the variation of the largest
distinctive component, the proper common component
is identified.

The O2-PLS method suggested the real model com-
plexity and the decomposition in loadings and scores
show a good fit to the original data. The loading profiles
show a good fit for the first data-set but for the second
data-set the smallest individual component is under-
estimated. This is also reflected in the amount of
explained distinctive variation for the second data-set.
Table 2 summarizes the explained variation for the fitted
blocks by the different models. All methods steer to-
wards a maximum amount of explained variation. Again,
the residuals were determined as differences with the
original data because the data was generated with
orthogonal scores and || CLCFEl|* < || Ecll*

GlioBlastoma

The mRNA and miRNA measurements of Glioblastoma
cells were used in the JIVE paper to introduce the
method. We use the data to compare JIVE to DISCO
and O2-PLS. We adopted the model settings that were
found by the permutation approach (ie. 5 common
components, 33 distinctive components for mRNA and
13 for miRNA). For completeness the optimal number
of components for the models was estimated again with
each model selection method and the results are shown
in Additional file 1: Table S4. The data were mean cen-
tered for each feature and each data-set was normalized
to unit sum of squares. The data concerns different
types of brain tumor cells.

As an example the O2-PLS score plots for both mRNA
and miRNA for the common and distinctive parts are pre-
sented in Fig. 4. The common part shows a much clearer
separation between the groups than the distinctive parts.
The explained common and distinctive variation of the
methods are listed in Table 3. With the exact same model
settings, the JIVE method is able to explain approximately
5 % more of combined distinctive and common variation
than DISCO and O2-PLS (||CiCiExll* < ||Exl|* for both
data-sets). In comparison to DISCO and O2-PLS, JIVE
describes less common variation but more distinctive
variation. This phenomenon can possibly be accounted
for by the iterative behavior of JIVE. By iteratively estimat-
ing the common and distinctive parts from only a selected
part of the variation in the data, the common part seems
less affected by over fitting. This phenomenon is further
discussed in the Additional file 1.
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To study the overlap in the three methods, the per-
centages explained variation in the common part and in
the distinctive part per gene are plotted against each
other in Fig. 5 for mRNA and miRNA. On the left side
the results of the common parts are given. The ex-
plained variation for the genes in the common part
using O2-PLS and DISCO are strongly correlating. The
explained variation for the genes using JIVE is clearly
different. The common part in JIVE describes a lower
amount of explained variation than the other methods.
The distinctive part (on the right-hand side) shows the
same phenomenon. Again the explained variation for the
distinctive part is similar using O2-PLS and DISCO,
while JIVE now describes a higher amount of ex-
plained variation. The figures on the diagonal show
the distribution in explained variation for each of the
3 methods. This is very similar for the three methods.
What is striking however is the difference in distribu-
tion of explained variation between the common and
distinctive parts. In the common part, most genes are
hardly explained while a low number of genes is
highly explained. For the distinctive part no such
preference is observed and a normal like distribution
of explained variation is obtained.

For the miRNA, the situation is similar to the mRNA
data. Again JIVE has a lower explained variation for each
miRNA in the common part and a higher explained

variation in the distinctive part compared to DISCO
and O2-PLS. The distribution of the explained vari-
ation of the distinctive part is clearly different than
for the mRNA. For miRNA, still many features are
not well described. This could be related to a lower
amount of systematic variation in the miRNA’s and
consequently, lower correlation between the different
miRNA’s. Therefore, each component only describes few
miRNA features.

One explanation for DISCO is that orthogonality
restrictions prohibit optimal fitting and as a result the
cross over variation (i.e. the variation for miRNA
explained by the distinctive score for the mRNA) is
significant. For miRNA this was 13 % and for mRNA
this was 4 % of the total variance. This amount of cross
over variation is much larger for miRNA than mRNA
because the 33 distinctive mRNA components all add to
the cross over variation of miRNA compared to only 13
components vice versa.

In the O2-PLS method the initial common scores (T, )
are estimated from the initial loadings (Py) and original
data (X;). The distinctive components are removed

from the remainder Ry (Rk = Xk—TckPEk) and Xj is
updated. However, in the final step (step 12 in the

02-PLS algorithm see Appendix), the common part is
recalculated from the updated X;. This recalculation
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after O2-PLS decomposition

gives a lower amount of variation for the common
part than before X; was deflated with distinct compo-
nents. This variation can neither be described by the
distinctive nor common part of the model anymore.
Large discrepancies indicate that the estimation of the
initial common part contained larger amounts of or-
thogonal variation. After T, has been re-estimated,
the distinctive part is not recalculated anymore. Per-
haps more total variance could have been accounted

for if O2-PLS would have used an iterative procedure
like JIVE, which is fully iterative.

The score plots of the common and distinctive
parts for the different methods all reveal a better
separation of the classes in the common part of the
miRNA data-set. To indicate the quality of class sep-
aration we adopted the standardized subtype within
sums of squares (SWISS) from the original JIVE
paper. This represents the variability within subtypes



van der Kloet et al. BMC Bioinformatics 2016, 17(Suppl 5):195

Table 3 Summary table of fitted explained variation by the
different methods using the real mRNA and miRNA data-sets

Data-set Part DISCO JIVE 02-PLS
mMRNA Common 0.22 0.15 0.20
mRNA Distinctive 045 0.57 048
mRNA Total 0.68 0.72 0.68
miRNA Common 0.33 0.26 0.29
miRNA Distinctive 040 049 040
miRNA Total 0.73 0.75 0.70

(across all rows) as a proportion of total variability. A
lower score indicates better class separation. Table 4
shows the SWISS scores for both data sets using all
three methods. The SWISS score for the common
parts is compared to the SWISS scores of a 5
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component PCA solution of both sets to see whether
the removal of the distinctive information would pro-
vide a better set of common scores compared to the
normal PCA scores. For O2-PLS we see a slight im-
provement to a SWISS of 0.65, while the JIVE SWISS
score is worse (0.74). We see that the distinctive parts
of the data have lost their discriminative power. Note
that the SWISS for the common parts for both data
sets is exactly the same for DISCO and JIVE as the
common scores are the same for those methods.

The high correspondence in explained variation for each
mRNA and miRNA feature between DISCO and O2-PLS
is corroborated by their scores. Table 5 shows the RV
matrix correlation [25] between the scores of the different
methods. Again a high correlation between the O2-
PLS and DISCO scores are observed for the common
part. For the distinctive part this cannot be observed.
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Fig. 5 Scatter plots of % variance of original variable explained in common parts (left) and % variance of original variable explained in distinctive
parts (right) of the mRNA data-set on the top row and of the miRNA on the bottom row between the the different algorithms. DISCO and O2-PLS look
very similar. JIVE shows more genes of which more variance is used in the distinctive part which coincides with the increased amount of distinct
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Table 4 Summary of the SWISS scores for the common and
distinctive parts identified by the different models during the
analysis of the mRNA/miRNA GlioBlastoma data

Common Distinctive Distinctive
(MRNA/miRNA) MRNA miRNA
REAL (5 PC’s) 0.66/0.79
DISCO 067 094 0.99
JIVE 0.74 092 094
02-PLS 0.65/0.66 0.97 0.93

Discussion and conlusions

The three methods discussed in this paper to separate
common from distinct information all use different
approaches, which lead to slightly different models of
the data. What is exactly common variation and what
is distinctive depends on the different orthogonality
constraints applied and the algorithms wused to
estimate these different parts. When the common
variation is abundant, all methods are able to find the
correct solution. With real data however, complexities
in the data are treated differently by the three
methods.

Due to fewer orthogonality constraints that are
imposed by JIVE and O2-PLS, there is more freedom
to select the scores and loadings for the two data-
sets. This freedom is not present in DISCO which
has the most severe orthogonality restrictions. In the
two scenarios shown in this paper, all scores and
loadings were chosen orthogonal. Therefore DISCO
was able to find the correct scores and loadings while
JIVE and O2-PLS found variations thereof that still
obayed their orthogonality assumptions. In case of
less abundant common variation, both JIVE and DISCO
failed to detect the proper amount of common compo-
nents which can be understood from the methods them-
selves. Not knowing the real model however can give rise

Table 5 RV modified coefficients of the common and distinctive
scores for GlioBlastoma data-sets

Data-set  Part Method  O2-PLS DISCO JIVE
mRNA Common 02-PLS X 0.77/067  042/041
mRNA Common DISCO 0.77/067 X 0.58
mMRNA Common JIVE 042/041 058 X

mRNA Distinctive ~ O2-PLS X 0.53 0.58
mRNA Distinctive ~ DISCO 0.53 X 0.68
mMRNA Distinctive  JIVE 0.58 0.68 X
miRNA Distinctive ~ O2-PLS X 0.56 0.55
miRNA Distinctive ~ DISCO 0.56 X 0.74
miRNA Distinctive  JIVE 0.55 0.74 X
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to unexpected results while decomposing the data in com-
mon and distinctive components.

Even with the optimal model settings selected the JIVE
method is the most susceptible to identifying the
wrong common components. Due to the SCA of the
concatenated matrix JIVE has problems finding com-
mon components especially when they are smaller
than a distinctive component in one of the blocks. If
the common and distinctive variation is approximately
of the same magnitude, JIVE is able to properly iden-
tify them due to its iterative nature. JIVE re-estimates
the common and distinctive parts until they converge,
while O2-PLS, which only once re-estimates the com-
mon part once, seems to be stuck in a sub optimal
solution for the distinctive part.

When small data sets with a low number of fea-
tures (Ji <I) are used, these data sets may not be well
represented by the common scores in JIVE, and even
worse, the common scores present information that is
not even present in these blocks. This may lead to
misinterpretation of both common scores and dis-
tinctive scores of such a block [24]. The O2-PLS al-
gorithm is the most flexible one and allows the
separate and distinctive parts to be determined using
block scores instead of super scores. This way no in-
formation is transferred from one data-set to the
other. The distinctive parts however, are also limited
by orthogonality constraints and therefore have a
biased interpretability.

In the real data example the three methods all selected
a smaller number of common than distinct components.
In contrast to the simulations, O2-PLS suggested a
smaller number of common components than JIVE and
DISCO. This could possibly indicate an over estimation
of the number of common components by DISCO and
JIVE. It was shown that the lack of structure in the
raw miRNA data-set has been replaced by an appar-
ent structure in the common part. The combination
of the data-sets has revealed a subset of miRNA’s that
mathematically can be linked to the mRNA’s by all
three methods. Because the methods are not super-
vised, the appearing structure gives rise to further
biological interpretation of not only the common
parts but also the distinctive parts. In situations like
these, DISCO, JIVE and O2-PLS can be considered to
act as pre-processing steps (i.e. filtering steps).

In summary, all three methods have their own ap-
proach to estimate common and distinctive variation
with their specific strength and weaknesses. Due to their
orthogonality properties and their used algorithms their
view on the data is slightly different. By assuming
orthogonality between common and distinctive, true
natural or biological phenomena that may not be
orthogonal at all might be misinterpreted.
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Appendix
List of used symbols

K total number of datasets, k=1..K

/ number of rows (objects)

J number of columns (variables) for matrix k

J total number of variables (55J,)

C. number of components for common part

Ck number of components for distinctive part of matrix k
G total number of components (55— ¢ +¢J)

Xy data matrix (/X Jy)

X concatenated data matrix [X4] ... |X(/ x )

C, common part of matrix k (I x J,)

C concatenated common parts [Cy] ... |C(/ X J)
Dy distinctive part of matrix k (/X Jy)

D concatenated distinctive parts [Dy| ... |D (/< J)
E, the residual error of matrix k (/ X J,)

concatenated residual errors [Ey| ... [Ed (/X))

Toeo scores of SCA model (corresponds to objects) (/X J;)

P, loadings of SCA model (corresponds to variables) (Jx ¢;)
p* rotation target loading in DISCO model (J X ¢,)
B rotation matrix in DISCO (¢ X ¢,)

weight matrix (used in DISCO) to penalize rotation matrix (J X ¢,)

T, common scores (SCA and JIVE) (/X c)

P. common loadings (JIVE) (Ix c.)

T, common scores (02-PLS) for matrix k (/X c.)

P, common loadings for matrix k (Jy X ¢,)

T, distinctive scores for matrix k (/X ¢)

Py, distinctive loadings for matrix k (Jy X )
Hadamard (element-wise) matrix product

Algorithms

DISCO

1. Define a target loading matrix (P*) of zeros and
ones based on the model that was defined by the
common and distinctive components (c,, ¢;, and ¢,);

o/1xe

12xe

Vixa Ve

P* = o/2xa 1a2xee
2. Define the weight matrix as W =1 — P*, where 1 is
a matrix of ones.
X =[X4]Xy]
_ ¢
X = U(Ct>s(ct) V(ct)
Tsea = U(c,)
Py, = V(ct)s(ct)
Randomly initialize B® subject to B” B =1 = B’°B™
Intialize iteration index /=1

®© N oUW
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9. Y=P, B '+W-.P*-P,B

10. [U, S, V,] =svd(Y' P,.,)

11. B'=V,Ut

12. Compute 4(B) = | W - (P,.,B' - P¥) || 2

13. Repeat step 9-12 until hBY-hB'  YH<rtorl>l,,,

After convergence and because B is subject to B' B=1
the rotated scores and loadings can be calculated via
T,=T,.B and P,=P,,B. The common and individ-
ual scores (T, and T,4) and loadings (P, and Pg) are
separated according to the target matrix (P*). The
loadings can then be determined as specific subsets of the
rotated loadings to calculate the terms from Eq. 1:

C =T.P., C, =T, D, = T; P, and D, = Ty,PY,

JIVE

X =[X4]X5]
X = Ue)Se) Vic,
= V.S,
C=T.pP;
R =Xk = Cx
Ri~T, T, Re = Uy, (o) Sate(e) Vi
Tdk = Udk
Py = V4Sa,
Dy = Ty, Py,
. X=X-[Dy|D,]
. Repeat steps 2 through 11 until convergence of
C + D, where C=[C;|C,] and D = [D,|D,]

<)

O 0N oUW

— =
= O

O2-PLS

Slightly different implementations were published which
leaves room for possible different interpretations. In our
implementation we followed the pseudo code described
by Lofstedt et al ([20, 26, 27]) and made sure that our O2-
PLS results corresponded to the 2 data-set OnPLS results.

X5X1 = Pey(c) D Py ¢,
Intialize iteration index /=1
Tck = XkPk

R, = Xk—TCkPEk

R;<T0k = udk(l)sdk(l)vgk(l)
ty, =X W, (1) | 1

Pa,, = (;Edk_ltdkl) thtdk.l

Xi = Xa—tq, Py,

Repeat steps 3 through 8 for the number of
distinctive components per data-set ([ =1..cy)
and both data-sets (k=1..2).

10. Tdk = |:tdk.1 ‘tdkz | o |td’“ki|

O 0N oUW

1L Py, = [py, 2| Ipa,
12. TCk = XkPCk
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After these steps have been performed the elements
from Eq. 1 can be calculated via

Ci=T.P, C,=T,P, D =T;P; and  (9)
D, = TP},

Observations on JIVE, SCA and covariance
If there is no distinctive information SCA and O2-PLS
give the same result:

1. Xl = Tcpi + El and X2 = TCPE + E2
Without noise these equations reduce to:

2. X; =T.P! and X, = T.P%
3. X5X; = (TP (T.PY) = Py(T.T,)P

T, can be chosen such that T:T, = I so consequently:
4. XEX, = P,P:

The analysis of the covariance matrix therefor will
generate the same result if and only if there is no dis-
tinctive variation. This principle likely can be extended
(no proof given) to those cases where the common vari-
ation is larger than the distinctive variation.

If there is a distinctive part it can be shown that an
svd on the covariance matrix is less susceptible to larger
distinctive parts and will better identify the common
variation than the SCA approach used in JIVE.

1. X1:C1+ Dl ande:C2+D2
2. XiXQ = (C1 + Dl)t(C2 + Dz) = C€C2 + DﬁDz

Because the common variation is expected to occur in
both data-sets their cross product is expected to be lar-
ger than the crosspoduct of the distinctive parts that by
definition should show less correlation between the sub-
jects in both data-sets. The crossproducts of the distinct-
ive and common parts can be neglected in comparison
because of the orthogonality constraints (in O2-PLS).
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