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Abstract

Background: Verifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural
herb-based drug candidates. However, this entails a great deal of effort to clarify the interaction throughout in vitro or
in vivo experiments. In this light, in silico prediction of the interactions between compounds and target proteins can
help ease the efforts.

Results: In this study, we performed in silico predictions of herbal compound target identification. First, data
related to compounds, target proteins, and interactions between them are taken from the DrugBank database.
Then we characterized six classes of compound-target interaction in humans including G-protein-coupled receptors
(GPCRs), ion channel, enzymes, receptors, transporters, and other proteins. Also, classification-prediction models
that predict the interactions between compounds and target proteins through a machine learning method
were constructed using these matrices. As a result, AUC values of six classes are 0.94, 0.93, 0.90, 0.89, 0.91,
and 0.76 respectively. Finally, the interactions of compounds from natural products were predicted using the
constructed classification models. Furthermore, from our predicted results, we confirmed that several important disease
related proteins were predicted as targets of natural herbal compounds.

Conclusions: We constructed classification-prediction models that predict the interactions between compounds and
target proteins. The constructed models showed good prediction performances, and numbers of potential natural
compounds target proteins were predicted from our results.

Background
The efficacy of the medicinal use of natural products
dates back thousands of years. In more recent years,
compounds derived from natural products have shown
promising effects in drug discovery and drug develop-
ment. For example, oseltamivir (trade name, Tamiflu), an
antiviral medication used to treat influenza A and influ-
enza B, is synthesized from shikimic acid, a naturally oc-
curring substance found in Chinese star anise herb [1].
However, the detailed mechanism of action, including

the target proteins of compounds, is known for just a few
natural products. Moreover, identifying compound-target
interactions through in vitro or in vivo experiments re-
quires considerable efforts. In this regard, accurate in silico
screening methods are necessary to predict interaction
between compounds and target proteins.
Numerous studies on the prediction of interactions

between compounds and target proteins have been
reported. Yamanishi et al. implemented a systematic
study on the prediction of compound-target protein
interactions [2]. They suggested that the interaction
can be predicted by using the structural similarity of
compounds and the genomic sequence similarity.
They computed the sequence similarities between
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proteins using normalized Smith-Waterman scores
and the structural similarities between compounds
using SIMCOMP, a graph-based method for comparing
chemical structures [3, 4]. With respect to prediction
methods, Belakley et al. provided a useful method, referred
to as the bipartite local model (BLM), to accurately predict
compound-target protein interactions [5]. BLM predicts

target proteins of a given protein using the structural simi-
larity of compounds, genomic similarity, and information
of interactions between compounds and targets. Since this
method shows promising performance in drug-target pre-
diction, we adopted this method in our study to predict
the interactions between herbal compounds and target
proteins.

Fig. 1 Overview of this study. First, compounds, target proteins, and the interactions between them are taken from the DrugBank database.
These data are then classified into 6 types. After each similarity matrix is constructed, bipartite local models are made for predicting interactions
using these matrices. Lastly, herbal compounds and target protein interactions are predicted by using the model
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In this work, we constructed prediction models for in-
teractions between compounds and target protein (Fig. 1).
First, compounds, target proteins, and interactions thereof
are taken from the DrugBank database [6–9]. These data
are then classified into six types: G-protein-coupled recep-
tors (GPCRs), enzymes, transporters, receptors, and other
proteins. Next, compound structure similarity matrices of
each type are calculated by using the Open Babel finger-
print (FP2). Genomic sequence similarity matrices of each
type are calculated by using the Smith-Waterman algo-
rithm and binary interaction matrices of each type are
made using information of interactions between com-
pounds and target proteins [4, 10]. After this process, bi-
partite local models are made for predicting interactions
between compound and target proteins using these matri-
ces. Lastly, herb data are taken from databases that have
information on herbs such as TCMID, TCM-ID [11, 12]
and KTKP (http://www.koreantk.com), and KAMPO
(http://www.kampo.ca). Compounds of herbs and training
data structural similarity matrices of each type are then
calculated by using Open Babel [10]. By using these matri-
ces and the bipartite local models, the herb-target protein
interactions are predicted.

Method
Compound, target protein, interaction data
Most data related to compounds, target proteins, and
interactions between them are taken from DrugBank
database [6–9]. Then using IUPHAR/BPS Guide to
PHARMACOLOGY database, these data are classified
into six types, enzyme, GPCRs, transporter, ion channel,
etc [13]. Table 1 shows the number of compounds, tar-
get proteins, and their interactions of each types. In our
study, the number of compounds targeting enzymes,
GPCRs, ion channels, other receptors, transporters, and
other proteins is, respectively, 2107, 502, 311, 199, 410,
and 83. The number of target proteins in these types is
404, 104, 117, 85, 95, and 26, respectively. The number
of known interactions in these types is 2836, 1694, 1071,
587, 367, and 100, respectively. In this process, we use a
compound that targets human organism. We then re-
move the data that do not have necessary properties
such as the SMILES of the compound or the amino

sequence of target protein. In the DrugBank database,
proteins are classified into four types, target, enzyme,
carrier, and transporter. Compounds only bind to pro-
teins belonging to the target type as an inhibitor or an
activator. We focus on targeting interactions such as in-
hibitors or activators rather than metabolic interactions
such as substrates. Therefore, only proteins belonging to
the target type are used in our study.

Chemical similarity
Chemical structures can be identified by Simplified
Molecular Input Line Entry Specification (SMILES).
DrugBank database provides SMILES of each compound
[8]. The structure similarity between two compounds is
computed by using Open Babel, which provides finger-
prints such as FP2, FP3, FP4, and MACCS from SMILES
[10]. In this study, FP2, a path-based fingerprint that in-
dexes small molecule fragments based on linear seg-
ments of up to seven atoms, is used. The similarity
between the compound CA and CB is computed by using
the formula (1).

Tanimoto coefficientA;B ¼ AB
Aþ B−AB

ð1Þ

where AB : the number of bits set in molecules A and B
A: the number of bits set in molecules A, B : the number

of bits set in molecules B
The Tanimoto coefficient uses the bits set in both fin-

gerprints. Applying the work to all compound pairs, the
compound similarity matrix SC is constructed.

Genomic similarity
DrugBank database provides amino acid sequences of the
target proteins [8]. In order to obtain similarities between
the target proteins, we use the SIMD Smith-Waterman
C++ Library, which calculates an amino sequence align-
ment score by using the Smith-Waterman algorithm
[14]. The Smith-Waterman algorithm produces the op-
timal pairwise alignment between two sequences [4].
We then normalize the Smith-Waterman score. The
normalized Smith-Waterman score between the protein
PA and PB is computed by the formula (2)

Sp PA; PBð Þ
¼ SW PA; PBð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SW PA; PAð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW PB; PBð Þpq

ð2Þ

where SW is the Smith – Waterman alignment score
Applying this approach to all target protein pairs, the

target protein genomic similarity matrix SP is constructed.

Table 1 The number of compounds, target proteins, and
interactions of each types to construct a predicting model

Compound Target protein Interaction

GPCR 502 104 1694

Ion Chanel 311 117 1071

Transporter 199 95 367

Receptor 410 85 587

Enzyme 2107 404 2836

Others 83 26 100

Keum et al. BMC Bioinformatics 2016, 17(Suppl 6):219 Page 419 of 442

http://www.koreantk.com/
http://www.kampo.ca/


Herbal compound data
Information of herbs and herbal compounds is taken
from databases that have information of herbs such as
TCMID, TCM-ID [11, 12] and KTKP and KAMPO. In
this study, we use the herbs of which phenotypes are
diabetes mellitus, hypertension and asthma. These phe-
notypes are selected because they are common diseases
[15, 16]. Since SMILES of herbal compounds in these
databases is ambiguous and has duplication, the
SMILES of each compounds of herbs is obtained by using
ChemSpider [17]. In this process, compounds that have
ambiguous SMILES or do not have SMILES are removed
and duplicated compounds are unified. Finally, the num-
ber of herbs that are related to diabetes mellitus, hyper-
tension and asthma is 33, 93, and 251, respectively. The
number of unique herbal compounds in these phenotypes
is, respectively, 1303, 1720, and 3297. Table 2 shows the
number of herbs and their compounds of each phenotype.
The similarities between compounds of each herb and
compounds of training data are then calculated by using
Open Babel to predict the target protein by using the
similarity between compounds and training data.

Bipartite local model
In order to predict new interaction between compounds
and targets, we use the Bipartite Local Model method [5].
In this method, compound-target protein interactions are

represented by a bipartite graph. It predicts whether a
compound C targets protein of interest (POI) or not and
whether a protein P is targeted by compound of interest
(COI) or not in the following Fig. 2.

Support Vector Machines (SVMs)
Support vector machines (SVMs) are used as the classifiers
for the bipartite local model. A support vector machine is a
supervised learning model, used in classification and regres-
sion. The SVM classifies two classes with the maximum
margin. Therefore, when new data are classified, it predicts
more accurately than other methods. For this reason, SVMs
are used for good performance of classification in many ap-
plications [18]. There are many libraries of available for
SVM. The LIBSVM (v. 3.20) is used for the bipartite local
model (BLM) [19]. Given similarity information about the
vertices (either the compounds or the target proteins), each
local SVM learns a function that can assign a continuous
score to a compound or target from the labels of these
vertices [5]. The sign of the score indicates the interaction
or not. If the sign are positive, the predicted interactions
between a compound and a target protein is positive, other-
wise, they have no interactions. And the score contains the
confidence of the prediction. If absolute value of the score
is high, the predicted interaction is credible.

Results
Prediction performance
In order to estimate the performance of bipartite local
model using our dataset, a 10-fold cross-validation is
used [5]. For the reliable results, each dataset is ran-
domly permuted. Then each of the datasets is divided
into ten subsamples. After doing this, nine samples are
used as a training dataset to make a classification model
and the remaining one sample is used as a validation

Fig. 2 An illustration of protein prediction procedures (left) and compound prediction procedures (right)

Table 2 The number of herbs and their compounds for predicting
their target proteins. All data are classified by phenotypes

Phenotype #Herb #Compound (unique)

Diabetes 33 1303

Hypertension 93 1720

Asthma 251 3297
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dataset for testing the model. The cross-validation
process is repeated ten times, with each of the 10 sub-
samples used once as the validation data. Table 3 and
Fig. 3 show the prediction performance for each type of
dataset. Area under the ROC curve (AUC) and area
under the precision-recall curve (AUPR) are used to
evaluate the performance of the model. As the area is
closer to one, the performance of the model is better.
AUC (compound prediction) is evaluated by only using
structural similarity matrix to predict which compounds
target the proteins and AUC (protein prediction) is eval-
uated by only using genomic similarity matrix to predict
proteins are targeted by the compounds. AUC (predict-
ing compound and protein pair) and AUPR (predicting
compound and protein pair) are evaluated by using both
structural similarity matrix and genomic similarity
matrix to predict more accurate interaction. The results

show that the AUC of each type is about 0.9. Since this
represents sufficiently high performance, the model can
be used to predict interactions between the herb com-
pounds and target proteins.

Prediction results
In order to predict interactions between compounds of
herbs and target proteins, the classification model is
constructed using the training dataset. Since we focus
on whether compounds bind to target proteins, the
chemical similarity matrices alone are used to construct
the prediction model. The prediction model is then used
to predict whether herbs have an interaction or not.
Table 4 summarizes the number of predicted herbs, their
compounds, target proteins, and interactions between
compounds and target proteins by protein type. All data
are classified by phenotypes. In this results of asthma
phenotype, the number of predicted herbs binding
GPCRs, ion channels, transporters, other receptors, en-
zymes and other proteins is 38, 60, 127, 122, 57, and 11,
respectively. The number of predicted compounds of
herbs in these types is 44, 77, 275, 324, 48, and 10, re-
spectively. The number of predicted target proteins in
these types is 14, 7, 9, 6, 15, and 3 respectively. The
number of predicted interactions between compounds
and target proteins in these is 277, 237, 1055, 762, 268,
and 29 respectively. Figure 4 is predicted interaction net-
work for the GPCRs data of diabetes mellitus phenotype.

Fig. 3 Performance of predicting model for each type of dataset

Table 3 Performance of predicting model for each type of
dataset

AUC (fixed target) AUC (fixed drug) AUC (pair) AUPR (pair)

GPCR 0.8899 0.8246 0.9405 0.6274

Ion chanel 0.8514 0.8063 0.9339 0.6552

Transporter 0.8829 0.7163 0.9083 0.5768

Receptor 0.8877 0.5754 0.8932 0.5745

Enzyme 0.8315 0.761 0.9018 0.4337

Others 0.8574 0.3113 0.7634 0.4723
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Lipinski’s rule of five (ROF) of the predicted compound
of each phenotype is then calculated by using its
SMILES [20]. Figure 5 is graph that depicts a proportion
of ROF of predicted herbal compounds for each protein
types in each phenotype. The ROF of the compounds is
zero in most cases. This result indicates that there are
many compounds that can be used as drugs in herbs.
We then find proteins that are related with asthma
based on papers among proteins binding GPCRs, ion
channels, transporters, other receptors, and enzymes.
Figure 6 shows the number of predicted target proteins
of each protein type in each phenotype. Part of the bot-
tom indicates the number of target proteins that are
related with each phenotype. In Fig. 4, we can show that
many proteins are related with diabetes mellitus. The
number of predicted target proteins related to asthma in
papers is 6, 10, 2, 4, and 1, respectively. These results in-
dicate that a substantial, number of predicted proteins
that are targeted by herbs to treat asthma are related
with asthma. This implies that the prediction model pre-
dicts well and proteins that are not related with asthma
can be candidates to have a relation with asthma.

Conclusions and discussion
In this research, we predict whether compounds bind to
target proteins or not by using chemical structure similarity
information and genomic sequence similarity information

Fig. 4 Predicted interaction network for the GPCRs data of diabetes mellitus phenotype. Circles indicate herbal compound, rectangles indicate
herbs, and rounded rectangles indicate target proteins. Rectangles with a border represent target proteins that are related with diabetes mellitus

Table 4 The number of predicted herbs, their compounds,
target proteins, and interactions by protein types. All data are
classified by phenotypes

Phenotype Type #Herb #Compound #Gene #Interaction

Diabetes GPCR 9 13 8 24

Ion Chanel 9 22 4 26

Transporter 18 110 8 166

Receptor 19 101 7 124

Enzyme 8 14 4 21

Other 1 1 1 1

Hypertension GPCR 24 23 14 57

Ion Chanel 28 52 6 99

Transporter 47 121 9 286

Receptor 46 174 7 296

Enzyme 19 32 12 108

Other 3 8 2 16

Asthma GPCR 38 44 14 277

Ion Chanel 60 77 7 237

Transporter 127 275 9 1055

Receptor 122 324 6 762

Other 11 10 3 29
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on a large scale. Most data that help to construct the predi-
cation model are taken from the DrugBank database. The
classification models that predict whether compounds bind
to proteins of GPCRs, ion channels, transporters, other
receptors, enzymes and other proteins is validated by a 10-
fold cross validation. The AUC score of each prediction
model is about 90 %, except the prediction model of other
proteins. Since the number of data of other protein types is
much smaller than that of other types, it is difficult to con-
struct an accurate prediction model. Nonetheless, most of
the prediction models are reliable. We can therefore
predict the interactions of herbs and target proteins using
prediction models. In the prediction results, there are many
predicted herbal compounds of which Lipinski’s rule of five

(ROF) is zero. This implies that the herbs can be used as
drugs. Furthermore, many proteins are predicted to bind to
herbal compounds of each phenotype. Also, many studies
contend that some proteins among them are related with
each phenotype. This implies that the suggested model pre-
dicts well. Moreover, there are not only the proteins that
already identified their relationship with each phenotype by
other studies but also the other proteins.
We note that limited number of target proteins were

used in our predictions considering the whole size of the
genes found in human [21]. For example, the number of
target proteins in the enzymes type is 404 in our dataset
whereas the total number of proteins in the enzyme type
is about 2,700 in the human genome [2]. Therefore,

Fig. 5 The proportion of Lipinski;s rule of five (ROF) of predicted herbal compound for each protein type in each phenotype. a The compound proportion
of ROF in diabetes. b The compound proportion of ROF in hypertension. c The compound proportion of ROF in asthma. ROF is zero in most case
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there are rooms to improve the performance of the pre-
diction models with the increased size of the training
data set. Also, the prediction performance could be
improved using additional information of compounds
rather than the structure similarity only. There are many
useful properties that can distinguish the compounds
such as human intestinal absorption (HIA), blood-brain
barrier (BBB), etc. Lastly, although some compounds are
related with proteins, the bipartite local model (BLM)
method regards an unknown compound-target protein
interaction as a non-interaction. This can degrade per-
formance of the prediction model. When these problems
are addressed, we can construct better classification
models that predict the interactions between target
proteins and compounds.
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The dataset for constructing prediction model is available in
the DrugBank database (http://www.drugbank.ca, version
4.0). The herb dataset supporting the conclusions of this art-
icle is available in the TCMID (http://www.megabionet.org/
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Fig. 6 The number of predicted target proteins for each protein type in each phenotype. Part of the bottom indicates the number of target proteins
that are related with each phenotype. a The number of predicted genes in diabetes. b The number of predicted genes in hypertension. c The number
of predicted genes in asthma. Many proteins are related with each phenotype

Keum et al. BMC Bioinformatics 2016, 17(Suppl 6):219 Page 424 of 442

http://www.drugbank.ca/
http://www.megabionet.org/tcmid/
http://www.megabionet.org/tcmid/
http://bidd.nus.edu.sg/group/TCMsite/Default.aspx
http://bidd.nus.edu.sg/group/TCMsite/Default.aspx
http://www.koreantk.com/
http://www.kampo.ca/


Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JK collected the drug data from the DrugBank database, implemented prediction
models, analyzed results and drafted the manuscript. HN designed and
coordinated the study. DL and SY collected the herb data from the herb
databases. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Bio-Synergy Research Project (NRF-
2014M3A9C4066449) of the Ministry of Science, ICT and Future Planning
through the National Research Foundation, and supported by the National
Research Foundation of Korea grant funded by the Korea government(MSIP)
(NRF-2015R1C1A1A01051578).

Declarations
The publication of this article was funded by the Bio-Synergy Research Project
(NRF-2014M3A9C4066449) of the Ministry of Science, ICT and Future Planning
through the National Research Foundation, and supported by the National
Research Foundation of Korea grant funded by the Korea government
(MSIP) (NRF-2015R1C1A1A01051578).
This article has been published as part of BMC Bioinformatics Volume 17
Supplement 6, 2016: Proceedings of the ACM Ninth International Workshop
on Data and Text Mining in Biomedical Informatics. The full contents of the
supplement are available online at http://bmcbioinformatics.biomedcentral.com/
articles/supplements/.

Author details
1School of Electrical Engineering and Computer Science, Gwangju Institute
of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju,
Republic of Korea. 2Department of Bio and Brain Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 305-701,
Republic of Korea.

Published: 28 July 2016

References
1. Chen W, Lim CE, Kang HJ, Liu J. Chinese herbal medicines for the treatment

of type A H1N1 influenza: a systematic review of randomized controlled
trials. PLoS One. 2011;6(12):e28093.

2. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of
drug-target interaction networks from the integration of chemical and
genomic spaces. Bioinformatics. 2008;24(13):i232–40.

3. Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure
comparison method for integrated analysis of chemical and genomic
information in the metabolic pathways. J Am Chem Soc. 2003;125(39):
11853–65.

4. Smith TF, Waterman MS. Identification of common molecular subsequences.
J Mol Biol. 1981;147(1):195–7.

5. Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions
using bipartite local models. Bioinformatics. 2009;25(18):2397–403.

6. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C,
Neveu V, et al. DrugBank 3.0: a comprehensive resource for ‘omics’
research on drugs. Nucleic Acids Res. 2011;39(Database issue):D1035–41.

7. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A,
Arndt D, Wilson M, Neveu V, et al. DrugBank 4.0: shedding new light
on drug metabolism. Nucleic Acids Res. 2014;42(Database issue):D1091–7.

8. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B,
Hassanali M. DrugBank: a knowledgebase for drugs, drug actions and drug
targets. Nucleic Acids Res. 2008;36(Database issue):D901–6.

9. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z,
Woolsey J. DrugBank: a comprehensive resource for in silico drug
discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):
D668–72.

10. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR.
Open babel: an open chemical toolbox. J Cheminform. 2011;3:33.

11. Ji ZL, Zhou H, Wang JF, Han LY, Zheng CJ, Chen YZ. Traditional Chinese
medicine information database. J Ethnopharmacol. 2006;103(3):501.

12. Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: Traditional Chinese
Medicine integrative database for herb molecular mechanism analysis.
Nucleic Acids Res. 2013;41(Database issue):D1089–95.

13. Pawson AJ, Sharman JL, Benson HE, Faccenda E, Alexander SP, Buneman
OP, Davenport AP, McGrath JC, Peters JA, Southan C, et al. The IUPHAR/BPS
Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets
and their ligands. Nucleic Acids Res. 2014;42(Database issue):D1098–106.

14. Zhao M, Lee WP, Garrison EP, Marth GT. SSW library: an SIMD Smith-Waterman
C/C++ library for use in genomic applications. PLoS One. 2013;8(12):e82138.

15. Haahtela T, Tuomisto LE, Pietinalho A, Klaukka T, Erhola M, Kaila M,
Nieminen MM, Kontula E, Laitinen LA. A 10 year asthma programme in
Finland: major change for the better. Thorax. 2006;61(8):663–70.

16. Wellcome Trust Case Control C. Genome-wide association study of 14,000
cases of seven common diseases and 3,000 shared controls. Nature. 2007;
447(7145):661–78.

17. Williarms AJ, Tkachenko V, Golotvin S, Kidd R, McCann G. ChemSpider -
building a foundation for the semantic web by hosting a crowd sourced
databasing platform for chemistry. J Cheminform. 2010;2(supp 1):O16.

18. Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural
Netw. 1999;10(5):988–99.

19. Chang C-C, Lin C-J. LIBSVM: A library for support vector machines. ACM Trans
Intell Syst Tech (TIST). 2011;2(3):27.

20. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug
Discov Today Technol. 2004;1(4):337–41.

21. Pertea M, Salzberg SL. Between a chicken and a grape: estimating the number
of human genes. Genome Biol. 2010;11(5):206.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Keum et al. BMC Bioinformatics 2016, 17(Suppl 6):219 Page 425 of 442

http://bmcbioinformatics.biomedcentral.com/articles/supplements/
http://bmcbioinformatics.biomedcentral.com/articles/supplements/

	Abstract
	Background
	Results
	Conclusions

	Background
	Method
	Compound, target protein, interaction data
	Chemical similarity
	Genomic similarity
	Herbal compound data
	Bipartite local model
	Support Vector Machines (SVMs)

	Results
	Prediction performance
	Prediction results

	Conclusions and discussion
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials

	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Author details
	References

