
SOFTWARE Open Access

SUSHI: an exquisite recipe for fully
documented, reproducible and reusable
NGS data analysis
Masaomi Hatakeyama1,2, Lennart Opitz1, Giancarlo Russo1, Weihong Qi1, Ralph Schlapbach1 and Hubert Rehrauer1*

Abstract

Background: Next generation sequencing (NGS) produces massive datasets consisting of billions of reads and up
to thousands of samples. Subsequent bioinformatic analysis is typically done with the help of open source tools,
where each application performs a single step towards the final result. This situation leaves the bioinformaticians
with the tasks to combine the tools, manage the data files and meta-information, document the analysis, and
ensure reproducibility.

Results: We present SUSHI, an agile data analysis framework that relieves bioinformaticians from the
administrative challenges of their data analysis. SUSHI lets users build reproducible data analysis workflows
from individual applications and manages the input data, the parameters, meta-information with user-driven
semantics, and the job scripts. As distinguishing features, SUSHI provides an expert command line interface
as well as a convenient web interface to run bioinformatics tools. SUSHI datasets are self-contained and
self-documented on the file system. This makes them fully reproducible and ready to be shared. With the
associated meta-information being formatted as plain text tables, the datasets can be readily further
analyzed and interpreted outside SUSHI.

Conclusion: SUSHI provides an exquisite recipe for analysing NGS data. By following the SUSHI recipe,
SUSHI makes data analysis straightforward and takes care of documentation and administration tasks. Thus, the
user can fully dedicate his time to the analysis itself. SUSHI is suitable for use by bioinformaticians as well as life
science researchers. It is targeted for, but by no means constrained to, NGS data analysis. Our SUSHI instance is in
productive use and has served as data analysis interface for more than 1000 data analysis projects. SUSHI source code
as well as a demo server are freely available.

Keywords: Data analysis framework, Reproducible research, Meta-level system design

Background
Today’s bioinformatics faces the practical challenge to
analyze massive and diverse data in a well documented
and reproducible fashion. The situation is particularly
challenging in the area of NGS research where state-of-
the-art algorithms are frequently available as standalone
tools and where a complete data analysis consists of
many individual data processing and analysis steps. The
considerations associated with conducting such a data

analysis in a research environment have been discussed
by W. S. Noble [1] and guidelines as well as an example
strategy for organizing computational data analysis have
been given. According to Noble a key principle is to
record every operation such that reproducibility is
ensured.
In this paper, we present SUSHI, which does

Support Users for SHell-script Integration, a new ap-
proach to bioinformatics analysis that is centered on
reusability, reproducibility and scalability. SUSHI
produces analysis results as directories that are fully
self-contained and hold all the information to be
reproduced. Specifically, we document all parameters,
input data, commands executed, as well as the

* Correspondence: hubert.rehrauer@fgcz.ethz.ch
1Functional Genomics Center Zurich, ETH Zurich/University of Zurich,
Winterthurerstrasse. 190, 8057 Zurich, Switzerland
Full list of author information is available at the end of the article

© 2016 Hatakeyama et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Hatakeyama et al. BMC Bioinformatics (2016) 17:228
DOI 10.1186/s12859-016-1104-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1104-8&domain=pdf
mailto:hubert.rehrauer@fgcz.ethz.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

versions of the tools and the reference data used.
Additionally, we store meta-information on the ex-
perimental data together with the result files, so that
those can be interpreted and further analyzed by
other tools independently from SUSHI. This holds
even if the analysis directory is transferred to collabo-
rators with a different computing environment.
SUSHI is extendable and we have put special em-
phasis on the simplicity of adding new software appli-
cations. A bioinformatician can define them within a
single file and does not need special programming
skills. SUSHI natively offers a command line interface
as well as a web interface to run data analysis steps.
Altogether, SUSHI lets bioinformaticians efficiently
build analysis pipelines and ensures that analysis re-
sults are ready-to-be-shared and reproducible.
Various types of data analysis frameworks have

already been implemented. They can be essentially
divided into web-based frameworks and scripting
frameworks. Examples for web-based frameworks are
Galaxy [2], Chipster [3], GeneProf [4] or GenePattern
[5]. They let users run individual steps or entire pipe-
lines on a remote compute system with the framework
keeping track of the executed analysis. Scripting
frameworks like bpipe [6], Ruffus [7], nestly [8],
NGSANE [9], Makeflow [10], and Snakemake [11], let
users build bioinformatics pipelines in a command
line fashion. Given the different types of user interac-
tions, the former solutions are more targeted for the
experienced biologists or the application-oriented
bioinformaticians while the latter address the needs of
bioinformaticians who are more inclined to program-
ming and high-throughput analysis of many datasets.
However, there is no system as yet that natively offers
both interfaces. Additionally, none of the existing
frameworks puts an emphasis on having a human-
readable and portable file-based representation of the
meta-information and associated data.

Implementation
SUSHI data sets and applications
Within SUSHI, the original measured data as well
as any derived analysis result is modeled as a data
set that is represented as a fully self-sufficient dir-
ectory on the file system. For the original data this
means that it must be accompanied by meta-
information on how the data has been measured.
The meta-information must include information on
the biological samples used as well as information
on the measurement process. For analysis results
this implies that the analysis result files must have
accompanying meta-information that documents the
input data, the analysis steps, and the analysis pa-
rameters. If these requirements are satisfied, we call

this a dataset. Figure 1 shows schematically how a
dataset is generated as the result of running a
SUSHI application. The meta-information associated
with a dataset is represented in SUSHI as a DataSet
object. On the file system a tabular file called data-
set.tsv represents the dataset. Examples of meta-
information are characteristics like sample name,
species, tissue, but also e.g. the genome build that
has been used for read alignment. Each characteris-
tic is represented as a separate column in the tabu-
lar dataset.tsv.
A SUSHI application requires as input both a set of

parameters and a DataSet object. This means that ap-
plications do not take bare data files as direct input.
Instead, SUSHI applications take as input the Data-
Set meta-information object. The DataSet object
holds, next to the data files, the meta-information
necessary to process and interpret the data files.
Based on its input, a SUSHI application first gener-
ates 1) the necessary job script(s), 2) a file represen-
tation of the parameters, and 3) the DataSet for the
output data (Fig. 1 Step 1). The actual result data
file(s) are generated by the job script(s) (Fig. 1 Step
2). The columns of the output DataSet hold again
the meta-information, which now include addition-
ally the parameters of the executed analysis if rele-
vant for the further analysis or interpretation. The
set of characteristics that is added to the annotation
columns is defined and generated by the SUSHI ap-
plication. The SUSHI framework itself does not re-
quire any specific annotation columns. Thus, the
semantics of the DataSet columns are determined
by the SUSHI applications (described in detail in
the next section).
Every column of meta-information has a unique

header that identifies the content, and optional tags
that characterize the information type in the
column. Tags are represented as comma-separated
strings within square brackets in the column
headers. Currently supported tags are File, Link,
Factor, and Characteristics. Depending on the tags,
the SUSHI framework provides appropriate actions
for the corresponding columns. The File tag is re-
served for actual file paths, and SUSHI checks if
the file actually exists. If a column has a Link tag,
SUSHI will automatically add a hyperlink to the
data. Finally, the Factor column data will be used
to group samples according to experimental factors,
which is typically required in a differential gene ex-
pression analysis.

Example DataSet holding RNA-seq reads
We follow the convention that sequencing read files are
represented as a DataSet with the following columns:

Hatakeyama et al. BMC Bioinformatics (2016) 17:228 Page 2 of 9

� Name: the name of the sample measured.
� Read1 [File]: path to the file holding the reads; if

reads are paired-end, this must be the first read.
� Adapter1: potentially contaminating adapter

sequence at the 3′-end of read 1.
� Read2 [File]: path to the second read for paired-end

data (only for paired-end data).
� Adapter2: potentially contaminating adapter

sequence at the 3′-end of read 2 (only for
paired-end data).

� Species: the species of the sample.
� StrandMode: specifies whether the library

preparation protocol preserved strand
information.

� Enrichment Kit: the kit employed to enrich
the input material (e.g. poly-A selection kit)

� Read Count: the number of reads in the file.

Additionally, there can be columns that specify
experimental factors. Table 1 shows an example (due
to space constraints only a subset of the columns is
shown).

It is important to mention here that the SUSHI
framework does not impose any constraints or se-
mantics on the columns of the DataSet table. It is
up to the user to identify which meta-information
is relevant for his data. In particular, we do not re-
quire specific ontologies or controlled vocabularies.
Users are free to define their own meta-information.
The content definition and interpretation is entirely
delegated to the user and the SUSHI applications.
Figure 2a shows how the above DataSet is visual-
ized in the SUSHI DataSet view.

Example SUSHI application performing a FastQC report
A common task is to generate a FastQC report [12]
for each sample in a read data set. If the fastqc
package is installed one would run e.g.

which creates the FastQC report mut1_R1_fastqc.zip
for the first sample in the above data set. With the

Table 1 A sample DataSet

Name Read [File] Species Genotype [Factor]

Mut1 P1001/ventricles/mut1_R1.fastq.gz Mus musculus Mutant

Mut2 P1001/ventricles/mut2_R1.fastq.gz Mus musculus Mutant

Wt1 P1001/ventricles/wt1_R1.fastq.gz Mus musculus Wildtype

Wt2 P1001/ventricles/wt2_R1.fastq.gz Mus musculus Wildtype

Example of a sequencing read DataSet where a subset of the meta-information is shown as annotation columns. The DataSet includes four samples with four cat-
egories of meta-information, 1. Name, 2. Read, 3. Species, and 4. Genotype. Each column header can have a tag. E.g. [File] means the column holds file locations,
and [Factor] means the values represent an experimental factor. The DataSet object is implemented as an Array of Hash objects in the SUSHI system and it can be
imported from or exported to tab-separated-value file

Fig. 1 The use case of DataSet generation. By running a SUSHI application with an input DataSet and parameters, a new DataSet is generated.
Initially (Step 1) only the meta-information, the parameter file, and the job scripts are generated. The actual data files and the log files are gener-
ated by executing the static job scripts (Step 2)

Hatakeyama et al. BMC Bioinformatics (2016) 17:228 Page 3 of 9

SUSHI framework this can be turned into a SUSHI
application defined by the following Ruby code:

The example code shows the essential features of a
SUSHI application (See also Additional file 1). The
@required_columns tells the SUSHI framework which
columns a DataSet must have so that FastqcMinimal is
applicable. In Fig. 2a, all applications that are compatible
with the example reads data set are shown at the bot-
tom, including the FastqcMinimal application. The
@params['cores'] defines the number of cores to be used
for multi-threading as a parameter with default value 4.

This parameter is automatically turned into an input
field in the web interface (see Fig. 2b. The code also de-
fines with the method next_dataset the columns and
content for the resulting DataSet. Finally, the method
commands defines the command to be executed.
The SUSHI framework automatically performs admin-

istrative tasks such as putting the resulting file in the
correct directory and managing the log files The full re-
sult directory is available as Additional file 2. A second
example is the example for TopHat mapping [13] in
Additional files 3 and 4. Both examples are for the illus-
trative purpose kept minimal. In real world application
one would define additional parameters, support paired-
end reads, and so on.
A list of all SUSHI applications that is in use at the

Functional Genomics Center Zurich is available as
Additional file 5 or on the SUSHI demo server:
http://fgcz-sushi-demo.uzh.ch/sushi_application.

SUSHI applications are meta-process objects
Conceptually, a SUSHI application is a meta-process
that generates an actual application (shell script). The
entire data analysis functionality is contained within the
shell script. For example, for a read alignment applica-
tion, the job script contains the call to the aligner. If a
SUSHI application is suitable only for a certain data
type, it defines requirements on the input data. The re-
quirements are specified as mandatory DataSet columns
that an input dataset must have. The SUSHI framework
guarantees that applications are only available for com-
patible DataSets. At run time the SUSHI application
defines the columns of the resulting DataSet it will

Fig. 2 The screenshots of a DataSet and parameter setting view. a DataSet view shows basic information of the DataSet, sample
information, and the compatible SUSHI applications at the bottom. The SUSHI application is shown as a button and categorized based
on the @analysis_category defined in the SUSHI application Ruby code. b After selecting a SUSHI application, the parameter setting view
lets users modify the analysis parameters. According to the SUSHI application definition, GUI components are auto-generated and placed
in the view

Hatakeyama et al. BMC Bioinformatics (2016) 17:228 Page 4 of 9

http://fgcz-sushi-demo.uzh.ch/sushi_application

produce. With this meta-process modeling approach,
the applications define the semantics of the meta-
information without referring to other applications but
only to DataSet content. Finally, from the input data and
the parameters provided, the core method of a SUSHI
application builds the command lines as a shell script
that will eventually produce the output. The shell script
can call other scripts or tools on the execution server.
The only constraints for tools are

� Must be runnable from command line.
� Must not require interactive input at run time.
� Result must be representable as a file, or a set of

files in a directory.

The framework cares about job execution, data file
placement and cleanup of temporary data. Technically, a
SUSHI application is implemented in a single Ruby file
as a single Ruby class that takes over the SUSHI applica-
tion super class using the template method design pat-
tern (see Additional file 6).

SUSHI architecture follows meta-level design
SUSHI consists of three modules that are implemented
in Ruby: 1) The SUSHI application module, as discussed
above. 2) A Workflow Manager that performs job execu-
tion either on a local host or on a grid or cloud environ-
ment. 3) The SUSHI server that relies on Ruby on Rails
and provides the web front-end. The SUSHI server dele-
gates the core function of generating a job script to the
SUSHI application, and the SUSHI application commu-
nicates with the Workflow Manager for job submission.
SUSHI relies heavily on Ruby meta-programming in that
the executable code is dynamically generated at run
time. During the code execution, all graphical compo-
nents are dynamically generated based on the SUSHI ap-
plication. This process follows the basic principles of
Ruby on Rails: DRY (Don’t Repeat Yourself) and CvC
(Convention over Configuration). Namely, SUSHI appli-
cation serves as the data source for the generation of the
graphical components of the GUI. As a consequence
every data analysis that is implemented as a SUSHI
application is directly available in the web front-end
of the SUSHI server. The implementation of a SUSHI
application does not need any web development
knowledge, so that the bioinformatician can focus on
data analysis aspects.

Installation
The SUSHI server is implemented in Ruby on Rails and
can be installed in one step including all dependencies.
The default installation uses the WEBrick web server
application and SQLite3 database management system.
Alternatively, SUSHI can be configured to run using an

Apache web-server and a MySQL backend. For more de-
tails, please refer to README.rdoc in the source reposi-
tory, https://github.com/uzh/sushi.

Results and discussion
Use case RNA-seq data analysis
A commonly used minimal workflow in RNA-seq data
analysis consists of the steps:

1. Map Reads with STAR aligner [14].
2. Compute expression values with the featureCounts

function (Rsubread [15]).
3. Detect differential expressed genes with edgeR [16].

Figure 3a shows a representation of the generated
datasets in SUSHI. The tree at the top indicates the hier-
archical relationship and the bottom list shows the time-
line of the generated data sets. Every data set is derived
from its parent by running an application. Figure 3b
shows visualizations that are generated by the last step,
the assessment of differential expression between the
wild-type and mutant samples in the data set. The scat-
ter plot and the heat map indicate the significant genes
and visualize the expression profiles. As with every
SUSHI dataset, this result including all visualizations is
downloadable and ready for offline use.

Comparison with existing systems
We compare SUSHI to similar bioinformatics frame-
works (Table 2 and Additional file 7). A main distinc-
tion of the various frameworks is whether they have a
graphical user interface (GUI) or a command line inter-
face (CLI). The majority of CLI systems is implemented
as an extension of a programming language or imple-
mented in a domain specific language (DSL), and tar-
geted for bioinformaticians with programming skills.
The GUI systems are implemented as web applications
with a variety of components and functions. Their in-
stallation and configuration is more complex relative to
CLI systems but their usage does not require program-
ming skills, so that they are targeted towards biomed-
ical researchers.
Chipster [17] is designed as a GUI application and

it does not have CLI or batch process mode, so that
a user must run an application one by one manually.
GenePattern [5] and Taverna [18]) provide both GUI
and CLI. These systems are designed for GUI usage
but provide also command-line access through special
clients with an application programming interface
(API). The SUSHI application model on the other
side is designed for command line usage, and the web
front-end is auto-generated using the Ruby on Rails
meta-process.

Hatakeyama et al. BMC Bioinformatics (2016) 17:228 Page 5 of 9

https://github.com/uzh/sushi

In terms of reproducibility and documentation, CLI
systems tend to have the entire analysis information
in a single text file while GUI systems come with a
relational database management system (RDBMS) that
provides this and additional functionality. Generally,
the framework itself is required to run an application or
workflow again to reproduce results. Different from that
SUSHI provides the inherent advantages of GUI systems
but still generates a set of human-readable shell scripts file
that contain all the processing information and can be run
independent of SUSHI (see the scripts in Additional files 1
and 3). In essence, SUSHI conveniently ensures full

documentation and high reproducibility but is not needed
to reproduce the analysis results.

Representation of meta Information
Accurate and high quality meta-information is necessary
for the interoperability and integration of different data
sources. However even 10 years after the minimal
information about microarray experiment (MIAME)
[19] guidelines have been established there is no con-
sent how this should be implemented. This can be
seen from the fact that different repositories and con-
sortia use different implementations. Examples are the

Table 2 Various types of workflow management systems are compared

System UI Language Application Meta-info. Reproducibility Documentation

Galaxy GUI Python Workflow editor Generating Workflow Galaxy file (.ga)

Chipster GUI Java Workflow view None Workflow Chipster file (.bsh)

GeneProf GUI Java Workflow designer None Workflow Image file

GenePattern GUI,CLI Java Additional module None Pipeline GenePattern library

Taverna GUI,CLI Java,Scufl Plugin Three types Workflow Workflow file

TOGGLE CLI Perl Text file None Perl script Text file

bpipe CLI Goovy,Java bpipe script None bpipe script bpipe script

NGSANE CLI Bash Text file None trigger.sh Text file

nestly CLI Python Python script None nestrun Python script

Snakemake CLI Python Build file None snakemake Build file

Ruffus CLI Python Python script None Python script Python script

Makeflow CLI C Makeflow Language None Makeflow script Workflow script

SUSHI GUI,CLI Ruby Ruby script tsv format Shell script Shell script

The systems are described by several features. The systems are categorized into two types by the user interface types, either GUI or CLI. Most systems have a
proprietary format to save a workflow definition. More details are available in the Result section and in Additional file 7

Fig. 3 The screenshots of DataSet list and a part of a result generated by the edgeR SUSHI application. a The DataSets are listed with a tree view
(top) and table view (bottom). In the tree view, each node indicates a DataSet and the parental node indicates the input DataSet for the child
node. b Visualizations form the differential expression result the edgeR SUSHI application. We show a scatter plot with significantly differential
expressed genes red-colored (left) and clustered heatmap (right). All calculated data is downloadable from this view

Hatakeyama et al. BMC Bioinformatics (2016) 17:228 Page 6 of 9

GEO SOFT [20], Sequence Read Archive (SRA) XML
[21], ENCODE [22], modENCODE [23], and ISA-TAB
[24]. Given this situation, we decided that SUSHI
should not implement its own constraints on meta-
information. It is up to the data providers to decide,
for example, which meta-information fields are pro-
vided and whether they are filled with free text, con-
trolled vocabularies or terms from an ontology.
SUSHI simply makes sure that the meta-information
is preserved and that the analysis results are linked to
the source data and accompanying meta-information.
It goes without saying that we always encourage to
use controlled vocabularies and ontologies wherever
possible.

Productive use and user acceptance
SUSHI is in productive use at the Functional Genomics
Center Zurich and has been used to analyze NGS data
in more than 1000 projects. A publicly available instance
is placed at http://fgcz-sushi-demo.uzh.ch. The product-
ive instance is integrated with the project and data man-
agement system B-Fabric [25, 26] that handles projects,
users, generated data, and access control. Currently we
have implemented applications that support NGS ana-
lysis workflows for RNA-seq, small RNA-seq, ChIP-seq,
de novo assembly, genotyping and variant analysis. The
number of submitted jobs using SUSHI has been con-
stantly increasing. Figure 4 shows the monthly submitted
jobs at the Functional Genomics Center Zurich since
2013 which has reached now up to 5000 submitted jobs
per month.
We have introduced SUSHI step-wise at the Func-

tional Genomics Center Zurich. Initially, we supported
only the most frequently used analyses such as RNA-seq
and SNP calling, and subsequently we supported other

applications like small RNA-seq, ChIP-seq and de novo
assembly. SUSHI was readily adopted by the bioinforma-
ticians because they had an immediate direct net benefit
without a compromise on the flexibility in terms param-
eter choices. SUSHI development was driven and shaped
by direct user feedback, which also broadened the
acceptance.

Advanced separation of SUSHI concerns
The separation of concerns (SoC) is a software design
principle in computer science [27]. It is now widely
accepted and adopted in a variety of computer sys-
tems and software design such as object oriented pro-
gramming and modularity of software design. The
Model-View-Controller (MVC) design pattern is a
typical example of separation of concerns for better
software maintainability. The meta-level design is one
type of advanced separation of concerns (ASoC) be-
yond object-oriented which can be seen in recent
software paradigms such as generic programming,
generative programming, and meta-programming. For
example, the reflection architecture in Pattern-Oriented
Software Architecture (POSA) [28] separates a system into
meta-level and base-level and by controlling a meta-level
it triggers a change at the base-level that actually provides
a service to a user.
The current situation of the common NGS data ana-

lysis, such that several independent software applications
are combined and chained to produce a final result, pre-
sents the two following main aspects: 1) which applica-
tions are used, and 2) how they are actually used. SUSHI
separates these aspects (concerns) into a meta-process
with meta-information (SUSHI application and DataSet
object) and a base-process (shell scripts that do the data
analysis). This separation of concerns results in the loose

Fig. 4 The number of submitted jobs using SUSHI at the Functional Genomics Center Zurich. It has been increasing since 2013 and now more
than 5000 jobs are submitted on SUSHI at the Functional Genomics Center Zurich

Hatakeyama et al. BMC Bioinformatics (2016) 17:228 Page 7 of 9

http://fgcz-sushi-demo.uzh.ch

coupling of SUSHI into its system level and user applica-
tion level. This improves the independence of SUSHI ap-
plications and shell scripts.

Conclusions
SUSHI targets both biologists and bioinformaticians
as users. Analyzing data with SUSHI does not require
programming skills, while adding new SUSHI applica-
tions requires only basic experience in writing scripts
using the syntax of shell, R, Python, Ruby, or similar.
SUSHI is particularly attractive to data analysis ex-
perts and bioinformaticians. SUSHI relieves users
from administrative burdens and aids documentation
and data organization. The full flexibility of the
underlying tools stays untouched and can be directly
accessed. Additionally, the fact that datasets are fully
defined on the file system lets users prototype new
workflows without the need to integrate those in the
SUSHI instance. Finally, experts can automate data
analysis tasks with the command line interface and
are not limited to the web interface.
The design of the SUSHI system is driven by the idea

of having analysis results fully defined and self-contained
on the file system. In fact, if SUSHI is shut down, all the
results can still be used and interpreted. All the meta-
information is available in human readable tabular
formats and all job scripts are contained with no back
reference to the SUSHI framework. SUSHI provides no
Laboratory Information Management System (LIMS) or
computing functionality. Instead, through its open archi-
tecture it readily integrates with existing LIMS systems
and computing resources.
In one solution, SUSHI provides at the same time fully

documented, high level NGS analysis tools to biologists
and an easy to administer, reproducible approach for
large and complicated NGS data to bioinformaticians.
This is mostly obtained by using the meta-level system
design. Bioinformaticians will be freed from the boring
tasks of managing software application and documenta-
tion and they can focus more on method development
and on data analysis itself. The separation of the Work-
flow Manager from the SUSHI server makes the adapta-
tion to any kind of computing facility easy and leaves
the possibility to scale up.
The meta-level system design gives the simple but

powerful framework of no data representation: SUSHI
fully delegates the definition of dataset semantics to
the user. The SUSHI system itself only defines how
meta-information is used in a SUSHI application. It
yields portability of datasets and lowers the barrier to
reuse data and augment human readability of data set
meta-information. The meta-level system design pro-
duces the decoupling of the meta-process from the
base application process, which increases the degrees

of freedom on the user side and contributes to the
flexibility and scalability of the system.

Availability and requirements

� Project name: SUSHI.
� Project homepage: https://github.com/uzh/sushi.

The demo installation is available at http://fgcz-sushi-
demo.uzh.ch.

� Operating system(s): Platform independent but we
recommend Unix-like system such as Ubuntu Linux
and MacOS X.

� Programming language: Ruby (> = 1.9.3).
� Other requirements: Ruby on Rails (> = 3.2.9, < 4.0).
� License: MIT.

For the RubyGems library dependency, please refer to
the Additional file 8, Gemfile.lock, which is also included
in the Git repository.

Additional files

Additional file 1: An example of minimal SUSHI application to generate
FastQC job script. (RB 658 bytes)

Additional file 2: The result dataset produced by the FastQC SUSHI
application written as Additional file 1. (TGZ 706 kb)

Additional file 3: An example of SUSHI application to generate TopHat
job script. (RB 2 kb)

Additional file 4: The result dataset produced by the TopHat SUSHI
application written as Additional file 3. (TGZ 2223 kb)

Additional file 5: List of SUSHI application. (XLS 5 kb)

Additional file 6: Class diagram of SUSHI application. (PNG 61 kb)

Additional file 7: Comparison of workflow management systems.
(XLS 35 kb)

Additional file 8: List of required RubyGems library. It is bundled in the
SUSHI source code as Gemfile.lock. (TXT 4 kb)

Abbreviations
API, application programming interface; ASoC, advanced separation of
concerns; ChIP-seq, chromatin immunoprecipitation and next-generation
DNA sequencing; CLI, command line interface; CvC, convention over
configuration; DRY, don’t repeat yourself; DSL, domain specific language;
GUI, graphical user interface; LIMS, laboratory information management
system; MIAME, minimum information about a microarray experiment;
MVC, model-view-controller; NGS, next generation sequencing; RDBMS,
relational database management system; RNA-seq, RNA sequencing; SoC,
separation of concerns; SRA, sequence read archive.

Acknowledgements
We would like to kindly thank the members of the IT and Genomics/
Transcriptomics groups at the Functional Genomic Center Zurich for useful
discussions and suggestions. Additionally we would like to thank all users for
their valuable feedback.

Funding
No funding was obtained for this study.

Hatakeyama et al. BMC Bioinformatics (2016) 17:228 Page 8 of 9

https://github.com/uzh/sushi
http://fgcz-sushi-demo.uzh.ch/
http://fgcz-sushi-demo.uzh.ch/
dx.doi.org/10.1186/s12859-016-1104-8
dx.doi.org/10.1186/s12859-016-1104-8
dx.doi.org/10.1186/s12859-016-1104-8
dx.doi.org/10.1186/s12859-016-1104-8
dx.doi.org/10.1186/s12859-016-1104-8
dx.doi.org/10.1186/s12859-016-1104-8
dx.doi.org/10.1186/s12859-016-1104-8
dx.doi.org/10.1186/s12859-016-1104-8

Availability of data and material
Source code: https://github.com/uzh/sushi.
Public demo installation: http://fgcz-sushi-demo.uzh.ch.

Authors’ contributions
HM and HR mainly wrote the manuscripts and all authors reviewed and
revised the manuscripts. MH developed the core part of SUSHI system,
namely SUSHI server, Workflow Manager, and SUSHI application super class.
HR, LO, GR, and WQ validated the system and developed SUSHI applications.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Author details
1Functional Genomics Center Zurich, ETH Zurich/University of Zurich,
Winterthurerstrasse. 190, 8057 Zurich, Switzerland. 2Department of
Evolutionary Biology and Environmental Studies, University of Zurich,
Winterthurerstrasse. 190, 8057 Zurich, Switzerland.

Received: 20 February 2016 Accepted: 26 May 2016

References
1. Noble WS. A quick guide to organizing computational biology projects.

PLoS Computational Biology. 2009;5:e1000424.
2. Goecks J, Nekrutenko A, Taylor J, Galaxy Team. Galaxy: a comprehensive

approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biology. 2010;11:R86.
doi:10.1186/gb-2010-11-8-r86.

3. Fisch KM, Meißner T, Gioia L, Ducom J-C, Carland TM, Loguercio S, Su AI.
Omics Pipe: a community-based framework for reproducible multi-omics
data analysis. Bioinformatics (Oxford, England). 2015;31:1724–8. doi:10.1093/
bioinformatics/btv061.

4. Halbritter F, Vaidya HJ, Tomlinson SR. GeneProf: analysis of high-throughput
sequencing experiments. Nature Methods. 2012;9:7–8. doi:10.1038/nmeth.
1809.

5. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0.
Nature Genetics. 2006;38:500–1. doi:10.1038/ng0506-500.

6. Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running and managing
bioinformatics pipelines. Bioinformatics (Oxford, England). 2012;28:1525–6.
doi:10.1093/bioinformatics/bts167.

7. Goodstadt L. Ruffus: a lightweight Python library for computational
pipelines. Bioinformatics (Oxford, England). 2010;26:2778–9.
doi:10.1093/bioinformatics/btq524.

8. McCoy CO, Gallagher A, Hoffman NG. nestly—a framework for running
software with nested parameter choices and aggregating results.
Bioinformatics (Oxford, England). 2013;29:387–8. doi:10.1093/
bioinformatics/bts696.

9. Buske FA, French HJ, Smith MA, Clark SJ, Bauer DC. NGSANE: a lightweight
production informatics framework for high-throughput data analysis.
Bioinformatics (Oxford, England). 2014;30:1471–2. doi:10.1093/
bioinformatics/btu036.

10. Yu L, Moretti C, Thrasher A, Emrich S, Judd K, Thain D. Harnessing
Parallelism in Multicore Clusters with the All-Pairs, Wavefront, and Makeflow
Abstractions. Journal of Cluster Computing. 2010;13:243–56.

11. Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow engine.
Bioinformatics (Oxford, England). 2012;28:2520–2. doi:10.1093/
bioinformatics/bts480.

12. Andrews S. FastQC: a quality control tool for high throughput sequence
data. 2010.

13. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biology. 2013;14:R36.

14. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics (Oxford, England).
2013;29:15–21.

15. Liao Y, Smyth GK, Shi W. The Subread aligner: Fast, accurate and scalable
read mapping by seed-and-vote. Nucleic Acids Research. 2013;41(10).
doi:10.1093/nar/gkt214.

16. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2009;26:139–40.

17. Kallio MA, Tuimala JT, Hupponen T, Klemelä P. Chipster: user-friendly
analysis software for microarray and other high-throughput data. BMC
Genomics. 2011;12. doi:10.1186/1471–2164–12–507.

18. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al.
The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Research.
2013:W557–61. doi:10.1093/nar/gkt328.

19. Edgar R, Barrett T. NCBI GEO standards and services for microarray data.
Nature Biotechnology. 2006;24:1471–2.

20. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,
Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang
N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for
functional genomics data sets–update. Nucleic Acids Research. 2013;
41(Database issue):D991–5.

21. NCBI Resource Coordinators. Database resources of the National Center for
Biotechnology Information. Nucleic Acids Research. 2016;44:D7–D19.

22. Hong EL, Sloan CA, Chan ET, Davidson JM, Malladi VS, Strattan JS, et al.
Principles of metadata organization at the ENCODE data coordination
center. Database: The Journal of Biological Databases and Curation. 2016;
2016:baw001. doi:10.1093/database/baw001.

23. Washington NL, Stinson EO, Perry MD, Ruzanov P, Contrino S, Smith R, Zha
Z, Lyne R, Carr A, Lloyd P, Kephart E, McKay SJ, Micklem G, Stein LD, Lewis
SE. The modENCODE Data Coordination Center: lessons in harvesting
comprehensive experimental details. Database. 2011;2011:bar023.

24. Sansone S-A, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, Fang
H, Neumann S, Tong W, Amaral-Zettler L, Begley K, Booth T, Bougueleret L,
Burns G, Chapman B, Clark T, Coleman L-A, Copeland J, Das S, de Daruvar A,
de Matos P, Dix I, Edmunds S, Evelo CT, Forster MJ, Gaudet P, Gilbert J,
Goble C, Griffin JL, Jacob D, et al. Toward interoperable bioscience data.
Nature genetics. 2012;44:121–6.

25. Türker C, Stolte E, Joho D, Schlapbach R. B-fabric: A data and application
integration framework for life sciences research. In: Sarah Cohen-Boulakia
VT, editor. Data integration in the life sciences, vol. 4544. Berlin Heidelberg:
Springer; 2007. p. 37–47. doi:10.1007/978–3–540–73255–6_6 [Lecture Notes
in Computer Science].

26. Türker C, Akal F, Joho D, Schlapbach R. B-Fabric: An Open Source Life
Sciences Data Management System. Berlin Heidelberg: Springer; 2009. p.
185–90. doi:10.1007/978–3–642–02279–1_13.

27. Dijkstra EW. Selected Writings on Computing: A Personal Perspective. New
York: Springer; 1982. p. 60–6.

28. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-Oriented
Software Architecture, a System of Patterns. Chichester, UK: Wiley
Publishing; 1996.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Hatakeyama et al. BMC Bioinformatics (2016) 17:228 Page 9 of 9

https://github.com/uzh/sushi
http://fgcz-sushi-demo.uzh.ch/
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1093/bioinformatics/btv061
http://dx.doi.org/10.1093/bioinformatics/btv061
http://dx.doi.org/10.1038/nmeth.1809
http://dx.doi.org/10.1038/nmeth.1809
http://dx.doi.org/10.1038/ng0506-500
http://dx.doi.org/10.1093/bioinformatics/bts167
http://dx.doi.org/10.1093/bioinformatics/btq524
http://dx.doi.org/10.1093/bioinformatics/bts696
http://dx.doi.org/10.1093/bioinformatics/bts696
http://dx.doi.org/10.1093/bioinformatics/btu036
http://dx.doi.org/10.1093/bioinformatics/btu036
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1093/nar/gkt214
http://dx.doi.org/10.1186/1471�2164�12�507
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1093/database/baw001
http://dx.doi.org/10.1007/978%E2%80%933%E2%80%93540%E2%80%9373255%E2%80%936_6
http://dx.doi.org/10.1007/978%E2%80%933%E2%80%93642%E2%80%9302279%E2%80%931_13

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	SUSHI data sets and applications
	Example DataSet holding RNA-seq reads
	Example SUSHI application performing a FastQC report
	SUSHI applications are meta-process objects
	SUSHI architecture follows meta-level design
	Installation

	Results and discussion
	Use case RNA-seq data analysis
	Comparison with existing systems
	Representation of meta Information
	Productive use and user acceptance
	Advanced separation of SUSHI concerns

	Conclusions
	Availability and requirements
	Additional files
	show [c]
	Acknowledgements
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Ethics approval and consent to participate
	Author details
	References

