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Abstract

Background: Accurate determination of protein complexes has become a key task of system biology for revealing
cellular organization and function. Up to now, the protein complex prediction methods are mostly focused on
static protein protein interaction (PPI) networks. However, cellular systems are highly dynamic and responsive to
cues from the environment. The shift from static PPI networks to dynamic PPI networks is essential to accurately
predict protein complex.

Results: The gene expression data contains crucial dynamic information of proteins and PPIs, along with
high-throughput experimental PPI data, are valuable for protein complex prediction. Firstly, we exploit gene
expression data to calculate the active time point and the active probability of each protein and PPI. The dynamic
active information is integrated into high-throughput PPI data to construct dynamic PPI networks. Secondly, a novel
method for predicting protein complexes from the dynamic PPI networks is proposed based on core-attachment
structural feature. Our method can effectively exploit not only the dynamic active information but also the
topology structure information based on the dynamic PPI networks.

Conclusions: We construct four dynamic PPI networks, and accurately predict many well-characterized protein
complexes. The experimental results show that (i) the dynamic active information significantly improves the
performance of protein complex prediction; (ii) our method can effectively make good use of both the dynamic
active information and the topology structure information of dynamic PPI networks to achieve state-of-the-art
protein complex prediction capabilities.

Background
Prediction of protein complexes from protein-protein
interaction (PPI) networks has become a key problem
for revealing cellular function and organization of bio-
logical systems in post-genomic era. In a cell, proteins
are central part of life activity. However, most of pro-
teins are functional only after they are assembled into a
protein complex which carry out almost all of the bio-
chemical, signaling and functional processes in a cell.
Protein complexes are of great importance for under-
standing the principles of cellular organization and
function [1–3].

With the development of high-throughput techniques,
such as yeast two-hybrid and mass spectrometry, a large
amount of PPI data has been generated [4, 5]. As a re-
sult, large-scale PPI networks have been constructed for
a wide range of organisms. Over the past decade, great
efforts have been made to detect protein complexes in
these PPI networks through the computational methods
[6–13]. Most studies on protein complexes prediction
have been focused on the static PPI networks [6]. Bader
and Hogue [7] propose the Molecular Complex Detec-
tion (MCODE) algorithm that is one of the first compu-
tational methods to predict protein complexes. Markov
Clustering (MCL) [8] can be applied to predict protein
complexes by simulating random walks in PPI networks.
Liu et al. [9] present a method called CMC (Clustering-
based on Maximal Cliques) which identifies protein
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complexes based on maximal cliques. Chen et al. [10]
propose a novel method using cliques as seeds and
graph entropy to detect protein complexes. Wu et al.
[11] present COACH algorithm to identify protein com-
plexes based on the core-attachment structural feature.
Since some proteins may belong to more than one pro-
tein complex, Nepusz et al. [12] propose ClusterONE
algorithm to detect the overlapping protein complexes
in a large PPI networks. In the past few years, some
studies have integrated more biomedical resources, such
as gene ontology (GO) and gene expression data, to im-
prove the performance of protein complexes prediction.
For example, Zhang et al. [13] integrate GO with PPI
data to construct the ontology attributed PPI networks,
and propose CSO algorithm to predict protein com-
plexes in large ontology attributed PPI networks.
However, these methods described above only focus

on the static PPI networks. In reality, the PPI network in
a cell is not static but dynamic, which is changing over
time, environments and different stages of cell cycles
[14]. Generally, modeling biology systems as static PPI
networks is a simple and efficient way to model biology
systems. But static PPI networks loses all the temporal
information which is critical to the understanding of the
interaction between proteins in a cell. Therefore, the
shift from static PPI networks to dynamic PPI networks
is essential to predict protein complex accurately.
There are mainly two ways to construct dynamic PPI net-

works based on gene expression data and high-throughput
PPI data. One major methodology to construct dynamic
PPI networks is based on gene expression variance of each
protein. In general, if a protein is at active time point, the
expression level of the corresponding gene is at the peak
point. Based on this assumption, Wang et al. [15] inject
gene expression data into static PPI networks to construct
dynamic PPI networks, and predict the protein complexes
and the essential proteins. As an alternative, several studies
have constructed dynamic PPI networks based on the dif-
ferential co-expression correlations. For instance, Taylor et
al. [16] observe multimodal distribution of correlation coef-
ficients of gene expression using curated sources from the
literatures. They analyze the human PPI networks and dis-
cover two types of hub proteins: intermodular hubs and
intramodular hubs. Similarly, Lin et al. [17] reveal dynamic
functional modules under conditions of dilated cardiomy-
opathy based on co-expression PPI networks.
Cellular systems are highly dynamic and responsive to

cues from the environment [18, 19]. Both proteins and PPIs
are changing over different stages of cell cycles. Therefore,
not only the gene expression variance information but also
the co-expression correlations information are necessary in
the construction of an accurate dynamic PPI networks. In
this study, we firstly integrate the two aspects to construct
a dynamic PPI networks that can accurately model the

dynamic processes in a cell. The active probability of both
proteins and PPIs are calculated based on gene expression
data and high-throughput PPI data. We then propose a
clustering algorithm to predict the protein complexes in dy-
namic PPI networks. Finally, our method is compared with
the state-of-the-art methods used for protein complex pre-
diction. The advantages of the method, potential applica-
tions and improvements are discussed.

Methods
Construction of dynamic PPI networks
The gene expression data is very valuable to reveal the
dynamic properties of proteins and PPIs. We integrate
gene expression data with high-throughput PPI data to
construct dynamic PPI networks. Based on gene expres-
sion data, we use both gene expression variance infor-
mation and co-expression correlations information to
calculate the active time point and active probability of
each PPI in dynamic PPI networks.
Since the gene expression level of a protein will decrease

after the protein has completed its function, different peak
time points of gene expression value may represent the
dynamic changes of protien activities. In general, a protein
is active at the time point, when its related gene expres-
sion value is at the high level. A simple idea is to use a sin-
gle global threshold for identifying the active time point of
each protein. If the gene expression value of a protein is
higher than the global threshold at a time point, the pro-
tein is active in the time point. Actually, it is very difficult
to use a global threshold to identify the active time point
of proteins. There are at least two reasons. On the one
hand, the expression level of different protein in activity
period is different. On the other hand, there is inevitable
background noise in gene expression data. To solve these
problems, Wang et al. [15] propose a three-sigma method
to identify active time points of each protein in a cellular
cycle. However, the active proteins with low expression
values are likely to be filtered out even though using an
active threshold for each gene. In this study, we calculate
the active probability of each protein at different time
points based on three-sigma method. We use equations
(1) to calculate the k-sigma (k = 1,2,3) threshold for each
gene expression data p.

ThreshkðpÞ ¼ αðpÞ þ k⋅σðpÞ⋅ 1−
1

1þ σ2ðpÞ
� �

ð1Þ

where α(p) and σ(p) are the arithmetic mean and the
standard deviation (SD) of the gene expression data p,
respectively. Threshk is determined by the values of α(p),
σ2(p) and k (the times of sigma). Let X be a real random
variable of normal distribution N(α, σ2). For any k > 0,
P{|X-α| < kσ} = 2Φ(k)-1, where Φ(.) is the distribution
function of the standard normal law. In particular, for k
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= 1,2,3 it follows that P{|X-α| < σ} = P{α-σ < X < α + σ} ≈
0.6827, P{|X-α| < 2σ} ≈ 0.9545 and P{|X-α| < 3σ} ≈ 0.9973.
Similarly, In the equation (1), the larger k is, the higher
Threshk gets. A higher value of Threshk indicates that
using more strict rules to identify the active time point
of a protein. Let Gi(p) be the gene expression value of
the gene p at the time point i. For instance, based on the
three-sigma rules, when Gi(p)> α(p) + 3 ⋅ σ(p), the prob-
ability that the protein p (product of gene p) is active at
the i time point is 99.7 %. But when Gi(p)> α(p) + σ(p),
the probability that the protein p (product of gene p) is
active at the i time point is only 68.3 %.
We use a column Pri to represent the active probability

of proteins at the time point i. Based on the above empir-
ical rules, the active probability Pri(p) of protein p at the
time point i can be calculated as follows:

Pri pð Þ ¼
0:99 if Gi pð Þ≥Thresh3 pð Þ
0:95
0:68
0

if Thresh3 pð Þ > Gi pð Þ≥Thresh2 pð Þ
if Thresh2 pð Þ > Gi pð Þ≥Thresh1 pð Þ

if Gi pð Þ < Thresh1 pð Þ

8><
>:

ð2Þ
Thus, we can use four levels (0.99, 0.95, 0.68 and 0) to

represent the active probability of each protein at the
time point i.If the value of Gi(p) is lower than Threshk(p),
the active probability is 0. It indicates that the protein p
is not active in the i time point, when Pri(p) is equal to
0. This method not only identifies the active time points
for each protein, but also distinguishes the active level of
the protein by its active probability, which is more rea-
sonable than both global threshold methods and active
threshold methods. But we also note that, in some ex-
treme cases, our method still cannot accurately identify
the active time points of proteins. The whole activity PPI
networks Acti are built for each time point:

Acti ¼ Pri Pri
T ð3Þ

where Pri is a column vector representing the activity of
all proteins at time i and Pri

T is the transpose of the col-
umn vector Pri.
Coexpression correlation coefficient is used as a measure

of coexpressed genes having the same expression variance
patterns across different conditions, which is a strong indi-
cator of protein functional associations. Zhang et al. use
the Pearson correlation coefficient (normalized to the
range of 0 to 1) to calculate the coexpression correlation of
gene expression data and build coexpression protein net-
works at different time points [20]. We use the same
method to calculate the coexpression protein networks
Coe. Coei denotes the coexpression protein networks Coe
at the time point i. Calculation of correlation coefficient re-
quires multiple sequential expression data that cover a
period of time. We set a time window on the original

expression data, which covers three sequential time points.
When i is the current time point, the time window covers
three time points including i-1, i and i + 1. We use a prede-
fined threshold to filter the small value of correlation coef-
ficient in Coei as follows:

Coei m; nð Þ ¼ PCorrelationi m; nð Þj j PCorrelationi m; nð Þj j≥Prethresh
0 PCorrelationi m; nð Þj j < Prethresh

�

ð4Þ
where P_Correlation(m,n) is the Pearson correlation coef-
ficient between the protein m and protein n at the time
point i. Pre_thresh is the predefined threshold, and we can
choose the optimal value for Pre_thresh by preliminary ex-
periments. In our experiments, we set Pre_thresh as 0.5.
The high-throughput PPI data can construct a static

PPI networks. Let adj_SPN denote the static PPI net-
works adjacency matrix. Integrating Act, Coe and
adj_SPN, we can calculate the dynamic PPI networks ad-
jacency matrix adj_DPN at the time point i as follows:

adjDPNi ¼ Acti∘Coei∘adjSPN ð5Þ

where ○ represents element-wise multiplication. Equa-
tion (5) integrates the topology information of static PPI
networks with the dynamic information of gene expres-
sion effectively. In respect of dynamic information,
Equation (5) takes into account the active probability of
each proteins as well as the coexpression correlation of
each PPI. Based on equation (5), we can calculate an
active probability for each PPI in the dynamic PPI net-
works at different time points. The value of active prob-
ability of each PPI takes ranges of 0 to 1.
Figure 1 shows an illustration example of the dynamic

PPI networks construction. In Fig. 1(a), we construct static
PPI networks based on high-throughput PPI data, which
don’t contain any temporal or dynamic information. In
Fig. 1(b), we exploit gene expression data to calculate the
active probability of proteins and the Pearson correlation
coefficient of PPIs, respectively. It can be seen that each
protein in the static PPI networks is associated with the ac-
tive time points and the active probability. Based on the
equation (2), the active probability of proteins only include
three values 0.99, 0.95 and 0.68. For instance, the protein v1
has two active time points (T1 and T3), and its active prob-
ability is 0.99 at T1 active time point. A PPI in the static
PPI networks (Fig. 1a) is active at the time point i, if the
two proteins associated with this PPI are both active at the
time point i. Then, we calculate the Pearson correlation co-
efficient between the two proteins at the active time point i.
In Fig. 1(b), “PPI1,8” denotes the PPI between v1 and v8, and
“-” denotes the Pearson correlation coefficient is lower than
the predefined threshold. In Fig. 1(c), to construct dynamic
PPI networks, we integrate the topology information
(Fig. 1a) of static PPI networks with the dynamic
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information (Fig. 1b) calculated based on gene expression
data. We use equation (5) to calculate the probability value
of each PPI in the dynamic PPI networks (Fig. 1c).

Protein complex prediction from dynamic PPI networks
Dynamic PPI networks can effectively represent not only
the topology structure but also the dynamic information
of PPI networks. A dynamic PPI network generally con-
sists of a serial of active PPI subnetworks. For example,
the dynamic PPI network in Fig. 1(c) consists of three
active PPI subnetworks. Let DPN denote a dynamic PPI
networks that includes Tk active PPI subnetworks
{DPNT1, DPNT2, …, DPNTk}. {adj_DPNT1, adj_DPNT2,
…, adj_DPNTk} is the adjacency matrices of the DPN at
T1,T2, …,Tk active time points. Given a subgraph SG in

an active PPI subnetworks DPNTi, let VSG and ESG de-
note the set of proteins and PPIs in SG, respectively.
The density of SG is defined as follows:

DensityTi SGð Þ ¼
2�

X
e u;vð Þ∈ESG

adj DPNTi u; vð Þ
VSGj j � VSGj j−1ð Þ ð6Þ

Given a subgraph SG in the active PPI subnetworks
DPNTi, a protein v in the active PPI subnetworks DPNTi,
and v∉VSG, the attached score between v and VSG in the
DPNTi, is given as:

AttachScoreTi v;VSGð Þ ¼
X

u∈VSG
adj DPNTi u; vð Þ
VSGj j ð7Þ

The edges in the active PPI subnetworks DPNTi contrib-
ute differently for protein complex prediction. The cluster
score of edge e(u,v) in DPNTi is defined as follows:

(a)

(c)

(b)

Fig. 1 An illustration example of dynamic PPI networks construction. a construction of static PPI networks based on high-throughput PPI data.
b calculation of dynamic information based on gene expression data. ATP, AP and PCC denote active time points, active probability and Pearson
correlation coefficient, respectively. c construction of dynamic PPI networks
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ClusterScoreTi e u; vð Þð Þ ¼ adjDPNTi u; vð Þ
� 2� Nu∩Nvj j þ 1ð Þ

Nuj j þ Nvj j ð8Þ

where Nu and Nv denote the neighbors of protien u and
protein v respectively. |Nu∩Nv | denotes the common
neighbors of u and v. In the respect of topology structure
of an active PPI subnetworks, the more common neigh-
bors u and v share, the closer the interaction of two pro-
teins u and v is. Cluster score can effectively balance the
effect between the topology closeness and the active prob-
ability of each PPI in the active PPI subnetworks.

A protein complex is a group of proteins assembled by
multiple PPIs at the same time and place [1, 21]. More-
over, some analysis of protein complexes has revealed
their core-attachment organization feature [22, 23]. Our
method for predicting protein complexes from a whole
dynamic PPI networks involves two phases. In the first
phase, our method predicts candidate protein complexes
from all active PPI subnetworks in turn. All candidate pro-
tein complexes are added into Candidate_complex. In the
second phase, our method filters the candidate complexes
set Candidate_complex to remove the highly overlapped
protein complexes.
The description of subroutine for detecting possible

protein-complex cores is shown in Algorithm 1. Firstly
our method calculates the Cluster_Score of all edges in
DPNTi based on equation (8). The edge will be added
into Seed_set, if its Cluster_Score is not less than

Complex_thresh that is a predefined threshold param-
eter. The effect of Complex_thresh will be discussed in
our experiments. Secondly, we rank all seed edges of
Seed_set in descending order of their Cluster_Score
value, denote as Seed_list = (S1, S2,…, Sn). The top ranked
seed edge S1 was then inserted into the Temp_Candida-
te_core set CORE and removed from Seed_list. We aug-
ment the seed edge S1 to generate the core structure by
adding the suitable neighbor proteins one by one at line
13-17. If the Density value of the core structure is not
less than Complex_thresh when adding the neighbor
protein p, it will be added into the core structure. To en-
sure that the core structure are non-overlapping, the
overlapped seed edges are removed from Seed_list at line
19-21. Finally, the attachment proteins are detected for
each core structure based on the Attach_Score that is
calculated by equation (7). The attachment proteins are
added into the core structure to form the candidate pro-
tein complex.
The candidate protein complexes in Candidate_complex

generally overlap with each other. The description of sub-
routine for postprocessing of overlapped protein complexes
is shown in Algorithm 2. All candidate protein complexes
are ranked in descending order of their Density value (Can-
didate_list = (cc1, cc2,…, ccn)) at line 2-5. The candidate pro-
tein complex associated with highest Density value in
Candidate_list is added into Complex_set and removed
from Candidate_list. For any other candidate protein com-
plex cci ∈Candidate_list, we check the overlapped degree
between cci and cc1. If the overlapped degree is larger than
the Overlap_thresh that is a predefined threshold param-
eter, cci is directly removed from Candidate_list at line 9-
12. After preliminary experiments, the Overlap_thresh is set
as 2/3 in our experiments. These steps are repeated until
Candidate_list is empty. Consequently, the final protein
complex set Complex_set is generated.

Results and Discussion
In this section, the datasets and evaluation metrics used in
the experiments are described. The impact of the Com-
plex_thresh parameter is assessed and discussed. Then,
our method is compared with current state-of-the-art
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protein complex prediction methods. Finally, we present
an example of predicted protein complex to illustrate the
advantages of our method. This implement of our algo-
rithm and the experimental datasets are avialable in the
Additional files 1, 2 and 3.

Datasets and evaluation metrics
In our experiments, we choose four high-throughput
yeast PPI datasets including Gavin dataset [23], Krogan
dataset [24], MIPS dataset [25] and STRING dataset
[26], respectively. In particular, STRING dataset is now
one of the largest PPI datasets, which integrates yeast
PPI data from the four sources, including high-
throughput data, co-expression data, genomic context
data and biomedical literature data. The statistics of the
four yeast PPI datasets is listed in Table 1.
The gene expression data used in our experiment is

GSE3431 [27] downloaded from Gene Expression Omnibus
(GEO). GSE3431 gene expression data is an expression pro-
filing of yeast by array affymetrix, which includes the ex-
pression profiles of 9,335 probes. The experimental design
of GSE3431 is 12 time intervals per cycle, and approxi-
mately 25 min per time interval. Therefore, there are 12
active time points (T1,T2,…,T12) for each gene in a cycle.
We construct four dynamic PPI networks to integrate high-
throughput PPI data and gene expression data. DPN_Gavin,
DPN_Krogan, DPN_MIPS and DPN_STRING are con-
structed by integrating gene expression data GSE3431 with
the Gavin dataset, Krogan dataset, MIPS dataset and
STRING dataset, respectively.
The benchmark protein complex dataset CYC2008

[28] includes 408 manually curated heterometric protein
complexes, which is used to evaluate the protein com-
plexes predicted by our method.
To assess the quality of predicted protein complexes,

we match generated complexes with the benchmark
complex set CYC2008. Let P(VP, EP) be a predicted com-
plex and B(VB, EB)) be a known complex. We define the
neighborhood affinity score NA(P,B) between P(VP,
EP)and B(VB, EB)) as follows:

NA P;Bð Þ ¼ VP∩VBj j2
VPj j � VBj j ð9Þ

If NA(P,B) is 1, it means that the identified complex
P(VP, EP) has the same proteins as a known complex
B(VB, EB). On the contrary, if NA(P,B) is 0, it indicates

no shared protein between P(VP, EP) and B(VB, EB). We
considered P(VP, EP) and B(VB, EB) to match each other
if NA(P,B) was larger than 0.2, which is the same as most
methods for protein complex identification [6].
Precision, recall and F-score have been used to evalu-

ate the performance in most of previous complex predic-
tion studies, which are defined as follows:

precision ¼ Nci
IdentifiedSetj j ð10Þ

recall ¼ Ncb
BenchmarkSetj j ð11Þ

F‐score ¼ 2precision⋅recall
precisionþ recallð Þ ð12Þ

where Nci is the number of identified complexes which
match at least one known complex, and Ncb is the number
of known complexes that match at least one identified
complex. Identified_Set denotes the set of complexes iden-
tified by a method and Benchmark_Set denotes the gold
standard dataset. Precision measures the fidelity of the
predicted protein complex set. Recall quantifies the extent
to which a predicted complex set captures the known
complexes in the benchmark set. F-score provides a rea-
sonable combination of both precision and recall, and can
be used to evaluate the overall performance. To keep our
evaluation metrics as the same as the most studies, we
choose F-score as the major evaluation metrics.
Recently, sensitivity (Sn), positive predictive value

(PPV) and accuracy (Acc) have also been used to evalu-
ate protein complex prediction tools. Acc represents a
tradeoff between Sn and PPV. The advantage of the geo-
metric mean is that it yields a low score when either Sn
or PPV are low. A high degree of accuracy thus requires
a high performance for both criteria. These definitions
have been described in detail by Li et al. [6]. In our ex-
periments, we also report Sn, PPV and Acc of our
method on different PPI datasets.

The effect of threshold parameters
In this experiment, we evaluate the effect of the threshold
parameter Complex_thresh for protein complex prediction
task on different dynamic PPI networks. As described in
Algorithm 1, the Complex_thresh determines the number
of seed edges in the Seed_set, as well as the Density value
of the core structure. The range of Complex_thresh is
from 0 to 1. We can choose the optimal value of Com-
plex_thresh by the experimental approach.
We first evaluate the effect of Complex_thresh on

DPN_Gavin. The detailed experimental results on
DPN_Gavin with different Complex_thresh are shown
in Table 2. The highest value in each row is in bold.
As shown in Table 2, the number of predicted protein

Table 1 The statistics of PPI datasets in experiments

High-throughput PPI data Proteins Interactions

Gavin dataset 1430 6531

Krogan dataset 2675 7080

MIPS dataset 3950 11119

STRING dataset 5970 99786
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complexes continues to decrease as the value of Com-
plex_thresh takes from 0 to 1. When Complex_thresh = 0,
our method can predict 623 protein complexes on the
DPN_Gavin. On the contrary, our method cannot predict
any protein complexes on the same DPN_Gavin when
Complex_thresh =1.0. Based on the equation (8), the Clus-
ter Score is smaller than 1 in theory. In other words, it is
impossible to generate any seed edge in Seed_set if we set
Complex_thresh =1.0. Overall, with the increase of Com-
plex_thresh, the recall, Sn and Acc are decreased in
Table 2. The precision achieves the highest value of 0.784
when Complex_thresh =0.7, and the PPV achieves the
highest value of 0.906 when Complex_thresh =0.9. The
major metrics F-score is ranged from 0.048 to 0.524.
When Complex_thresh =0.1, the F-score achieves the
highest value of 0.524.
Then, we evaluate the effect of Complex_thresh on the

DPN_Krogan and DPN_MIPS. The detailed experimental
results with different Complex_thres are shown in Tables 3
and 4. The experimental results of Complex_thresh on the

DPN_Krogan and DPN_MIPS are similar to the experi-
mental results on the DPN_Gavin. When Complex_-
thresh =0.1, our method achieves the highest F-score of
0.52 and 0.372 on the DPN_Krogan and DPN_MIPS,
respectively. Based on these experimental results on
three DPNs, it can be seen that our method can achieve
high performance for protein complex prediction by
setting Complex_thresh = 0.1.

Comparison with other methods
In this experiment, we compare our method with the
following established leading protein complex prediction
methods: CSO [13], Cluster ONE [12], COACH [11],
CMC [9], HUNTER [29], and MCODE [7] (Table 5).
These methods are used to compare the performance in
most of recent complex prediction studies. In this ex-
periment, we set Complex_thresh =0.1. To equally com-
pare the performance, we test all comparison methods
on the Gavin, Krogan and MIPS dataset, respectively,

Table 2 The effect of Complex_thresh on protein complex prediction performance on DPN_Gavin

Complex_thresh #Complexes P R F Sn PPV Acc

0 623 0.549 0.468 0.505 0.43 0.619 0.516

0.1 447 0.662 0.434 0.524 0.413 0.617 0.505

0.2 325 0.695 0.385 0.495 0.379 0.624 0.486

0.3 238 0.752 0.304 0.433 0.31 0.638 0.445

0.4 181 0.74 0.25 0.374 0.24 0.653 0.395

0.5 130 0.708 0.174 0.279 0.178 0.687 0.349

0.6 87 0.724 0.12 0.206 0.118 0.72 0.291

0.7 51 0.784 0.088 0.159 0.074 0.71 0.23

0.8 30 0.733 0.059 0.109 0.049 0.67 0.181

0.9 13 0.769 0.025 0.048 0.016 0.906 0.119

1 0 - - - - - -

F: F-score, P: precision, R: recall. The highest score of each row is shown in bold

Table 3 The effect of Complex_thresh on protein complex prediction performance on DPN_Krogan

Complex_thresh #Complexes P R F Sn PPV Acc

0 1246 0.388 0.691 0.497 0.488 0.673 0.573

0.1 816 0.464 0.591 0.52 0.448 0.677 0.551

0.2 546 0.526 0.512 0.519 0.401 0.685 0.524

0.3 353 0.598 0.363 0.451 0.316 0.685 0.465

0.4 223 0.619 0.255 0.361 0.217 0.705 0.391

0.5 144 0.632 0.181 0.282 0.149 0.721 0.328

0.6 97 0.608 0.115 0.194 0.101 0.777 0.279

0.7 52 0.673 0.071 0.129 0.061 0.78 0.219

0.8 37 0.595 0.059 0.107 0.04 0.781 0.177

0.9 15 0.533 0.025 0.047 0.015 0.857 0.112

1 0 - - - - - -

F: F-score, P: precision, R: recall. The highest score of each row is shown in bold
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Table 4 The effect of Complex_thresh on protein complex prediction performance on DPN_MIPS

Complex_thresh #Complexes P R F Sn PPV Acc

0 1895 0.239 0.681 0.353 0.413 0.608 0.501

0.1 1145 0.274 0.576 0.372 0.382 0.61 0.483

0.2 611 0.327 0.404 0.361 0.313 0.634 0.446

0.3 321 0.364 0.26 0.303 0.224 0.644 0.38

0.4 192 0.396 0.174 0.242 0.141 0.633 0.299

0.5 101 0.426 0.11 0.175 0.089 0.642 0.239

0.6 57 0.439 0.061 0.108 0.046 0.726 0.182

0.7 23 0.348 0.02 0.037 0.016 0.73 0.109

0.8 13 0.231 0.005 0.01 0.003 1 0.05

0.9 11 0.182 0.005 0.01 0.003 1 0.06

1 0 - - - - - -

F: F-score, P: precision, R: recall. The highest score of each row is shown in bold

Table 5 Performance comparison with other protein complex prediction methods

PPI data Methods #Complexes P R F Sn PPV Acc

Gavin data Our method 447 0.662 0.434 0.524 0.413 0.617 0.505

CSO 174 0.645 0.302 0.411 0.476 0.534 0.503

Cluster ONE 243 0.502 0.324 0.393 0.46 0.597 0.524

COACH 326 0.525 0.331 0.406 0.44 0.547 0.49

CMC 120 0.608 0.218 0.321 0.371 0.606 0.474

HUNTER 69 0.87 0.206 0.333 0.386 0.508 0.443

MCODE 66 0.727 0.142 0.238 0.277 0.513 0.377

Krogan data Our method 816 0.464 0.591 0.52 0.448 0.677 0.551

CSO 190 0.726 0.331 0.455 0.411 0.642 0.514

Cluster ONE 240 0.579 0.328 0.419 0.398 0.681 0.521

COACH 345 0.617 0.343 0.441 0.432 0.544 0.485

CMC 111 0.748 0.235 0.358 0.381 0.589 0.474

HUNTER 74 0.865 0.199 0.323 0.374 0.569 0.462

MCODE 76 0.724 0.157 0.258 0.255 0.583 0.385

MIPS data Our method 1145 0.274 0.576 0.372 0.382 0.61 0.483

CSO 192 0.495 0.289 0.365 0.286 0.568 0.403

Cluster ONE 256 0.359 0.23 0.281 0.243 0.668 0.403

COACH 448 0.301 0.289 0.295 0.336 0.311 0.323

CMC 168 0.429 0.211 0.283 0.389 0.318 0.352

HUNTER 52 0.654 0.11 0.189 0.296 0.286 0.291

MCODE 85 0.447 0.115 0.183 0.19 0.503 0.309

STRING data Our method 1240 0.324 0.586 0.417 0.836 0.404 0.581

Cluster ONE 893 0.151 0.245 0.187 0.846 0.459 0.623

COACH 1645 0.186 0.292 0.227 0.955 0.12 0.338

HUNTER 5 0.5 0.01 0.019 0.104 0.298 0.176

MCODE 393 0.092 0.09 0.091 0.675 0.242 0.405

#Complexes refers to the number of predicted complexes. F: F-score, P: precision, R: recall. The highest score of each approach is shown in bold
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and choose the optimal parameters. The highest value in
each row was shown in bold.
Firstly, we compare these methods on the Gavin data-

set. As shown in Table 5, our method achieves the high-
est F-score of 0.524, recall of 0.434 and PPV of 0.617,
respectively, which significantly outperforms other
methods. CSO achieves a high F-score of 0.411 and the
highest Sn of 0.476, which exploits the GO annotation
data to improve the performance of protein complexes
identification. HUNTER achieves the highest precision
of 0.87. But the recall of HUNTER is only 0.206, which
leads to a low F-score of 0.333. Cluster ONE achieve the
highest Acc of 0.524. We also note that our method can
predict more protein complexes than other methods.
For example, our method can predict 447 protein com-
plexes on the Gavin dataset. In contrast, MCODE and
HUNTER only identify 66 and 69 protein complexes on
the Gavin dataset, respectively.
Secondly, we compare these methods on the Krogan

dataset and MIPS dataset. On the Krogan dataset, it can
be seen that the results on the Krogan dataset are similar
to the results on the Gavin dataset. On the Krogan data-
sets, our method achieves the highest F-score of 0.52, re-
call of 0.591, Sn of 0.448 and Acc of 0.551. CSO also
achieves a high F-score of 0.455, which is only inferior
to our method. HUNTER and Cluster ONE achieve the
highest precision of 0.865 and PPV of 0.681, respectively.
On the MIPS datasets, our method also achieves the
highest F-score of 0.372, recall of 0.576 and Acc of
0.483, respectively. HUNTER, CMC and Cluster ONE
achieve the highest precision of 0.654, Sn of 0.389 and
PPV of 0.668, respectively.
Thirdly, we compared these methods on the STRING

dataset. STRING dataset is much larger than other three
PPI datasets, which contains 99786 PPIs. Due to the
complexity of the PPI network constructed by STRING
dataset, it is much more difficult to predict protein com-
plex on STRING dataset than other three datasets. From

Table 5, it can be seen that the major metrics F-score of
all comparison methods except for our method on
STRING dataset are clearly inferior to the F-score on
other three datasets. The compared experiments were
conducted on a 3.3GHz four-Core Intel I5 CPU and
8GB main memory. Actually, CSO and CMC methods
cannot output the results on STRING dataset, because
the clique mining algorithms used by the two methods
are very memory and CPU cycle consuming in such
large PPI networks. Compared with other methods, our
method firstly use STRING dataset and gene expression
data to construct a whole dynamic PPI networks
DPN_STRING which consists of 12 active PPI subnet-
works, {DPNT1, DPNT2, …, DPNT12}. Then, our method
predicts the protein complexes from these active PPI
subnetworks in turn. Since each active PPI subnetwork
is much smaller than the whole static PPI networks, our
method is more suitable to deal with very large PPI data-
set such as STRING than other methods. From Table 6,
it can be seen that the computational time of our
method is far less than other methods on STRING data-
set. In particular, our method can also achieve the high
F-score of 0.417 and recall of 0.586 on STRING dataset.
In summary, our method not only effectively integrates

gene expression data and high-throughput PPI data to
construct dynamic PPI networks, but also makes good

Table 6 Performance comparison in computational time

Methods Gavin data Krogan data MIPS data STRING data

Our method 1,624 ms 2,150 ms 3,487 ms 68,719 ms

CSO 173,562 ms 40,954 ms 215,476 ms >12 h

Cluster ONE 2,166 ms 3,154 ms 4,317 ms 183,634 ms

COACH 1,783 ms 1,207 ms 3,772 ms 3,351,694 ms

CMC 339 ms 1,397 ms 1,450 ms >12 h

HUNTER 172 ms 3,322 ms 5,451 ms 1,222,027 ms

MCODE 1,879 ms 1,985 ms 3,732 ms 785,616 ms

Fig. 2 RNA polymerase I complex predicted by our method on STRING dataset
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use of dynamic information of dynamic PPI networks to
improve the performance of protein complex prediction.
Our method is competitive or superior to the current
protein complexes identification methods, and achieves
the state-of-the-art performance on different yeast PPI
datasets.

Examples of predicted complexes
Figure 2 shows the RNA polymerase I complex predicted
exactly by our method on STRING dataset. Based on the
gene expression data and STRING dataset, our method
firstly calculates the protein dynamic information, and
then constructs the DPN_STRING. From Fig. 2, it can be
seen that all proteins of RNA polymerase I share the com-
mon active time point T7. This indicates that all these
proteins will be active in the active PPI subnetwork
DPNT7. Eventually, our method exactly predicts the RNA
polymerase I complex from the PPI subnetwork DPNT7

rather than from the whole PPI network. Furthermore,
this result suggests that the life period of the RNA poly-
merase I is at T7 time point. Compared with other
methods, our method can predict the RNA polymerase I
exactly from the very large PPI dataset STRING, as well as
the active time point of the complex.
In Fig. 3, we present some examples of the predicted

complexes which are not matched with the benchmark
dataset. We evaluate the biological significance of these
predicted complexes. In this experiment, we use SGD’s
GO::TermFinder to calculate the p-value of each pre-
dicted complex, which is the statistical significance of
the occurrence of an predicted complex with respect to

GO data. In general, an predicted complex is considered
to be statistically significant if the p-value is less than
0.01, and a smaller p-value generally represents higher
biological meaning. From Fig. 3, it can be seen that the
three ed complexes both have very low p-value and
highly local density. Therefore, the results provide clues
for biologists to verify and find new protein complexes.

Conclusions
We integrate gene expression data and high-throughput
PPI data to construct dynamic PPI networks. Based on
gene expression data, we calculate the active time point
and the active probability of each protein and PPI. Com-
pared with static PPI networks, dynamic PPI networks
can effectively represent both the dynamic active infor-
mation and the topology structure information of PPI
networks. Using dynamic PPI networks, we develop a
novel method for protein complex prediction. Experi-
mental comparisons on different PPI datasets show that
our approach achieves the state-of-the-art PPI perform-
ance. In the future, we will cooperate with biomedical
experts to further validate the protein complexes identi-
fied by our method. We will also attempt to apply our
method to analysis other organisms.

Additional files

Additional file 1: Source code for dynamic protein complexes
identification. This implement of our algorithm runs under Windows OS.
The main requirement is python 2.7 or later and numpy. (PY 19 kb)

Additional file 2: Krogan PPI data. (TXT 117 kb)

Additional file 3: GSE3431 gene expression data. (TXT 4397 kb)

Protein Complex 2 Protein Complex 3
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Bp: 6.22e-12
Mf: 5.85e-11
Cc: 3.94e-16

Protein Complex 1

Fig. 3 Examples of protein complexes predicted by our method
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