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Abstract

Background: Somatic Hypermutation (SHM) refers to the introduction of mutations within rearranged V(D)J genes,
a process that increases the diversity of Immunoglobulins (IGs). The analysis of SHM has offered critical insight into
the physiology and pathology of B cells, leading to strong prognostication markers for clinical outcome in chronic
lymphocytic leukaemia (CLL), the most frequent adult B-cell malignancy. In this paper we present a methodology
for integrating multiple immunogenetic and clinocobiological data sources in order to extract features and create
high quality datasets for SHM analysis in IG receptors of CLL patients. This dataset is used as the basis for a higher
level integration procedure, inspired form social choice theory. This is applied in the Towards Analysis, our attempt
to investigate the potential ontogenetic transformation of genes belonging to specific stereotyped CLL subsets
towards other genes or gene families, through SHM.

Results: The data integration process, followed by feature extraction, resulted in the generation of a dataset
containing information about mutations occurring through SHM. The Towards analysis performed on the
integrated dataset applying voting techniques, revealed the distinct behaviour of subset #201 compared to other
subsets, as regards SHM related movements among gene clans, both in allele-conserved and non-conserved
gene areas. With respect to movement between genes, a high percentage movement towards pseudo genes
was found in all CLL subsets.

Conclusions: This data integration and feature extraction process can set the basis for exploratory analysis or a fully
automated computational data mining approach on many as yet unanswered, clinically relevant biological questions.
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Background
Immunity is the capability of the human organism to de-
fend from the attack of environmental agents that are
foreign to itself and are potentially harmful. Those for-
eign elements could be viruses, bacteria and various
other substances [1]. Immunity can be divided in innate
and acquired.
The term innate immunity refers to all those parts of

the human body that serve as the first line of defense. It
is always present and available in healthy individuals and
its main aim is to avoid the entry of foreign invaders [2].
Some of its components are the skin, the mucous mem-
branes and the cough reflex. Its most important features
are speed (within hours), non-specificity, lack of memory
and limited effectiveness.
On the other hand, acquired immunity serves as the

second line of defense and is activated if a foreign in-
vader (substance) manages to surpass the first line. The
initial contact with the foreign substance triggers the im-
mune response, which leads to the activation of lympho-
cytes (a type of white blood cells) and their products,
such as antibodies, which are the main elements of the
acquired immunity. After the initial immunization, the
individual is capable to resist a subsequent attack from
the same invader, which is called antigen. Acquired im-
munity is characterized by slow response time, memory
and antigen-specificity [1].
B lymphocytes or B cells are one of the two main cell

types of the acquired immune system (the other being T
lymphocytes). The main function of B cells is specific
antigen recognition, antibody production and immune
response activation in order to eliminate danger and
maintain the homeostasis of the host [3]. In each cell,
lying at the heart of this process is a unique B-cell recep-
tor (BcR), a multimeric complex, which is mainly char-
acterized by its immunoglobulin (IG) molecule [3].
Each IG molecule is composed of two identical heavy

chains (HCs) and two identical light chains (LCs), each
subdivided into two regions with different functionality,
namely the variable (V) and constant (C) domain: in
more detail, the V domain is responsible for antigen
binding, while the C domain has an effector function
through the determination of the IG isotype. Each V do-
main is comprised of 7 areas of variable diversity. Of
those, the areas with relatively limited diversity are
known as the framework regions (FRs), whereas the
highly variable areas are known as the complementarity
determining regions (CDRs) and confer each IG mol-
ecule a unique specificity [4].
The V domain of the IG HC and LC of each B cell is

generated by a random process of DNA rearrangement
known as V(D)J recombination [5–7] which brings to-
gether one each of distinct variable (V), diversity (D;
for HCs only) and joining (J) genes, leading to a great

variety of combinations. It has been estimated that the
combinatorial events of the IG heavy (IGH), IG kappa
(IGK) and IG lambda (IGL) gene loci create greater
than 1.6 × 106 possible combinations for BcR IGs
(http://www.imgt.org/IMGTrepertoire). A second set of
diversification is also induced following antigen selec-
tion with somatic hypermutation (SHM) and class
switch recombination (CSR), both occurring within sec-
ondary lymphoid organs [8, 9]. SHM and CSR have
been estimated to increase the potential for diversity up
to 1012 different IGs, each with a distinct primary se-
quence and, likely, antigen specificity [3].
The term SHM refers to the introduction of muta-

tions within rearranged V(D)J genes at a rate of at least
106 – fold higher than the spontaneous rate of muta-
genesis elsewhere in the genome. Most mutations are
single nucleotide substitutions rather than deletions or
insertions and occur at an estimated rate of 1 per 1000
base pair per generation [10].
The analysis of SHM has offered critical insight into

the physiology and pathology of B cells. Focusing on ma-
lignancies of mature B cells, particular imprints of SHM
are widely accepted as evidence for antigen encounter
while ongoing SHM leading to intraclonal diversification
of IG genes is supporting the concept of continued in-
teractions with antigen throughout the natural history of
the clone i.e., also post-transformation [11]. From a clin-
ical perspective, the study of SHM has been established
as one of the strongest prognostic markers for clinical
outcome [12, 13] in chronic lymphocytic leukemia
(CLL), the most frequent adult B-cell malignancy. It is
now well established that the mutational status of the
rearranged IGHV genes directly correlates with patient
survival, with unmutated IGHV genes relating to more
aggressive clinical course and shorter survival than mu-
tated IGHV genes. Of note, immunogenetic studies of
CLL have also revealed a remarkably biased IGHV gene
repertoire as well as a differential impact of SHM de-
pending on IGHV gene usage with IGHV3-7 and
IGHV4-34 carrying a high mutational load in contrast to
IGHV1-69 which exhibits very few mutations [14].
Moreover, unrelated CLL cases were found to carry re-
markably similar VH CDR3 sequences and also sharing
recurrent SHM, thus further corroborating the concept
of antigen selection in CLL ontogeny [15–17]. Based on
the existence of common motifs, CLL patients can be
assigned to different “stereotyped subsets” with distinct
clinicobiological profiles [18, 19].
The actual mechanisms of SHM bias have been stud-

ied from different viewpoints, including the regions
where they most frequently occur (framework-FR or
complementarity determining regions -CDR) [20], the
codons involved and the physicochemical properties im-
plicated [21], as well as the difference among stereotyped
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subsets [14], especially focusing on those expressing the
IGHV3-21 and IGHV4-34 genes. Other methods [22]
address modeling of SHM and assess the degree to
which such models explain variance of real cases.
In this work, SHM is studied from a different per-

spective. Based on data driven modeling, minimizing a
priori assumptions about the process and regarding
each IGHV gene as a whole, we focus on detecting the
potential direction of transformation of these genes,
and investigate similarities or differences in clinically or
biologically relevant groups. The implemented method-
ology consists of the following main steps. At first, dif-
ferent immunogenetic and clinicobiological data are
integrated in order to extract features and create high
quality datasets for somatic hypermutation (SHM) ana-
lysis in the clonotypic immunoglobulin (IG) receptors
of CLL patients. Next, a data integration method is pro-
posed, following the principles of social voting, under
the concept that all patient samples are ‘equivalent’ ex-
periments to be taken into account. The integrated
group points at the preferential directions of transform-
ation. The virtue of the proposed approach is illustrated
via the case of stereotyped subset – specific “Towards
Analysis”, which is our attempt to detect patterns of
mutation-based transformation of genes towards other
genes or gene families through SHM. The choice to
focus on subsets was made on the grounds that these
represent homogeneous groups, thus helping to over-
come the incapacitating heterogeneity of CLL, and,
also, because of postulated differences in their ontogeny
from non-stereotyped fraction of CLL [17].
This data mining approach can extend to different di-

rections and can set the basis for an in-depth investiga-
tion of a series of as yet unanswered clinically relevant
biological questions, which could be of great value in
translational medicine, given the great prognostic value
of SHM in CLL.

Methods
This section is organized as follows. Initially, we
present the three integrated data sources. Then, we
describe in detail the data pre-processing step that
aims to integrate the different data sources and ensure
data quality. Finally, we explain the feature extraction
process and the generated datasets and we conclude
this section by an in-depth description of all steps of
the Towards Analysis, from data preparation to the
final step of Borda aggregation, the latter being a spe-
cial case of data integration where the integrated data
are ranked or scored lists of elements. The study was
conducted in accordance with the Declaration of
Helsinki and approved by CERTH Institutional Review
Board on 18/08/2014.

Integrated data sources
IMGT/HighV-QUEST output
The first source of data is a collection of results obtained
from IMGT/HighV-QUEST tool output analysis [23] in
a single run of a set of sequences. IMGT/V-QUEST is a
highly customized and integrated system for the stan-
dardized analysis of the immunoglobulin (IG) and T cell
receptor (TR) rearranged nucleotide sequences. The tool
output consists of different files providing information
such as functionality, V, D and J genes identified after
alignment with the reference directory (germline genes),
percentage identity of the identified genes with the
germline (GI%), the positioning of nucleotide substitu-
tions and the possible amino acid changes that they may
induce, information about amino acid properties and the
nucleotide and amino acid gapped, i.e., aligned, se-
quences [23, 24].

Reference dataset
The reference dataset consists of the amino acid and nu-
cleotide germline sequences of Homo sapiens IGHV
genes obtained from IMGT/GENE-DB [25]. These are
organized in a hierarchical manner of alleles-genes-
subgroups-clans (Fig. 1). A gene can have more than
one allele. For instance, the IGHV4-34 gene has thirteen
alleles (e.g., IGHV4-34*01, IGHV4-34*02 etc.). The
number after the letter “V” in the IMGT nomenclature,
denotes the subgroup that this allele belongs to. There
are seven subgroups named from one to seven (IGHV1,
IGHV2,…IGHV7). A clan is a set of subgroups. There
are three clans for human IGHV genes. Clan I: Homo sa-
piens IGHV1, IGHV5 and IGHV7 subgroup genes; clan
II: Homo sapiens IGHV2, IGHV4 and IGHV6 subgroup
genes; clan III: Homo sapiens IGHV3 subgroup.

Classification of patient sequences to stereotyped subsets
The third data source is data from the clinicobiological
database that holds various types of clinical and bio-
logical patient data, including the assignment of patients
to subsets expressing identical clonotypic B Cell Recep-
tors [18, 19]. The latter is an example of contextual in-
formation that can distinguish groups of patients with
regards to their unique biological features and clinical
behavior. It can also be helpful for data mining depend-
ing on the question under investigation. A graphic dis-
play of data integration is shown in Fig. 2.

Data preprocessing
The first step in the feature extraction process is the
data preprocessing step (depicted in Fig. 3) whose aim is
twofold: first, to integrate the different data sources and
second, to ensure the highest data quality.
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Data integration
The analysis is patient-orientated and, therefore, the key
behind the data integration is the patient unique ID in
the patient related data sources. The first step of data in-
tegration is the parsing of the IMGT/HighV-QUEST
output files and the clinicobiological dataset. Informa-
tion obtained for each patient sequence includes: Patient
unique ID, functionality of the IGHV-IGHD-IGHJ gene
rearrangement (productive/unproductive), closest germ-
line V-GENE and allele, germline identity (GI%), the nu-
cleotide and amino acid gapped sequence according to
IMGT numbering [26], and the list of nucleotide muta-
tions and amino acid changes.

Filtering integrated data
In this step, several filters have been developed in order
to ensure high data quality and choose the appropriate
subsets/subgroups for further analysis. More specific-
ally, Data Quality Filters analyze and subsequently ex-
clude unqualified patient sequences such as those with
sequence ambiguities or unproductive IGHV-IGHD-
IGHJ gene rearrangement sequences. Then, Subgroup

Selection Filters direct the analysis to a specific sub-
group of the analyzed sequences. The latter may con-
cern the selection of sequences that belong to specific
stereotyped subsets, have specific range of IGHV gene
germline percentage identity, or carry the same IGHV
gene. In addition, analysis can be focused on specific
VH domain subregions (e.g., heavy variable CDR1).

Identification of somatic hypermutations shared with
another germline gene
Based on the assumption that a nucleotide substitution
(mutation) may show a trend from one germline to an-
other and that a particular clonotypic rearranged IGHV
sequence may actually represent the intermediate step
between the two germlines, we herein refer to a muta-
tion as shared with another germline gene (in short SH)
if the nucleotide introduced by SHM is also present at
the germline in question at the exact same position.
Moreover, in this analysis we refer to the closest V-
GENE and allele germline originally identified by the
IMGT/HighV-QUEST output as “sequence before the
mutation (sBm)” and to the patient sequence as “se-
quence after the mutation (sAm)”. We call the germline
with the aforementioned SHs “Towards Germline”
(TowG) indicating the potential movement (increase of
similarity) from the sBm sequence towards this germline.
Finally, we define as “non-SH” a mutation that resulted
in a nucleotide that cannot be found in any germline se-
quence at this particular position.
The core and most important part of the analysis is

the identification of SHs. In this part of the analysis, all
patient sequences (sAm) are compared with all the
germlines from the reference directory dataset in order
to classify mutations as SH or non-SH. It is important to
mention that for the purposes of the present study the
term SH makes sense only with regards to a germline.
Hence, a mutation cannot be defined as SH without re-
ferring to a corresponding TowG.

Fig. 1 Reference dataset. Reference dataset is organized in a hierarchical manner of alleles-genes-subgroups-clans. Figure presents the sub-tree
specific for IGHV4-34*01 and IGHV4-34*02 alleles

Fig. 2 Integrated data sources
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Feature extraction and dataset generation
The previously described SH analysis, resulted in two
mutation based sets, one for SH mutations and one for
non-SH mutations, both sharing the same structure: (se-
quence ID, mutation, Towards Germline). These sets
serve as the baseline for feature extraction and more
specifically, for the construction process which will re-
sult to three different mutation-based datasets.
The first dataset is called “SH Position Dataset (SHPD)”

and contains 34 features. Each entry of the SHPD is a SH
with a TowG. The features that have been constructed
or included from the integration phase for each entry
are as follows: Patient Unique ID; patient assignment to
a stereotyped subset; sBm, germline identity; TowG;
number of SH mutations with the TowG; mutational
position number; the number of the codon that the SH
mutation belongs to; VΗ domain region information
(i.e., FR1, CDR1, etc.); information whether the muta-
tion occurred in a hotspot motif, if it was a transition
or transversion and, finally, whether it was replacement
or silent. Furthermore, features were constructed, based
on the IMGT scientific chart [27], describing all proper-
ties of the amino acids encoded by the triplet in which
the mutational position belonged in all three steps
under investigation, i.e., sBm, sAm and TowG. Included
properties were hydropathy, volume, chemical, physico-
chemical and charge.
The second generated dataset called “Non-SH Position

Dataset (nonSHPD)” differs from SHPD in including in-
formation about the functionality subgroup where the
new property (i.e., the property of the amino acid in the
sAm) can be found. The previously described datasets

were constructed in order to study in detail the muta-
tions (shared and non-shared) individually.
The third dataset called “Germlines with SH Dataset

(GSHD)” contains 8 features. Each entry of the dataset
expresses a couple sBm and TowG, while the remaining
features include information related to these two values.
More specifically, the features are: sBm, sAm, identity of
sBm and sAm, TowG, identity of TowG and sBm and the
number of SH mutations. The features of this dataset
have been specifically selected in order to study the po-
tential transformation of the sBm sequences to TowGs.
This is what we call Towards Analysis and is described
in detail in the following paragraphs and is depicted in
Fig. 4.

Towards analysis
Voting systems
Our approach is inspired by social choice and voting
theory. A voting system is a method by which voters
make a choice between different available options. The
study of formally defined voting systems is called social
choice theory or voting theory and it is a subfield com-
bining political sciences, economics and mathematics.
Until now, many voting systems have been proposed
and can be roughly distinguished by the method voters
express their preferences. For instance, in the most com-
mon system, which is called first-past-the-post or simple
plurality, voters select only one option. In this study, we
are interested in preferential voting systems or ranked
voting systems in which voters rank options in a hier-
archy on the ordinal scale. One of the most important
topics in this voting system is the problem of how votes

Fig. 3 Data preprocessing step. This step leads from raw data to selected data for feature extraction
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are counted and aggregated to yield a final result. This is
what we call the ranking aggregation problem. An analo-
gous definition has been suggested by Dwork et al. [28]
who define ranking aggregation as a problem of comput-
ing a “consensus” ranking of the alternatives, given the
individual ranking preferences of several voters.
The ranking aggregation problem can be intuitively di-

vided into two categories based on the length and the
number of the lists to be aggregated [29]. The first cat-
egory, which also appeared first, is the problem of aggre-
gating many short lists, as in the case of elections. More
recently, the problem of aggregating a few long lists
gained more popularity due to the importance of its
fields of application. The first field is the World Wide
Web and the task is the aggregation of results obtained
by different search engines [28]. The second is the field
of bioinformatics and the analysis of high throughput,
omics-scale, biological data. More specifically, rank
aggregation methods have gained popularity in combin-
ing results that occur from different gene expression
experiments [30–35]. The use of ranking aggregation
methods to combine results from different studies can
be called “high level” meta-analysis because the re-
searcher does not have to deal with the underling raw
data but only with the ranked lists obtained from those
experiments [29].
In this study, we approach the Towards Analysis as a

ranking aggregation problem, i.e., the aggregation of
few long lists. By analogy, in our analysis each patient
sequence is a voter. Each voter scores i.e., ranks, a set
of choices, which are the TowGs. The scoring of the
TowGs is based on the SH mutation analysis described
previously. The Towards Analysis problem is to aggre-
gate these “votes” in order to obtain a final consensus
ranking. The approach is explained in detail in the fol-
lowing paragraphs.

Towards analysis is based on results obtained from
the feature extraction process and more specifically
based on the dataset Germlines with SH Dataset (GSHD)
described above. Our approach intends to formulate the
Towards Analysis problem as a ranking aggregation
problem, by: a) constructing a number of different to-
wards lists, each one corresponding to a different patient
sequence (voter), b) aggregating them in order to obtain
the consensus lists of the alternatives and c) identifying
patterns of potential transformation or movement of
IGHV gene germlines towards other IGHV gene germ-
lines through SHM.

Constructing raw data lists
First, we split the initial dataset in many short lists. The
number of the resulting lists is equal to the number of
patient sequences in the GSHD and each list corre-
sponds to one patient sequence (sAm). From the avail-
able features in GSHD we select only those features
which indicate the towards IGHV germline gene, the
number of SH mutations and the number of mutations
in this patient sequence (M). The list Li of patient i is
described by metadata information that includes features
from GSHD (Patient Unique ID, sBm and patient stereo-
typed subset), mainly for directing the analysis to specific
subgroups of sequences, and the number of identified
mutations Mi. The element j of Li, Lij, is Lij = {SHij,
Towards Allele_j}. The list Li represents one vote for the

Fig. 4 Towards analysis steps. This process leads from the dataset generated based on feature extraction process to the final aggregated results

Table 1 Expected movement per clan (Whole gene area)

CLL#4 CLL#11 CLL#16 CLL#29 CLL#201

Clan1 40.64 45.42 46.52 44.82 29.47

Clan3 20.08 20.35 11.55 20.94 21.18

Clan2 39.27 34.23 41.93 34.24 49.36
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final aggregation of votes per sBm, i.e., per aligned IGHV
allele of the sequence, e.g., IGHV4-34*01.

Constructing lists for aggregation
The purpose of this step is to transform the initial raw
lists Li to lists in their final form which is suitable for ag-
gregation, and specifically, a towards list LGi of genes
(not alleles) accompanied with a score. For patient i the
kth element is LGik = {score_ik, Gene_k}.
In this step, the algorithm transforms each ranked list

of all towards IGHV germline genes based on a score.
The alleles are replaced by their corresponding gene and
the mutation related information (SH mutation and M)
is replaced by a score. In order to avoid biased results
occurring from IGHV genes with many alleles, we calcu-
lated the number of SH mutations of each gene SHik as
the arithmetic mean of the SH mutations of its alleles,
i.e., the expected SH mutations among the members of
this set.
The scoring system is based on the SHs, the concepts

of “available movement” and “initial movement capabil-
ity” and finally a “selectivity” factor and is given by the
following formula:

The formula can be seen as a product of three factors.
Firstly, given that Mi is the number of mutations in a pa-
tient sequence and represents the maximum “available
movement” in a particular patient case, the first factor
(SHik/Mi) represents the portion of the “available move-
ment” achieved. Secondly, given that maxSHk is the
sequence dissimilarity between the sBm and TowG and
expresses the “initial movement capability” between sBm
and TowG, the second factor (SHik/maxSHk) is the por-
tion of the “initial movement capability” achieved.
Finally, selSck is the number of TowG genes that are also
found to have the same number of SH with this gene
and express the selectivity among genes.
After the score calculation of each TowG, each LGi list

of patient sequence i which corresponds to a sBm germ-
line sequence, contains a list of scored Towards Genes
(the pairs score_ik, gene_k) expressing the potential
movement of the sBm towards these genes.

List preprocessing

Filtering In this step, filters have been developed to dir-
ect the analysis to a specific subgroup of patient
sequences. This is performed via the selection from the
initial pool of lists of those belonging to a specific subset
and/or to specific IGHV Gene.

scoreik ¼ SHik � SHik

Mi �maxSHk � selSck ð1Þ

Fig. 5 Expected movement per clan (whole gene area)

Table 2 Expected movement per clan (Conserved gene area)

CLL#4 CLL#11 CLL#16 CLL#29 CLL#201

Clan1 45.86 46.70 55.15 50.51 36.71

Clan3 20.43 25.51 10.92 20.25 23.69

Clan2 33.71 27.78 33.93 29.23 39.60
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Homogenizing After the filtering step, a homogenization
step takes place. This step is essential because different
lists could contain different towards germline genes and
consequently the list aggregation could not be per-
formed. In homogenizing step, all lists are transformed
to contain the union genes found in all the selected for
aggregation lists. After the transformation, the newly
introduced genes in each list are scored with zero value.

Normalizing LGi As stated below, in our analysis we
considered each patient sequence as a separate experi-
ment and more importantly equivalent with all other
patient sequences independently of the number of muta-
tions introduced by SHM. To achieve this, we normal-
ized each list score by scaling to [0, 1]. The normalized
score si of the TowG (i) is given by the following
formula:

Normalized Sið Þ ¼ s;−Smin

Smax‐Smin
ð2Þ

After the normalization, the first towards germline with
score 1 indicates the maximum movement that the sBm
of the corresponding patient sequence can achieve. The
normalization of scores results in the normalized lists
LGNi.

Borda inspired aggregation
The final aggregation of the lists LGNi can be made
using various Borda-inspired methods [29]. In our

approach we used a variant of the original method pro-
posed by Borda [36] which is the most intuitive.
Although in most cases, each element’s score (Borda
score of each element) is the simple rank of the element
in each list, in situations where other additional informa-
tion is available (in our case the previously calculated
score), Borda score can be redefined in order to repre-
sent the additional information in the aggregation
process [29]. In our approach, the final score of each
element in the final rank is the arithmetic mean of each
element score across the aggregated normalized lists
LGNi. The aggregation function for the score of each
element, si, in the n lists is the following:

Fig. 6 Expected movement per clan (conserved gene area)

Fig. 7 Clustering of subsets based on the distances of movement
per clan (whole gene area)
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f S1; S2;…; Snð Þ ¼ 1
n

Xn

i
Si ð3Þ

Results and Discussion
Data sources description
Distinctive SHM patterns amongst CLL cases have been
previously reported, especially regarding subsets with
stereotyped BCRs [14]. With this analysis we sought for
differentiation trends concerning shared mutations
amongst CLL patients expressing IGHV4-34 clonotypic

B cell receptors, namely subsets #4, #11, #16, #29 and
#201 [18].
The integrated dataset was based on the following 3

datasets: Firstly, the alignment results obtained from
IMGT/HighV-QUEST output for a set of 20331 CLL
cases; secondly 341 reference germline genes obtained
by IMGT/GENEBD Version 3.1.0 (4 April 2014) and fi-
nally the clinicobiological information for the 20331
cases.
In order to ensure data quality we discarded through

filtering all unproductive rearrangement sequences, se-
quences that contain ambiguities and incomplete CDR1
and upstream regions. Then, we selected only sequences
that were classified to the above mentioned stereotyped
subsets (#4 – 164 cases; #11 – 16 cases; #16 – 44 cases;
#29 – 43 cases; and #201 – 45 cases).
Concerning the reference dataset, we discarded all

orphans and those alleles that were partial in 5’. The
resulted dataset contained 284 reference germline alleles
(234 Functional; 38 pseudo genes; and 12 open reading
frames).

Analysis results and discussion
The towards analysis was performed separately for each
subset, in order to investigate not only the occurring
differences but also the similarities between the subsets
under investigation, potentially alluding to similar se-
lective pressures. For each subset, the analysis resulted

Fig. 8 Clustering of subsets based on the distances of movement
per clan (conserved gene area)

Fig. 9 First ten toward germlines (TowGs) for every subset (whole gene area). The set containing the first ten TowGs for every subset. It is
important to mention that this graph does not express a ranked list, but rather a union of the highly ranked genes across subsets (with
potentially different ranking per subset). The red color indicates that the gene in this row can be found in the top ten of the corresponding
subset in the column. For that reason, every column has exactly ten cells (whole gene area)
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in a scored list of TowGs. The score of each TowG indi-
cates the overall movement of the IGHV4-34 gene
belonging to a specific subset. Towards analysis was
performed in the whole IGHV gene region, and was
repeated in the conserved gene area, i.e., in positions
where all alleles of the specific gene have the same
nucleotide. The rationale was to investigate whether
towards mutations affect the conserved regions, and
can thus be regarded as a gene-biased phenomenon,
related to the germline codon composition, or rather
present some allele specific properties.
Firstly, we tried to investigate the subset movement

towards one of the three different IGHV gene clans. To
calculate this, we summarized all scores of the TowGs
belonging to a specific clan, as the average score of that
clan’s genes, i.e., the expected movement per clan for
every subset. The results are shown in Table 1 for the
whole gene area and Table 2 for the conserved area. The
differences between subsets per clan are shown in Figs. 5
and 6. Figures 7 and 8 present the clustering of subsets
based on the distances of movement per clan via a
dendrogram.

In both cases, the distinct behaviour of subset #201 is
apparent. The main difference between the two dendro-
grams is the interchange of subset #4 and subset #11 as
the one closest to subset #29. In the whole IGHV region
analysis subset #29 was closer to subset #11. In non-
conserved analysis this is no longer the case, suggesting
that subset #11 and subset #29 have many similarities in
non-conserved positions. Moreover, it is obvious that
the analysis in the conserved region produced a more
solid cluster of subsets #4, #11 and #29 differentiating
them from subsets #16 and #201.
The second question was the investigation of move-

ment towards individual genes. In order to have a more
complete perspective of each TowG movement, we con-
sidered the sum of all scores in a list as the whole move-
ment of this subset and thus we normalized each score
to the total sum of scores, expressing the percentage
movement per gene. In Figs. 9 and 10 we present the set
containing the first ten TowGs for every subset with the
number of alleles of every TowG and their functionality.
From the graph it becomes clear that there are many

common highly ranked TowGs among subsets. Firstly,

Fig. 10 First ten toward germlines (TowGs) for every subset (conserved gene area). The set containing the first ten TowGs for every subset. It is
important to mention that this graph does not express a ranked list, but rather a union of the highly ranked genes across subsets (with potentially
different ranking per subset). The red color indicates that the gene in this row can be found in the top ten of the corresponding subset in the column.
For that reason, every column has exactly ten cells. Blue cells denote difference from the whole gene analysis, i.e., genes that are not in top10 in
conserved analysis (conserved area)
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IGHV2-10, IGHV2-5 and IGHV2-26, all belonging to
Clan II (same as IGHV4-34), can be found in the top -
10 of every subset. Moreover, IGHV5-78 and IGHV7-81
genes are in the top-10 list in four out of the five subsets
(missing from subset#201) and that also goes for
IGHV2-70 and IGHV2-70D genes (missing from sub-
set#11). Another interesting observation is that the pres-
ence of pseudogenes in this graph is extremely high
given the very low number of pseudogenes compared to
the number of functional ones.
Comparing the above-mentioned figure (Fig. 9) with

the one produced from the conserved analysis (Fig. 10)
we can see only minor differences. The high presence of
pseudogenes is also obvious here. The small changes in
the figure pattern could suggest different mutation pat-
terns in the non-conserved area. For instance gene
IGHV2-5 is present in all subsets in the analysis of the
whole gene region, but it is absent in the allele-
conserved area for subset#11, suggesting that maybe
there are important mutation patterns in the non-
conserved area for this subset.

The observation about the high presence of pseudo-
genes prompted us to investigate the percentage move-
ment per functionality. Given that several genes include
both functional and non-functional alleles (pseudo-
genes), it was impossible to generalize that a gene has a
specific functionality. For this reason we performed the
same analysis, but instead of generalizing to the gene,
we investigated the movement per allele, and finally ag-
gregated per functionality. The results are presented in
Table 3 and Fig. 11. To account for the higher number
of functional alleles and make those movements com-
parable, we calculated the average expected movement
per functionality. Interestingly, we see that for all subsets
the average expected movement is higher in pseudo-
genes. While a concrete interpretation would need more
extended studies, it is worth noting that pseudogenes
have been found to play a role as DNA templates in
other mechanisms for genetic diversification, like gene
conversion and class switch recombination [37]. The
relevance of this observation in a highly complex and
specialized system such as a mature B cell undergoing
specialized genomic reorganization changes after antigen
encounter remains to be fully elucidated.

Conclusion
In this paper we present a methodology for integrating
multiple immunogenetic and clinocobiological data sources
in order to extract features and create high quality datasets
for SHM analysis in the clonotypic immunoglobulin

Fig. 11 Expected movement per functionality (whole gene area)

Table 3 Expected movement per functionality (Whole gene
area)

CLL#4 CLL#11 CLL#16 CLL#29 CLL#201

ORF 36.33 31.66 32.91 35.37 35.18

P 37.28 37.76 39.75 34.39 38.29

F 26.39 30.57 27.33 30.24 26.53
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receptors of CLL patients. This can set the basis for ex-
ploratory analysis or a fully automated computational data
mining approach on many as yet unanswered, clinically
relevant biological questions, considering that SHM is one
of the most robust prognostic indicators in CLL. We also
introduce the Towards analysis, which is our attempt to
investigate the potential “ontogenetic transformation” of
genes belonging to specific stereotyped subsets towards
other genes or gene subgroups and clans, through SHM.
The methodological innovation of this work is mainly

the integration of the three closely related immunoge-
netic data sources for the generation of a rich SHM-
related dataset, with the final aim of data analysis and
knowledge extraction. Moreover, we firstly, to our know-
ledge, used the ranking aggregation approach and the
formalization of voting systems, (sequences voting for
gene mutation preferences), to give insights into the
problem of the potential ontogenetic “gene transform-
ation”. In order to achieve this we proposed a score
which is the quantification of the gene movement
through SH.
Our future work concerns a more thorough investiga-

tion of the presented results, mainly towards the investi-
gation of the differences between the SH and non-SH
(e.g., with respect to regional CDR/FR or in amino acid
properties), and the differences between mutations lead-
ing to pseudogenes or functional genes. This also in-
volves the feature extraction and the generation of new
datasets, tackling our raised questions at the amino acid
level. This work is considered as the basis for further
investigation of SHM-related biological questions in the
broader field of immune processes in health and disease.
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