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Abstract

Background: Non-Negative Matrix factorization has become an essential tool for feature extraction in a wide
spectrum of applications. In the present work, our objective is to extend the applicability of the method to the case of

missing and/or corrupted data due to outliers.

Results: An essential property for missing data imputation and detection of outliers is that the uncorrupted data
matrix is low rank, i.e. has only a small number of degrees of freedom. We devise a new version of the Bregman
proximal idea which preserves nonnegativity and mix it with the Augmented Lagrangian approach for simultaneous
reconstruction of the features of interest and detection of the outliers using a sparsity promoting £1 penality.

Conclusions: An application to the analysis of gene expression data of patients with bladder cancer is finally

proposed.
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Background

Non-Negative Matrix Factorization (NMF) is a very effi-
cient approach to feature extraction in machine learning
when the data is naturaly non-negative. It has been applied
to an extremely large range of situations such as clustering
[1], email surveillance [2], hyperspectral image analysis
[3], face recognition [4], blind source separation [5], etc.
It has recently also been applied to microarray data anal-
ysis [6] and biomedicine [7]. Given a dataset consisting
of 1 vectors x1, . .., %, in R%, the NMF approach builds a
matrix M whose columns are x1,...,x, and then factor-
izes this matrix as

M = UV'+E,
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where E is an error term, U and V are componentwise
non-negative, and U has a small number of columns. The
features are the columns of U. They are often interpretable
and summarize the data in an efficient manner since each
data then consists of a mixture of these columns. For many
real datasets, the rank of the obtained matrix, i.e. the num-
ber of features extracted, is usually small and the NMF
thus provides a compact representation of the data.

The method was first explored by Lee and Seung [8] in
the late 90’s and it then enjoyed a significant growth of
interest in many application fields and especially machine
learning. There exists a wide variety of methods for com-
puting the NMF. One most employed strategy is the
famous alternating minimization scheme, which consists
in successively minimizing in U and then in V. Notice that
minimization in U (resp. V) is a convex and easy optimiza-
tion problem. Furthermore, it has been observed as quite
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efficient in practice. The main drawback of this approach
however, is that no convergence garantee towards a global
minimizer has been proved so far. Moreover, handling the
nonnegativity constraints appears to be cumbersome is
certain settings and the convergence speed of the method
depends on the way these constraints are incorporated
into the iterations. The work described in is [9] is a very
interesting contribution to the study of potential convex-
ifications for the NMF problem. It uses certain separa-
bility assumptions. Separability is the property that the
features are some data vectors already belonging to the
sample. Following shortly after, [10] proposed an efficient
approach based on linear programming which also relied
on separability. Recently, under similar assumptions, [11]
proposed a very simple approach based on successive pro-
jections. When separability holds the above algorithms are
the methods of choice for NMF. Unfortunately, separabil-
ity does not hold in very important cases, and there is
still a lot of work to do in order to understand the per-
formance guarantees of the existing algorithms for NMF.
Back to the not necessarily separable case, [12, 13] pro-
posed Bregman divergence based iterative methods for
NME. Bregman-divergence based proximal approaches
have been the subject of great interest recently due to
good practical performances and connection with mirror
descent type algorithms (see for instance the survey [14]).

In the present article we devise a Bregman-proximal
method for NMF naturally extends to the case where some
data may be missing and/or corrupted by the occurrence
of outliers. Missing data and outliers are very frequent in
gene expression data. Our approach also borrows ideas
from robust PCA [15], where the matrix we want to
approximate is assumed to be splittable into a low rank
part and a sparse part:

M = L+S.

The outliers are represented by the matrix S. Notice that
the noise was not taken into account in the original arti-
cle [15], whereas gene expression dataset are often cor-
rupted by very large noise. This is easily overcome by
performing least squares penalized estimation as in e.g.
the code GoDec [16]. In the present work, an efficient
method is proposed that denoises the data, estimates the
missing values, and identifies the outliers in M via non-
negative low-rank + sparse + noise matrix factorization.
Our algorithm is inspired by the recent work [17], which
presents a clear interpretation of the ADMM in terms
of proximal method-type iterations. In our approach, a
Bregman divergence is chosen for the proximal scheme
which allows to easily take into account the nonnegativity
constraints.

In the next section, the Bregman proximal scheme is
presented and in the subsequent Section, a version tak-
ing into account potential outliers and/or missing data
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is described in full details. The choice of the relaxation
parameter is also addressed. An application to the analysis
of gene expression data of patients with bladder cancer is
proposed in the last Section.

Method

A Bregman proximal scheme for non-negative matrix
factorization

Let & be a strictly convex real valued function. Assume
that % is continuously differentiable and defined on a
closed convex set C. Then, for all x,y € C, the Bregman
divergence associated to / is given by

Dy(y,%) = h(y) — h(x) — (Vh(x), (y —x)).  (0.1)
The space alternating Bregman-proximal scheme

In this section, we will consider the following Bregman-
proximal algorithm, which alternates minimization in the
variable U and minimization in the variable V:

2
U argmingega M- uv S|+ o0y (1, u®)

(0.2)

M — kD foi + oDy (V, V)
(0.3)

kD argming, cgaxn

where Dy (.,.) is the Bregman’s divergence associated with
h(x) = xIn(x), so we obtain
x
Dy(y,x) = xIn <> +y—x (0.4)
y

and p is a positive constant. Let us consider the problem

1 12 u
i _ — (O (k)
argmingjegaxr HM uv HF +p (Ll In ( (k))
(0.5)

The gradient of ¢ (U) is given by
Vo) = —(M —UVHV.

Let us now compute the gradient of ¢ (U) defined by
o) = DU, Uu®). A straightforward computation

gives
a u;;
Yan=m(7).
8Uij L[il.
Therefore, taking one step in our Bregman-penalized
subpace method sums up to solving

U
t if
M-UVHV =p ln(k>.

i
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Since no explicit solution to this decoupled system of
equations, we will use a fixed point approach defined as
follows.

1. Take y*+10) — (y(®
2. VI e N*, define

1
ul§k+1,z+1) — exp < [( M — kLD Vt) V] )
o i)
+InUf).
(0.6)

3. Stop when the difference between two successive
iterates is sufficiently small, e.g., less that le-3.
Denote by [* the iteration number when this occurs
and output L*+D = (y*k+11),

The iterate V&+D can be obtained from V* using the
same approach. The corresponding optimization problem
associated to step k + 1 is

. Liage wr||? (k) v
argminy cgnxr 7 HM - vu ”F—}—p V¥ 1n V)

- (v-v®)).

A toy numerical experiment

We start with a simple random example programmed in
Matlab. Let Uy be a random matrix in R?%*8 with ii.d.
components having the uniform distribution on [0, 1]. Let
Vo be a random matrix in R7°*® with components hav-
ing the same distribution. Take M = Uy V{, p = 100, and
random initial matrices. Figure 1 shows that the method
converges to M in the sense that it produces a sequence
of matrices /® and V% whose product /X V&' con-
verges to M.
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Fig. 1 Evolution of the error M — URV®' a5 k goes from 1 to 100 on
arandom example
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At this point, we can see on a toy example that the
method converges, but it is obviously not proven in the
general case. However, the present state of knowledge in
the analysis of numerical algorithms for NMF is still lacu-
nary and the case of outliers is therefore even more out of
reach for the moment. The only case where a method has
been proposed that finds an optimal solution in polyno-
mial time is the case of separable data (see [18]). We were
not able to prove that the assumptions are satisfied by our
data set. Proving convergence of the method to a station-
ary point is not convincing either for practical purposes
and is out of scope for the present study. To our opinion,
and in view of the state of the art, showing a nice behavior
of the algorithm in a toy example can be a sufficient prac-
tical evidence that the method has a stable behavior, which
is what the practitioners want to know before going into
more details. The convergence analysis of the algorithm
will be studied in a later project and we hope to obtain a
more precise theoretical understanding in a near future.

The case of outliers and missing data

Let ©2 denotes the set of couples (i, j) for which an observa-
tion of M;; is available. The matrix factorization problem
can be addressed by considering the following optimiza-
tion problem

) 1 £y, 2
pmin o) (= WVt + 2SI (07)
(i) e
subject to
M=Y+S, (0.8)

with [|S]|; = Zl«,j |S,'j , and X is a relaxation parameter
whose value is discussed in Section 6.

The augmented Lagrange function
The Lagrange function L(Y, S, U, V, A) for our problem is
equal to:

1
5 2 Wig= @V +20Slh + 3 Ay(My — Yy = Sp).
(i)eQ (i))eQ
(0.9)

In order to enforce the constraint M;; = Yj; — Sj; for all
(i,)) € Q, we introduce the following augmented Lagrange
function

1

LY, S, U, V, N =L(Y,S,U,V)+p = > (Mj—Y;j—Sp?.
(W)€

(0.10)

We now introduce an Alternating Direction Method of
Multipliers. This method consists of solving iteratively in
all the variables one after the other, and then updating the
dual variable. For this purpose, we compute in the next
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subsections the optimum value for the problem of mini-
mizing the augmented Lagrange function with respect to
each variable.

Individual minimization subproblemsin Y, S, U, and V
Minimization with respecttoY.

The problem reduces to minimizing the function of the
variable Y given by

1
5 25— @V + D0 Aj(My — Y = Sp)
ij (i,)e

Fos Y Wy Yy - sp?
()€

Let us denote by Y* a solution to this problem. We have to
consider two cases separately: either (i,j) € 2, or (i,)) ¢
Q. The case (i, /) ¢ 2 is obvious, since it is straightforward
to check that Y; = (UV? ij is a solution. Setting the partial
derivative to zero gives the result of the case (i,j) € Q. To
summarize, we obtain

745 UV + A + p(My — Sp), if(i,)) €
i = (0.11)
(UV?);jotherwise.
Minimization with respect to S.
We have to minimize the function of S given by

1 2

IS+ D AgMy=Yy=Sp+p5 ) (My—Yy—Sp*
(i,))eQ (ij)e

(0.12)

This can be performed by optimizing each component of
S independently of the other. As for the case of minimizing
with respect to Y, we distinguish between two cases, while
if (i,j) ¢ Q2 one easily checks that S;; =0.If (5,)) € Q, we
will use the following result.

Theorem 0.1. The solution to

1 2
min —(y —x)° + XA |x|

0.13
xeR 2 ( )
is given by
y=r if y>h
=3 y+r if y<A (0.14)

0 otherwise.

Based on this result, we easily obtain

—Mij-i-Yzj-l-Ai;’—%,lf—Mij-i-Yij—i-Alj > 2,

0
Si=1 —Mj+ Y+ A+ %,if—Mi,‘—F Yii+ Ay < %,
0 otherwise.
(0.15)
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Minimization with respect to Uand V.
We just have to use the fixed point subroutine given by
(0.6).

Our Bregman proximal-type ADMM
We will choose the starting values as follows. Set L/©,
VO, AO 5O =0, Set

0
¥

My vaj e

imputation by the mean over all other observed values row ;, V(i, /) ¢ Q.

Note that mean imputation is a widely used approach
for dealing with missing data. This is also the most
basic one. One of the most efficient method for miss-
ing data is the proposal of [19]. However, this latter
is based on standard multivariate analysis. It does not
take into account the nonnegativity of the data, and it
does not address the joint problem of extracting relevant
features.

The Bregman-Proximal point ADMM is then given by

1. SetS =80, =u®,v=v® A =A% and
obtain Y*+1 = y* given by (0.11),

2. SetY = Y*D 17 = y®, v = y®O A = A® and
obtain S&+D = §* given by (0.15),

3. SetY = Y*+D § = gk+D 11 = 170 A = )® and
obtain /**1) using the fixed point method (0.6)

4. Sety = y*k+D g = skt — (kD A = A®
and obtain J**1 using the fixed point method (0.6).

5 Set AKFD = AD L M-y —§

Choosing the value of A

The choice of the parameter X is crucial for the good
performances of the proposed method. We performed a
selection of A using the following approach.

1. Propose an a priori range of values for A such that its
maximum values leads to S equals the null matrix at
optimality.

2. For each value of 1, select a set S of s entries chosen
uniformly at random in M and consider them as
missing data temporarily.

(a) Find the solution of (0.7), where the missing
data incorporate the set of entries which were
artificially declared as missing in the previous
step.

(b) Compute the average squared error on the
data artificially declared as missing. Denote
this quantity by err;.

3. Select A in the prescribed range as the one which
minimizes the average squared error err;.
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Results

Description of the data

In this section, we apply our method to bladder cancer
expression data. The number of new patients affected by
bladder cancer in 2013 attained 10,000 in France, thus
improving the diagnosis of bladder cancer is a Public
Health priority. Determining the genes responsible for
bladder cancer would undoubtedly permit to design an
efficient and adapted set of medical treatments.

First of all the treatment should depend on the advance-
ment of the tumor. For this purpose, researchers have
gathered important gene expression data and the corre-
sponding state of the malignant tumor in the bladder of
100 patients in the Lyon region (France), as described
in [20]. The prospective multicentre study has been per-
formed between September 2007 and May 2008, it for-
merly included 108 bladder tumours (45 pTa, 35 pT1 and
28>pT1). In this study, 34 genes have been selected from
the lists provided by the Biometric Research Branch class
comparison analyses. For this purpose, researchers have
gathered important gene expression data and the corre-
sponding state of the malignant tumor in the bladder of
100 patients in the Lyon region (France), as described
in [20]. From the lists of genes provided by the Biomet-
ric Research Branch class comparison analyses [19], the
microarray results of 34 selected differentially expressed
genes were analyzed for validation using real-time quanti-
tative PCR in other bladder tumour cohort.

From the statistical perspective, the data can be ana-
lyzed using PCA, cluster analysis, and polytomic logistic
regression. However, due to the noisy nature of the data
together with the presence of outliers and missing data,
such methods fails in producing interesting results. For
instance, the usually very efficient sparse principal com-
ponent analysis returns contradictory number of features
when the alpha sparsity controlling parameter ranges

Page 627 of 643

from O to 0.5, see Fig. 2. Our approach in this section is to
use Non-negative Matrix Factorization in order to jointly
take into account the data’s intrinsic non-negative nature
and the necessity of clustering the data by performing effi-
cient feature extraction. One of the main challenges in the
study of such data sets is to take into account possible out-
liers. For the bladder cancer dataset, some outliers have
been observed by using standard PCA visualization, thus
enforcing the need to automatically detect such phenom-
ena in order to avoid subsequent misinterpretations of the
genes’ respective influences on the tumor state.

The data array consists of one first column providing the
tumor state. The next 34 columns provide the expression
of 34 genes. The array has 100 lines which correspond to
the number of patients. There are two principal classes of
tumors:

e TVNIM : noninfiltrating tumors;
e TVIM :infiltrating tumors.

The tumor states have been classified into the following
groups:

Ta : noninfiltrating tumor in Urothelium;
T'la : noninfiltrating tumor in Urothelium and parts
of the chorion;

e T1b : noninfiltrating tumor in Urothelium and the
full chorion;

e > T1:infiltrating tumor.

In the standard classification, the last group of the list
incorporates states 72 to T4b.

Experimental results

The ADMM algorithm was run on the experimental
data. Using such an elaborate feature extraction method
can be justified by the fact that existing methods fail to

nb of features

1
0.0 0.1 0.2

Fig. 2 Sparse PCA fails in finding relevant number of features

0.3 0.4 0.5
alpha
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Fig. 3 The average squared prediction error on the artificially
declared as missing entries as a function of —1 — 2/5 x log(1/50)

achieve this extraction. The choice of A in our method was
obtained using the strategy described in Section 6. The
result obtained by this strategy is depicted in Fig. 3.

Based on the optimal choice of A, the algorithm perfor-
mances and the estimation results are depicted in Figs. 4
and 5.

The first subplot of Fig. 4 represents the matrix S after
convergence, while the second subplot is the matrix V*.
The third subplot, for its part, represents the distance
in Frobenius norm between two successive iterates of A.
Finally, the fourth subplot represents the evolution of the
relative error between M and its NMF (/® ®)"
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Figure 5 shows the cluster index in each subgroup “pTa’,
“pT1a’, “pT1b’, and “more serious than pT1” (i.e., “>pT1”).
We see a sort of continuous drift in these cluster indices
from pTa to >pT1. Indeed,

e pTa mostly consists of 3 subgroups indexed by
{17 4, 6}:
pT1la mostly consists of 3 subgroups indexed by {4, 5};
pT1b mostly consists of only one group, which is {5};
finally, >pT1 mostly consists of 5 subgroups indexed
by {2,3,5,7,8}.

The intersection of the index subsets between two adja-
cent states is always a singleton, up to a discarded minor-
ity of individuals. The cluster indexed by 5 appears at
medium to serious levels. The lowest level is characterized
by cluster 6 while the most serious level is character-
ized by the more significant appearance of clusters 2,3,7
and 8.

Comparison using a Gaussian mixture model selection

The problem of choosing the number of clusters K a pri-
ori is a difficult one. This is usually done by comparing the
penalized maximum likelihood values for different values
of K and choosing the maximum one. Model selection can
be performed too using the Bayesian Information Crite-
rion (BIC). This criterion is the opposite of the maximum
likelihood value penalized with log(n) x the number of
real parameters to estimate.

10
20
30
10 20 30 40 S0 60 70 80 380 100
I | B | l | | El
. | FI |ii l;u || Jl'l u l‘
E :D.I [ ]
[} | n B {
10 20 30 40 50 60 70 80 a0 100
0.02 . . . . .
0.01 K -
0 1 L 1 1 1
0 100 200 300 400 500 600
l T T T T T
0S5 1
0 1 1 1 1 1
0 100 200 300 400 500 600

Fig. 4 The factorization and convergence curves. The first subplot is S after convergence. The second subplot is V!. The third subplot, shows the
distance between two successive iterates of A. The fourth subplot shows the relative error between M and its NMF UR " 55 3 function of

iteration number
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Fig. 5 Cluster index for each group of patients. Subplot 1 corresponds to pTa, subplot 2 to pT1a, subplot 3 to pT1b, and subplot 4 to > pT1

The first attempt on raw data failed to provide any useful
information, due to outliers and missing data. This crite-
rion has then been applied on the gene expression part
of our denoised array, to determine the best way to clus-
ter the set of genes. The number of mixture components
has ranged from 1 to 29, and at each time the Bayesian
information criterion for the current model fit has been
computed (more precisely, for pretty prints, the logarithm
of x — minBIC, where minBIC is the smallest obtained
BIC). As can be seen in obtained plot depicted in Fig. 6,
the criterion has not provide any obvious result when con-
sidering the whole data. However, applying it on the 3
principal components of the denoised data emphasizes
that the optimal number of clusters is 4, as previously.
Such a result were encouraging, as we have 4 tumor states
in the array. We then have performed a PCA on the raw
data while colorizing each of the 4 clusters provided by the

Gaussian mixture model. Obtained results are depicted
in Fig. 7, they are coherent with the tumor state of each
patient, and with results obtained in the previous section.

Some more precise investigations should now be per-
formed in order to understand the biological meaning of
these clusters, i.e., to understand the factors of gravity in
this cancer.

Conclusion

In this article, a new way to find a relevant dictionary
for extracting the relevant features in a given dataset has
been presented, in an original context of missing values
and outliers. The well-known Non-negative Matrix Fac-
torization (NMF) method has been extended on denoised
data, where missing values have been guessed and outliers
have been detected, leading to a mixture of Bregman prox-
imal methods and the of Augmented Lagrangian scheme.

0 5 10 15 20 25 30

(a) Using all components

Criterion (BIC) for northing ones

Fig. 6 Determination of the optimal number of clusters in denoized data: number of clusters for easting values and (log of) Bayesian Information

(b) On the 3 principal components
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-1.0 -1.2 14 -0.7

(b) Second view
Fig. 7 PCA on raw data, colorized according to their cluster provided by the GMM

Finally, an application to the analysis of gene expression
data of patients with bladder cancer has been provided for
illustration purpose.
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