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Abstract

Background: Comparative analysis of whole genome sequence data from closely related prokaryotic species or
strains is becoming an increasingly important and accessible approach for addressing both fundamental and
applied biological questions. While there are number of excellent tools developed for performing this task, most
scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation.

Results: We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and
high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome
sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein
family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven
tools and databases. While most existing methods scale quadratically with the number of genomes since they rely
on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology
assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables
DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the
modular structure of the pipeline permits easy updates as new analysis programs become available.

Conclusion: DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of
genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome
sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently,
the software package accompanies script for automated installation of necessary external programs on Ubuntu
Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external
programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/.

Keywords: Comparative genomics, Prokaryotes, Gene prediction, Gene annotation, Ortholog identification,
Functional annotation, Pan genome, Core genome, Flexible genome

Background
Advances in next-generation sequencing technology have
revolutionized the field of comparative genomics and en-
abled researchers to gain much greater resolution and
insight into questions related to genome plasticity, mo-
lecular epidemiology, and evolution and diversity among
closely related species and strains [1–5]. A wide range of
powerful tools have been developed to help researchers

perform whole genome comparisons; however, it is often
difficult to automate these analyses [6–8]. The problem is
exacerbated when dealing with draft genomes, since pre-
dictive and comparative analyses are often not designed to
work with fragmented genes that arise due to sequencing
or assembly errors [9]. Consequently, it is usually prudent
to use multiple methods that employ different underlying
algorithms to minimize the occurrence of false positive or
negative results due to algorithm bias or sequencing and
assembly errors [10]. While using multiple approaches en-
hances robustness, it also introduces another set of prob-
lems related to the integration of tools that more often
than not rely on disparate data formats and structures.
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Perhaps the biggest challenge faced during compara-
tive genomic analysis is that most analysis approaches
do not scale well when faced with hundreds of genomes.
There is very high computational complexity associated
with the management and analysis of large genomic
datasets. The majority of comparative analytical ap-
proaches rely on pairwise sequence comparisons, which
result in a quadratic relationship between the number of
genomes analyzed and the computational time [11–13].
Such computational complexity is often a bottleneck for
large-scale genome analysis projects [14]. It is also be-
coming increasingly impractical to reanalyze an entire
genome database every time new strains are added. As
these databases expand to include thousands of strains
researchers will need the ability to iteratively add new
genomes without reanalyzing the entire existing
collection.
Given these challenges to large-scale comparative gen-

omic analysis, we reasoned that a new approach might be
needed that can reduce the complexity of automated pre-
diction and annotation, streamline the analysis of large
numbers of draft whole genome sequences, and permit it-
erative analysis. To achieve these goals, we developed the
de-novo genome analysis pipeline (DeNoGAP), which in-
tegrates existing tools for prokaryotic gene prediction,
homology prediction, and functional annotation for both
intraspecific and interspecific genome comparison. Im-
portantly, it employs an iterative clustering method to
identify homologs and novel gene families using hidden
Markov models. The iterative clustering process dramatic-
ally reduces the computational complexity of large-scale
genome comparisons. DeNoGAP also creates SQLite da-
tabases to store analyzed genomic information and pro-
vides a graphical interface explorer for browsing and
comparison of the predicted information between mul-
tiple genomes. DeNoGAP provides a modular architecture
that will allow researchers to perform large-scale com-
parative analysis, generate and test the hypothesis, and
create a well-annotated genome database for data analysis
and exploration.

Implementation
Pipeline organization
DeNoGAP is a command line tool built using Perl
scripting language for analysis of complete and draft
prokaryotic genome sequences. The pipeline performs
four primary analysis tasks: gene prediction, functional
annotation, ortholog prediction, and pan-genome analysis.
DeNoGAP works for both intraspecific (single species)
and interspecific (multiple species) genome comparisons,
although it was largely envisioned for the former.
A top-level execution script controls the flow of the

pipeline by managing the input parameters and calling
the modules necessary for executing different analysis

phases. Most of the analysis phase except the iterative
comparison step can run independently of other phases,
provided appropriate parameters and data files are de-
fined in the configuration file given as input to the
main execution script. The output(s) from each ana-
lysis steps are parsed and stored in a relational SQLite
database for result management and post-processing
(Fig. 1, Additional file 1: Figure S1, Table 1).

Input data
DeNoGAP take four input parameters from the com-
mand line: (1) user-defined table of organism metadata
(e.g. time and place of isolation, host, etc.); (2) directory
path where SQLite database should be created; (3) name
of the SQLite database; and (4) configuration file that
defines options for processing input genomic data and
performing analysis.
DeNoGAP can process genomic data from multiple

formats including: GenBank files, fasta formatted gen-
ome sequences (chromosome, plasmid or contig), pro-
tein sequences, or coding gene sequences. DeNoGAP
parses GenBank files and extracts gene coordinates,
functional annotations, and sequence information for
the genomes. If the input genomic data is in the form of
a multi-fasta formatted genome sequence, DeNoGAP
predicts gene coordinates and coding and protein se-
quences using methods described in “Genomic feature
prediction” section.
DeNoGAP requires seeding with one or more refer-

ence genomes to identify the initial genomic features
and sequences that form the basis for later comparative
analyses and functional annotations. Although any gen-
ome sequence can act as a seed, we recommend using
one or more fully closed and well-annotated genome
when possible since annotations carry forward through
the analysis. Draft genomes can also be used as seeds
when necessary. While these will likely have poorer
quality gene predictions and annotations, this will not
affect homolog clustering in later steps.
DeNoGAP stores the protein and coding sequences

and genomic feature information for all genomes into
the SQLite database prior to any downstream analysis.
Additional genomes can be added to the analysis at any
time. DeNoGAP appends new genomic data into the
existing SQLite database and performs iterative compari-
son of new data with the existing information from pre-
viously analyzed genomes. The data is accessible via a
basic graphical user interface (GUI).

Genomic feature prediction
DeNoGAP predicts coding gene sequences from pro-
karyotic genome sequences using four gene prediction
programs: Glimmer, GeneMark, FragGeneScan, and
Prodigal [15–18]. Glimmer, GeneMark, and Prodigal use
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self-trained data to predict genes while FragGeneScan
use sequencing error and codon usage models to predict
genes in fragmented genome assemblies. The gene pre-
diction results from all four programs are combined and
parsed to identify reliable gene candidates. Predicted
open read frames (ORFs) are considered reliable if they

are recovered by at least two programs, and the longest
ORF is selected when the methods disagree. In some
cases, gene prediction algorithms predict ORFs that
overlap with one another over a few bases. To avoid pre-
dicting a large number of genes with overlapping and re-
peated sequences, DeNoGAP by default considers ORFs

Fig. 1 Schematic of the DeNoGAP analysis pipeline. Parallelograms represent input data. Rectangles indicate processes. Cylinders represent
databases. The reference genome is used to initiate the construction of HMMs and seed the annotations. While any genome can be used as the
reference genome, the use of a well-annotated finished (closed) genome is preferred

Thakur and Guttman BMC Bioinformatics  (2016) 17:260 Page 3 of 18



with more than 15 bases overlap as a single ORF. The
threshold value for the overlap region can be defined by
the user in the configuration file.
Gene sequences predicted by only a single program

may be the result of algorithm error or bias, and

therefore require further verification before including in
the compiled set of reliable gene candidates. ORFs pre-
dicted by a single program are verified by BLAST against
the UniProtKB/SwissProt database [19]. Singleton ORFs
(occurring in only one strain) are also verified by

Table 1 List of software and databases incorporated in the DeNoGAP pipeline

Program Names Website Reference

Gene Prediction

Glimmer http://ccb.jhu.edu/software/glimmer/index.shtml [15]

FragGeneScan http://omics.informatics.indiana.edu/FragGeneScan/ [18]

Prodigal https://github.com/hyattpd/Prodigal [17]

GeneMark http://opal.biology.gatech.edu/GeneMark/ [16]

Sequence Comparison

BLAST ftp://ftp.ncbi.nlm.nih.gov/blast [22]

HMMER http://hmmer.org [27]

Multiple Alignment

Muscle http://www.drive5.com/muscle [29]

Kalign http://www.ebi.ac.uk/Tools/msa/kalign [32]

Distance Matrix

Phylip http://evolution.gs.washington.edu/phylip [33]

Clustering

Markov chain Clustering (MCL) http://micans.org/mcl [28]

Sequence manipulation

EMOSS http://emboss.sourceforge.net [20]

Functional Annotation

InterProScan https://code.google.com/p/interproscan/ [40]

Annotation Database

UniprotKB / SwissProt http://www.uniprot.org [19]

Pfam http://pfam.xfam.org [41]

Gene3D http://gene3d.biochem.ucl.ac.uk/Gene3D/ [42]

SMART http://smart.embl-heidelberg.de [43]

ProDOM http://prodom.prabi.fr/prodom/current/html/home.php [44]

FingerPRINTScan http://www.ebi.ac.uk/Tools/pfa/fingerprintscan/ [45]

PANTHER http://www.pantherdb.org [46]

HAMAP http://hamap.expasy.org [47]

PIR http://pir.georgetown.edu [48]

TIGRFAM http://www.jcvi.org/cgi-bin/tigrfams/index.cgi [49]

InterPro http://www.ebi.ac.uk/interpro/ [50]

MetaCyc http://metacyc.org [51]

KEGG http://www.genome.jp/kegg/ [52]

SignalP http://www.cbs.dtu.dk/services/SignalP/ [53]

TMHMM http://www.cbs.dtu.dk/services/TMHMM/ [54]

Phobius http://phobius.sbc.su.se [55]

GeneOntology http://geneontology.org [56]

SQL Database

SQLite https://www.sqlite.org
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comparing the length of the sequence to the user-
defined minimum gene length cut-off. We recommend
that singleton ORFs should be only included in the set
of reliable gene candidate if they satisfy at least one of
the two verification criteria. Nucleotide sequences of the
predicted coding regions are translated into amino acid
sequences using transeq program from EMBOSS soft-
ware suite [20]. The results from the gene prediction
phase are stored in GenBank file format. All features are
named according to genome abbreviation and a feature
identification number, which are zero-padded sequential
numbers unique for each feature (e.g. strain-
code_00001).

Prediction of homolog families and orthologs
Homology and orthology prediction are major analysis
phases of DeNoGAP as execution of all other analyses is
dependent on these results. Profile-sequence alignment
is one of the most sensitive methods developed for gen-
erating accurate protein alignments [21]. A number of
software tools have been developed that implement pro-
file alignment methods for homolog detection from mul-
tiple genome sequences [22–24]; however, very few
programs are available that use this approach for large-
scale comparative genome analysis and ortholog predic-
tion [23, 25, 26]. DeNoGAP develops profile hidden
Markov models via HMMER and Markov clustering al-
gorithm (MCL) to iteratively cluster globally similar and
highly related protein sequences into HMM families and
homolog families respectively [27, 28]. Once homolog
families are identified, DeNoGAP predicts ortholog pairs
from the families based on reciprocal smallest pairwise
genetic distance (Fig. 2a). This step requires a prior des-
ignated outgroup in order to minimize false positive
ortholog prediction due to the gene loss. Choosing an
appropriate outgroup genome is an important factor for
reliable ortholog prediction, and is discussed further
below. DeNoGAP also predicts chimera-like sequences
that are formed through the fusion of portions of one or
more gene sequences to produce a new protein. The tool
clusters chimeras separately as new protein families,
while retaining a link to the related sequences (Fig. 2b).
The homology and orthology prediction phases can be
divided into five sub-steps as described below.

Prediction of seed HMM model families
The first step in the ortholog prediction phase is a pair-
wise comparison of protein sequences extracted from
one or more annotated seed genomes to build the initial
HMM families. The pipeline uses phmmer program in
HMMER package with an E-value threshold of 1e-10 for
assessing similarity between each pair of protein se-
quences (Fig. 3). The pairwise similarity results are
parsed to predict pairs of sequences with significant

global similarity, partial similarity or no significant simi-
larity to any other protein sequence in the database. A
protein pair is predicted as globally significant only if
both the query and target sequence have more than
70 % sequence similarity and 70 % sequence coverage.
The sequence coverage in the context of DeNoGAP is
defined as percentage of the query sequence that over-
laps subject sequence and vice versa. If only one of the
sequence in a pair has more than 70 % sequence cover-
age than the query sequence for that pair is identified as
being partially similar to the target sequence. The simi-
larity results are also parsed to identify protein se-
quences having N-terminal or C-terminal ends partially
aligning with the N-terminal or the C-terminal of any
profile-HMM or singleton sequence respectively. Such
protein sequences are considered as potential chimeric-
like sequence.
The parsed similarity information is subjected to the

MCL algorithm, which clusters significantly similar pro-
tein sequences into the protein families. Protein se-
quences with significant global alignments are grouped
together into protein families. Singleton, partial se-
quences, and chimera-like protein sequences are clus-
tered separately, with each forming a new protein family.
We avoid grouping partial and chimera-like sequences
with longer similar sequences at this point in the pipe-
line to prevent errors in construction of the profile-
HMM models. These sequences are reconnected later
during clustering of profile-HMM models into homolog
families.

Selection of diverse representative sequence and
constructing HMM models
After clustering of protein sequences into globally simi-
lar protein families using MCL, each family is subjected
to construction of HMM-profile representing that fam-
ily. Prior to construction of HMM-profile, each protein
family is scanned to select diverse representative se-
quences. The group of diverse representative sequences
from each model family is subjected to multiple se-
quence alignment using MUSCLE [29]. Any sequences
that are 100 % identical over the entire length are
merged as one sequence for construction of profile-
HMM model. This step minimizes the effect of sampling
bias in the construction of the HMM.
The pipeline uses hmmalign when aligning new se-

quences to an existing HMM model. A profile-HMM
model is constructed from the protein alignment of each
model family using hmmbuild. All profile-HMM models
are added to the profile-HMM database and formatted
using hmmpress for sequence-profile comparisons.
Singleton groups are also added to the singleton se-
quence database.
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Iterative prediction of HMM model families in new genome
In order to predict homologs and novel protein families
from a new genome sequence, DeNoGAP iteratively com-
pares protein sequences from the new genome with the
existing profile-HMM database and singleton sequence
database using hmmscan and phmmer program respect-
ively (Fig. 4). The database size for the comparison is fixed
to the size of the model database for consistent E-value
calculation. The sequence similarity results are parsed to
predict globally similar homologs, partially similar homo-
logs, singletons and chimera-like sequences in the new

genome using the same approach as described in earlier
step for reference seed family clustering. The globally
similar homolog sequences from new genomes are added
to the best matching HMM model; whereas, chimera,
singleton, and partially similar sequences are clustered as
novel families. All steps in iterative clustering phase are
repeated for each new genome. During each iteration,
DeNoGAP selects diverse sequences from newly predicted
homologs and updates and refines the existing HMM
models with these new sequences. It also identifies novel
families in the new genomes.

Fig. 2 a Schematic representation of the relationship between HMM families, homolog families and ortholog families. The diagram shows
clustering of related protein sequences (marked with red and blue symbols) into HMM families, homolog family and ortholog families. b Schematic
representation of the relationship between chimeric protein family (green) and other partially similar protein families (red). The chimeric protein
families are clustered separately as new protein family
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Clustering of HMM model families into homolog families
Because DeNoGAP is designed to construct HMM
models from only globally similar protein sequences; trun-
cated or chimeric-like protein sequences form their own
unique model families. As a result of this criteria, there is
inflation in the number of predicted HMM model families
and a potential loss of information about these relation-
ships. Therefore, after completion of iterative prediction
of HMM model families, DeNoGAP identify links be-
tween model families where member(s) from one family
share significant partial similarity with members of an-
other model family. DeNoGAP does this by identifying
pairs of related HMM families from the calculated similar-
ity information such that at least one member of the short
family shares partial match with a member of the longer
family. The HMM families are clustered using a single-
linkage clustering approach via a customized R code in
the DeNoGAP. The model families linked with each other
are clustered into the larger family; thereby, reestablishing
homolog relationships between truncated or chimeric se-
quences and to their potential parent family.

Prediction of ortholog and inparalog pairs
Orthologs are genes that decent from a common ances-
tor and arise due to speciation or diversification of that
ancestor into independent species or strains. In contrast,
paralogs are the genes that are related through a dupli-
cation event, while inparalogs are paralogous loci which
duplicated after a speciation event and are therefore
found in the same species [30]. One of the major goals
of DeNoGAP is to break down homolog families into
ortholog and paralog relationships. While there is no
perfect way to accomplish this, we use pairwise smallest
reciprocal amino acid distances from one or more out-
group genomes defined a priori by the user to predict
orthologous relationship between pairs of protein
sequences.
Choosing an appropriate outgroup genome is an im-

portant factor for reliable ortholog prediction. The se-
lected outgroup genome(s) should be from a strain or
species that is closely enough related to the target strains
to have a high likelihood of sharing many homologous
sequences, but divergent enough to minimize the

Fig. 3 Flowchart of steps for prediction of reference HMM model families
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likelihood of frequent recombination with these strains.
While no rule will work in all cases, selecting distinct
species from the same genus is usually a reasonable
starting point. It is also possible to use the level of iden-
tity at the 16S rRNA locus, as distinct species are typic-
ally less than 97 % identical. A more thorough approach
would require performing a phylogenetic analysis on a
number of loci encoding housekeeping genes, such as is
performed in multilocus sequence analysis [31].
DeNoGAP identifies ortholog and inparalog protein

sequences from homolog families using a reciprocal
minimum amino acid distance approach (Fig. 5). Se-
quences clustered in each homolog families are aligned
using Kalign, and pairwise amino acid distances are
calculated using protdist from the Phylip package with
the Jones-Taylor-Thoronto (JTT) substitution model
[32–34]. Pairwise local sequence identity and sequence
coverage between each pair of sequences in each
homolog family are calculated using BLASTP [22].
Orthologs and paralogs are distinguished using the
standard reciprocal smallest distance logic. For each
protein sequence pA in the genome A, the pipeline
identifies corresponding protein sequence qB in the
genome B that shares smallest reciprocal amino acid

distance, and significant local sequence identity and se-
quence coverage. This reciprocal smallest distance re-
lationship suggests that pA and qB are potential
orthologs. Unfortunately, this simple relationship can
break down under a wide variety of condition, for ex-
ample when there is differential loss of orthologs. In
these case, outgroup sequences can help distinguish
orthologs from paralogs. If more than one outgroup
sequence is available for a family then the distance cut-
off is estimated based on the outgroup protein se-
quence having the minimum distance from protein
under consideration.
If no outgroup is available, DeNoGAP uses a user-

defined distance threshold value as a cut-off for distin-
guishing orthologous and paralogous proteins. Pairs of
proteins are predicted to be orthologs if the amino
acid distance between two protein sequences is
smaller than the distance cut-off (Fig. 6a). In the case
of duplication events that occurred after the speciation
event, the pipeline identifies pairs of proteins found in
the same strain as inparalogs if the distance between
the two sequences is equal to or smaller as their indi-
vidual distances from all the proteins across other ge-
nomes (Fig. 6b).

Fig. 4 Flowchart of steps for prediction of homolog and novel HMM model families in new genomes using iterative clustering algorithm
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Fig. 5 Flowchart of steps for prediction of ortholog, inparalog pairs from homolog families using pairwise protein distance information and
clustering pairs into ortholog families using MCL algorithm

Fig. 6 Schematic diagram showing relationships between pair of proteins used for ortholog and inparalog protein prediction by the de-novo
pipeline. The outgroup is denoted by taxa O. a Ortholog relationship between taxa A, B and C. b Inparalog relationship between A1 and A2
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Because orthology is not transitive, DeNoGAP clusters
predicted ortholog and inparalog pairs into ortholog fam-
ilies using the MCL algorithm such that each protein se-
quence in the family shares significant sequence identity
with at least one other protein in the family. As shown in
Fig. 5, the MCL edge weight for each pair of ortholog and
inparalog proteins is calculated by subtracting the pairwise
amino acid distance from 1. Although, a more sophisti-
cated weighting scheme can be envisioned, this simple
scheme for clustering protein sequences using amino acid
distances generates results in good agreement with
OrthoMCL (see section on Validation of Ortholog Predic-
tion below).

Identification of core and variable protein families
Studying gene gain and loss by examining the identity
and distribution of core (i.e. those genes present in all
strains) and variable genes (i.e. those “accessory” or
“dispensable” genes that vary in their distribution
among strains) can provide insights into strain evolu-
tion, plasticity and environmental adaptation [35, 36].
DeNoGAP generates a binary phylogenetic profile of
presence and absence for protein families across all
compared genomes based on predicted ortholog infor-
mation. The phylogenetic profile is a binary matrix de-
noting the presence and absence of each locus across
many genomes [37].
While the core genome is traditionally defined as

those genes present in all strains within a defined group,
the use of draft genomes can artifactally reduce the size
of the core genome if a true core gene is disrupted due
to an assembly issue. To compensate for this potential
problem DeNoGAP permits the user to define a mini-
mum prevalence threshold (e.g. present in 95 % of
strains) for the identification of core genes.
Once a core genome cutoff is defined, the multiple se-

quence alignment for each core gene is extracted from
the alignment stored in the SQLite database. These
alignments are then concatenated together to create a
core genome alignment, which can be used the con-
struction of a phylogenetic super-tree and downstream
comparative analyses [29, 38, 39].

Functional annotation
DeNoGAP performs functional annotation of protein fam-
ilies by assigning annotations to each protein sequence
using InterProScan. The pipeline scans each protein se-
quence against ten different databases in the InterProScan
standalone suite [40]. The annotation resources in the
InterProScan suite include InterPro, Pfam, SMART,
TIGRFAM, ProDom, PANTHER, PIR, FingerPrintScan,
Gene3D, HAMAP, MetaCyc, and KEGG database
[41–52]. It also provides prediction of signal peptides and
transmembrane domains for each protein sequence using

SignalP, TMHMM, and Phobius respectively [53–55]. Inter-
ProScan assigns protein sequences with the Gene Ontology
(GO) terms associated with Interpro annotation [56].

Storing and querying analysis results
DeNoGAP use three relational SQL database for man-
aging and post-processing of the output(s) from different
analysis phases. The databases are created using SQLite,
which is an in-process library that implements a self-
contained, server-less and zero-configuration, transac-
tional SQL database engine. The architecture of three
SQLite database created by DeNoGAP for storing results
is shown in Additional file 2: Figure S2. The central data-
base stores metadata for genomes, sequences, genomic
features, functional annotations and sequence-profile
similarities from the iterative addition of new genomes.
The second database with prefix “HomologDB” stores
mapping information for each protein sequence and
its respective hmm-model and homolog family group
predicted via the iterative clustering of full-length and
partial homolog sequences. The third database with
prefix “OrthologDB” stores multiple alignments for
homolog families, ortholog and inparalog pairs,
sequence similarity between each pair of protein se-
quences in the homolog family, and phylogenetic pro-
files of presence and absence for ortholog families
across compared genomes. The pipeline uses information
stored in the database tables for iterative analysis of new
genomes and updates the databases by adding newly ana-
lyzed information to the central database and creating a
new copy of “HomologDB” and “OrthologDB” database.
DeNoGAP also produces a script to create a search-

able graphical user interface (GUI) table for genome in-
formation stored in the database. The GUI table allows
the user to select groups of species for analyzing the
pan-genome of selected species. It allows the user to
compare presence and absence of ortholog protein fam-
ilies between selected groups of genomes and identify
core, flexible or unique families present in different ge-
nomes. It also provides an option to fetch, display and
edit annotation for each protein sequence from the
database.

Result and discussion
Performance evaluation
We tested DeNoGAP using a dataset consisted of 140
prokaryotic genomes, including 122 bacteria and 20 ar-
chaea strains (Additional file 3). This full dataset was used
to evaluate the processing time of DeNoGAP verses
OrthoMCL. Subsets of the full dataset were used to evalu-
ate and demonstrate various components of DeNoGAP.
For example, we selected five fully sequenced and manu-
ally annotated Pseudomonas genomes to evaluate the ac-
curacy of the gene predictions module of DeNoGAP. We
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used 19 well-curated bacterial genomes that are listed as
reference proteomes in the Quest for Ortholog database
(questfororthologs.org) for benchmarking the ortholog
prediction phase of DeNoGAP [57]. Finally, we selected
32 genomes from the genus Pseudomonas, including 22
Pseudomonas syringae, two Pseudomonas aeruginosa, four
Pseudomonas putida, three Pseudomonas fluorescens and
one Pseudomonas entomophila to illustrate results ob-
tained from the entirety of the analysis pipeline. The 22 P.
syringae strains were used as in-group strains; while the
other Pseudomonads were used for outgroup compari-
sons. Pseudomonas syringae pv. tomato strain DC3000
was chosen as a seed reference genome for the all datasets
[58]. All archaea strains were used as outgroup genomes
for full dataset.
We evaluated the performance of the iterative clustering

strategy implemented in DeNoGAP relative to OrthoMCL
by comparing processing time for each successively added
genome in our full dataset of 140 strains. The test was
performed on a personal computer configured with Linux
OS, 2 TB disk space, and 24GB RAM. The comparison of
the time-scale between the two approaches showed that
the time requirement for processing each new genome via
OrthoMCL grows quadratically by O(N2), where N is the
number of genomes under comparison. In contrast, the
time requirement for processing each new genome using
DeNoGAP increases linearly based on the increase in the
number of predicted novel homolog families (Fig. 7). Since
the time to process each new genome only increases with
the addition of new homolog families, the iterative
addition of genome data to a large number of existing
closely related strains have negligible effect on the time
since few novel homolog families will be identified. We
terminated the OrthoMCL analysis after 32 genomes since

the final genome analyzed took approximately 11 h to
process. In comparison, the final genome to analyzed from
the set of 140 took only approximately 40 min by DeNo-
GAP. The substantial difference observed in the computa-
tion time for OrthoMCL verses DeNoGAP is due to
OrthoMCL’s dependence on pairwise analyses of all ge-
nomes, and applies to all approaches that rely on pairwise
or reciprocal analysis, such as Reciprocal Smallest Dis-
tance (RSD) and Ensembl-Compara [11, 12, 64]. The
addition of even a single new genome to an existing data-
base using these methods requires the complete pairwise
reanalysis of all the genomes in the analysis set. Currently,
there is no straightforward way iteratively add new ge-
nomes to an existing OrthoMCL database, or identify
homolog families for a new genome while updating exist-
ing similarity relations. A similar scaling also applies to
the disk space and memory requirements for storing and
processing output for both the approaches. For example,
parsing and analyzing pairwise BLAST results using
OrthoMCL requires disk space for the relational database
equal to five times the size of the parsed BLAST output
file (lge.ibi.unicamp.br/Ortho_MCL_UserGuide.txt). Con-
sequently, this quickly become a limitation when perform-
ing pairwise sequence comparisons between hundreds of
genomes. In contrast, the iterative clustering algorithm
implemented in DeNoGAP stores pairwise similarity in-
formation in the form of profile-sequence comparisons,
which requires much less disk space due to the condensed
representation of multiple sequence alignments inherent
in profile-HMMs.

Validation of gene prediction
DeNoGAP combines output from four microbial gene
prediction programs and predicts reliable open reading

a b

Fig. 7 Performance evaluation of the iterative clustering method implemented in the DeNoGAP as compared to reciprocal blast based approach
implemented in the OrthoMCL using 140 prokaryotic genomes. Clustering with OrthoMCL was restricted to 32 genomes due to drastic increase
in computation time. Each data point on the y-axis represents computation time for the addition of one new genome to an existing dataset.
Time-scale of iterative homolog clustering using a OrthoMCL or b DeNoGAP. Computation time for each iteratively added genome in OrthoMCL
increases quadratically with the number of genomes, while computation time for iterative clustering using DeNoGAP increases linearly even after
analysis of hundreds of genomes
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frames (ORFs) based on overlapping gene region pre-
dicted by at least two programs. To validate the accuracy
of the gene prediction phase in the DeNoGAP we ran
the gene prediction module on five completely se-
quenced (finished) bacterial genomes from the validation
set using two overlap cutoff thresholds (15 and 50 bp)
and compared our gene prediction results with the gene
annotation information available from GenBank [58–62].
The result shows that DeNoGAP was able to predict
ORFs for 94 and 97 % of annotated protein-coding genes
(for the 15 and 50 bp thresholds respectively). From
these ORFs, 68.2 and 73.1 % had exact start and stop
sites to the features described in the GenBank files.
Among the genes predicted with incorrect start site,
75.9 and 77.2 % of genes had start codon within 100 nu-
cleotides of the true start site. Approximately 2.5 and
4.2 % of annotated protein-coding genes were not identi-
fied by DeNoGAP as reliable ORFs, of which 80 and
88 % overlapped with an adjacent gene beyond the
established threshold. Finally, 136 GenBank annotated
protein-coding genes were not predicted by any of the
four algorithm used by DeNoGAP. Table 2 summarizes
the results for gene prediction phase.

Validation of ortholog prediction
In order to test the accuracy of DeNoGAP for ortholog
prediction, we compared ortholog pairs predicted by
DeNoGAP using a well-curated benchmark ortholog
dataset of 19 bacterial genomes established as a “refer-
ence proteome” by Quest of Ortholog database [63]. The
comparison was performed with ortholog pairs calcu-
lated using OrthoMCL, RSD and Ensembl-Compara
method [11, 12, 64]. We focused on ortholog pairs shar-
ing more than 50 % sequence identity for the benchmark
dataset in order to ensure that we had high-confidence
in the ortholog calls. The comparison showed that
DeNoGAP predicted at least 66.6 % of the total ortholog
pairs that were predicted by at least one other method
(Fig. 8a), with 46.7 % ortholog pairs predicted by all
methods. Only 0.5 % of DeNoGAP’s ortholog predictions
were not found by any other approach, while 0.6 %,
3.5 % and 19.7 % of predictions were unique to RSD,
Ensembl-Compara and OrthoMCL, respectively. We
generated a global set of all orthologs called by the four
methods and generated phylogenetic profiles (binary

presence/absence vectors) for each approach, which
were then subjected to cluster analysis (Fig. 8b). The
dendrogram clearly indicates that DeNoGAP performs
similarly to the three established analytical approaches.
In order to test the ortholog clustering accuracy of

DeNoGAP relative to OrthoMCL, we compared ortho-
log clusters derived from 195,948 protein sequences
from 32 genomes using a granularity parameter (I) of
1.5. DeNoGAP and OrthoMCL clustered protein se-
quences into 19,914 and 14,377 groups respectively. Of
these, 8,703 groups were identical for both methods
representing 43.7 % of DeNoGAP groups and 60.5 % of
OrthoMCL groups. We also found that 10,204 (70.9 %)
of the OrthoMCL groups were a match or subset of
DeNoGAP groups, while 18,796 (94.3 %) of the DeNo-
GAP groups were a match or subset of OrthoMCL
groups. We believe that DeNoGAP generates larger
numbers of clusters compared to OrthoMCL because it
better able to separates highly similar inparalogs into dif-
ferent groups by accounting for gene loss in one or more
genomes.

Prediction of fragmented and chimeric protein families
The algorithm implemented in DeNoGAP for calculat-
ing similarity between query sequences and HMM
models uses a high alignment coverage cut-off (>70 %)
for iterative clustering of globally similar protein se-
quences. Due to this criterion, protein sequences that
exhibit partial similarity with HMM models are clus-
tered initially as new protein families. The analysis of 32
Pseudomonas genomes predicted 19,300 protein se-
quences that had partial similarity with at least one
HMM protein family. Approximately, 12,567 (65.1 %) of
these sequences displayed significant similarity (query
coverage ≥ 70 %) with longer HMM models, suggesting
fragmentation of the sequence; whereas, 4,688 (24.2 %)
of the sequences showed similarity with HMM models
shorter in length. We also found that 1,531 (7.9 %) of
protein sequences had significant similarity with both
longer and shorter HMM models.
Other than fragmented protein sequences, DeNoGAP

also predicts evolutionarily divergent chimera-like pro-
tein sequences that are formed through the combination
of portions of one or more protein sequences to produce
new proteins [65]. The pipeline predicted 514 (2.8 %) of

Table 2 Summary of gene prediction comparison and statistics

Genome Name Glimmer GeneMark Prodigal FragScan Combined (15 / 50) Single (15 / 50) Total (15 / 50) Reference Set

PtoDC3000 5836 5944 5862 5950 5659 / 5716 695 / 721 6390 / 6437 5619

PsyB728a 5242 5273 5207 5469 5095 / 5135 662 / 673 5757 / 5808 5089

Pph1448A 5534 5667 5579 5622 5353 / 5416 634 / 661 5987 / 6077 5172

PAO1 5721 5701 5682 8491 4810 / 4927 3740 / 3837 8550 / 8764 5574

Pf01 5659 5798 5738 9045 4869 / 4953 4126 / 4230 8995 / 9183 5722

Thakur and Guttman BMC Bioinformatics  (2016) 17:260 Page 12 of 18



protein sequences had N-terminal or the C-terminal re-
gions with significant similarity to another protein
family.
To validate chimera prediction by DeNoGAP, we in-

vestigated our results for six known chimeric proteins
from P. syringae described in the literature. On search-
ing, it was found that DeNoGAP correctly identify four
out of six known chimeric proteins. Two of the identi-
fied chimera proteins, HopK1, and HopD1 are type III
secreted effector protein present in P. syringae strain
PtoDC3000. The pipeline identified partial similarity
with the N-terminus of the type III effector HopAQ1
and HopD2 (also known as HopAO1), respectively [65].
The other two predicted chimeric proteins were the type
III effector proteins HopBB1 and HopAE1 in the strain
PavBPIC631 with N-terminal similarity to HopF2 and
HopW1, respectively [66]. These results suggest that
DeNoGAP can efficiently be used for predicting novel
chimera proteins as well as families of known chimera
proteins in new genomes. However, the currently imple-
mented method for chimera prediction also identifies
proteins sharing common domains with multi-domain
proteins; therefore, the pipeline can over-estimate the
number of chimeric proteins in the genome. Conse-
quently, we recommend that chimeric proteins undergo
manual verification.

Clustering of HMM families into homolog families
Draft genomes present significant challenges for homolog
prediction due to the presence of fragmented proteins
[67]. In order to build accurate models for homolog fam-
ilies, DeNoGAP clusters putative fragmented and chimeric

proteins into unique families. However, it is important to
understand how these families are related to other (e.g.
full-length) families due to significant local similarity.
DeNoGAP does this via single-linkage clustering of related
HMM families. To assess this, we represented the HMM
families as nodes (51,166) connected by edges if they
shared significant similarity (221,068 edges). We found
that the network of related HMM families consisted of
total 33,499 homolog family clusters. Out of all the homo-
log family clusters, only 5,851 (17.46 %) contained two or
more HMM families. The other 27,648 (82.53 %) clusters
comprised of only one HMM family, suggesting that they
were well partitioned and do not share similarity with
other HMM families (Fig. 9).

Identification of core and variable protein families
In order to analyze the pattern of gene gain and loss, we
constructed a phylogenetic profile representing the pres-
ence or absence of 16,742 predicted ortholog protein
families across the 32 genomes from the phase validation
dataset via the profile module in DeNoGAP. For this
analysis we defined the core ortholog families as those
present in at least 90 % of genomes to account for false
negative gene predictions resulting from incomplete as-
semblies of draft genomes. The analysis predicted 1834
(10.95 %) ortholog families as core. The majority of the
ortholog families were present in only few genomes,
with approximately 62 % of the families present in less
than five genomes, while only ~26 % of variable ortholog
families were distributed in the mid-range between 5 to
28 genomes (Fig. 10a). We found 25,886 lineage-specific
families that consisted of sequences of a single strain

a b

Fig. 8 Benchmarking of the ortholog prediction phase for DeNoGAP by comparison of predicted ortholog pairs in a reference proteome from 19 bacterial
species derived by the Quest for Ortholog project. a Venn diagram showing a comparison of ortholog pairs predicted by DeNoGAP, OrthoMCL, RSD and
Ensembl-Compara methods. b A cluster analysis of orthologs predicted by the four methods based on differences in their phylogenetic
profiles (binary vectors generated for each method indicating the presence or absence of each ortholog in a combined ortholog set)
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(Fig. 10b). Most strains had 100 to 500 lineage-specific
families with an exception in Pla301315, Ppi1704B,
Pmo301020 and Pja301072, where the pipeline predicted
more than 1000 lineage-specific families. In the case of
Pla301315 strain, a significant number of lineage-specific
families are reported due to the presence of mega-
plasmid of over 1 MB in size [68]. It is not clear why the
other strains have so many lineage-specific genes. While
the presence of plasmids may account for some, it is
likely that many are due to assembly artifacts [67].
DeNoGAP produces a concatenated MUSCLE-based

multiple sequence alignment from all core protein fam-
ilies [29]. The core genome alignment can be used as in-
put to an external tree-building program for creating a
core genome super-tree for inferring clonal phylogenetic
relationship among strains [37, 38].

Functional annotation
We functionally annotated each protein family pre-
dicted for 32 phase validation genomes by assigning
Interpro annotation to the families using annotation
module in DeNoGAP. The analysis identified 11,364
(67 %) ortholog families and 6,423 (25 %) lineage-
specific families with one or more Interpro annotation
(Fig. 10c). The remaining families had no functional an-
notation. These results are consistent with supposition
that many lineage-specific families are assembly arti-
facts. The list of highly enriched Interpro annotations
and their frequency in predicted ortholog families is
given in (Additional file 4).

Exploration and visualization of genomic data
DeNoGAP includes scripts for creating a local web-
based database explorer that reads the three SQLite

databases and builds a query platform for exploration
and visualization of genomic information. The query
platform allows users to select a subset of genomes from
the database for comparison of core, flexible and unique
protein families (Additional file 5: Figure S3) [35]. It pro-
vides users with an option to set thresholds for defining
core protein families to account for missed genes due to
assembly errors. It also permits annotation-specific
searches. The program retrieves protein IDs and their
associated annotation information based the search
query, and outputs the results in an HTML table. The
user can further select individual feature IDs to visualize
genomic information and annotations for each gene/pro-
tein sequence.

Conclusion
DeNoGAP provides a complete package integrating
many bioinformatics tools for the analysis of large com-
parative genomic datasets. The pipeline offers tools and
algorithms for the annotation and analysis of both
complete and draft genome sequences, and performs
analysis tasks including: gene prediction, ortholog pre-
diction, chimera prediction, functional annotation and
pan-genome analysis. The modular design of the pipe-
line makes it relative easy to add new analysis function-
alities to the toolkit. One of the major goals while
designing DeNoGAP was to provide an integrated and
automated workflow for large-scale comparative genom-
ics projects involving hundreds of sequenced genomes;
therefore, we have focused on automating the execution
of necessary analysis modules, parsing and formatting of
output from each analysis phase, and preparing input for
the subsequent phase.

Fig. 9 Clustering of HMM protein families related by at least one sequence. The x-axis represents homolog family size in terms of the number of
HMM groups clustered in each family
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Fig. 10 a Distribution of genomes in ortholog protein families. The x-axis plots the size of each ortholog families in terms of the number
of genomes carry each family. b Distribution of lineage-specific (singleton) ortholog families predicted across 32 genomes. c Distribution
of InterPro annotation across ortholog protein families
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While the next-generation sequencing revolution has
tremendously increased the number of available ge-
nomes for large-scale comparative genomics projects,
the computational infrastructure needed for these ana-
lyses is often limited. We have designed the DeNoGAP
pipeline with the goal of making a sophisticated pipeline
that can run on nearly any system with reasonable pro-
cessing power, memory and disk space, and which easily
scales for hundreds of genome. DeNoGAP provides a
streamlined workflow to rapidly analyze and annotate
newly sequenced and assembled genomes in an iterative
manner, and creates a new, or updates an existing,
SQLite database. Finally, DeNoGAP provides a database
exploration tool that allows researchers to parse and ex-
plore the analyzed information for the generation of new
hypothesis.

Availability and requirement
Project name: De-Novo Genome Analysis Pipeline
(DeNoGAP)
Project home page: https://sourceforge.net/projects/

denogap/
Operating system: Unix, Linux (Ubuntu 12.04 LTS)

or higher.
Programming Language: Perl
Other Requirements: Apache 2 or higher.
License: GPL

Additional files

Additional file 1: Architecture of the DeNoGAP genomics pipeline. The
input phase shows the information required at the command line while
executing the pipeline. The analysis phase shows various analyses that
can be performed using DeNoGAP pipeline. Each analysis can be
performed independently of other steps provided required parameters
are defined in the respective configuration file of the analysis.
(PDF 1372 kb)

Additional file 2: Architecture of SQLite databases for DeNoGAP
pipeline. (a) Central database: It includes tables to store basic genomic
information, sequences, functional annotations predicted using
InterProScan, and sequence-profile similarity information. (b)
HomologDB: It includes tables to store list of HMM family pairs that
are linked by at least one significantly similar partial sequence, and
mapping information for each protein sequence on its respective HMM
family and Homolog family. (c) OrthologDB: It includes tables to store
pairwise distance information for pairs of ortholog and inparalog,
pairwise local similarity information between each pair of protein in the
family, homolog multiple alignment and protein family presence and
absence information as binary matrix and tabular list. (PDF 996 kb)

Additional file 3: List of genomes used for development and testing of
the DeNoGAP pipeline. (XLSX 25 kb)

Additional file 4: List of predicted InterPro annotation and their
frequency in predicted ortholog families. (XLSX 125 kb)

Additional file 5: Graphical interface for exploring data generated
using DeNoGAP pipeline. (a) Main page of GUI for selection of
genomes and setting parameters for comparison. (b) Display of gene
list as a result of protein family profile comparison between selected
genomes. (c) Display of detailed information for individual protein or
genes. (PDF 6662 kb)
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