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Abstract

Background: Long non-coding RNAs (lncRNAs) may play critical roles in a wide range of developmental processes
of higher organisms. Recently, lncRNAs have been widely identified across eukaryotes and many databases of
lncRNAs have been developed for human, mouse, fruit fly, etc. However, there is rare information about them in
the only completely domesticated insect, silkworm (Bombyx mori).

Description: In this study, we systematically scanned lncRNAs using the available silkworm RNA-seq data and
public unigenes. Finally, we identified and collected 6281 lncRNAs in the silkworm. Besides, we also collected 1986
microRNAs (miRNAs) from previous studies. Then, we organized them into a comprehensive and web-based
database, BmncRNAdb. This database offers a user-friendly interface for data browse and online analysis as well as
the three online tools for users to predict the target genes of lncRNA or miRNA.

Conclusions: We have systematically identified and collected the silkworm lncRNAs and constructed a
comprehensive database of the silkworm lncRNAs and miRNAs. This work gives a glimpse into lncRNAs of the
silkworm and lays foundations for the ncRNAs study of the silkworm and other insects in the future. The
BmncRNAdb is freely available at http://gene.cqu.edu.cn/BmncRNAdb/index.php.

Keywords: Silkworm, Long non-coding RNAs, RNA-seq, BmncRNAdb

Background
The ENCODE project estimates that 62–75 % of the hu-
man genome are transcribed, but only 2 % of the tran-
scripts can be translated to proteins [1, 2]. The
GENCODE 22 release contains 19,814 protein-coding
genes, 15,900 long non-coding RNA genes and 9894
small non-coding RNA genes [3]. These suggest that
non-coding RNAs (ncRNAs) constitute a large fraction
of the eukaryote transcriptome [4, 5].
Long non-coding RNAs (lncRNAs) are transcripts of

DNA that are usually considered to be > = 200 nt
(nucleotide) and do not have apparent coding capacity
[6–10]. LncRNAs are widely present in the eukaryotic
genomes [4, 11]. In the postgenomic era, since the devel-
opment and application of next-generation sequencing

technologies, a large number of long non-coding RNAs
have been identified in different species (e.g. human
[12], mouse [13], fruit fly [14], etc.). Although the func-
tions of most lncRNAs are still unclear, more and more
evidence has proven that they play critical roles in
various biological processes including cellular differenti-
ation [15], epigenetics [16], transcriptional regulation
[17] and immune response [18]. For example, in the pla-
cental mammals, Xist (X-inactive specific transcript) is a
long non-coding RNA on the X-chromosome and takes
part in inactivation of X-chromosome during the early
developmental process of female embryo [8, 19]. In
addition, thousands of lncRNAs have been reported in
the insects and some of them show important roles in
the life events of insects [14, 20–25]. Acal acts as a novel
negative dorsal closure regulator during Drosophila em-
bryogenesis and Lnccov1 is involved in the autophagic
cell death of ovarioles in Apis mellifera [26, 27]. There-
fore, lncRNAs are important functional elements in the
genomes of higher organisms.
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The domesticated silkworm, Bombyx mori, is one of
important model organisms for Lepidoptera, more and
more transcrptomic resources are available for the silk-
worm. The ncRNAs, especially microRNAs (miRNAs)
were identified in the silkworm by Solexa sequencing
[28]. In addition, the miRNAs are also reported that may
take part in the fibroin synthesis and fibroin transport in
the domesticated silkworm [29]. As one important mem-
ber of the ncRNAs, lncRNAs also play key roles in the
silkworm. The first silkworm lncRNA, Fben-1 (female-
brain expressed noncoding RNA-1) was identified in
female-brain and may be involved in sexually dimorphic
brain functions [30]. Although 11,810 silkworm
lncRNAs are identified in different tissues with the loose
standard, the loose threshold may lead to high false posi-
tive rate for lncRNA identification. Thus, it is still neces-
sary to systematically identify the lncRNAs in the
silkworm with more RNA-seq data and more stringent
pipeline [30, 31].
Moreover, many databases on the information of

lncRNA have been developed such as NONCODE,
lncRNAdb, LncRBase, DeepBase [32–35], but the infor-
mation of the silkworm lncRNA is almost blank in the
present lncRNA databases [32–34, 36–39]. Currently,
miRBase and microrna are two large databases contain-
ing miRNA information, however, the information of the
silkworm miRNAs in the miRBase is rare and redun-
dancy [40, 41]. Thus, in this study, we used a compre-
hensive approach to identify lncRNAs in the silkworm
with all newly released RNA-seq data in the SRA
(Sequence Read Archive) database and the unigene data
[7, 13, 14, 25, 42–48]. The identified lncRNAs are orga-
nized into a database for user browser. In order to offer

more information about the silkwrom ncRNAs, the
available silkworm miRNAs and previously reported
lncRNAs are also added to the database [28, 29, 40]. The
database can be accessed at the website http://gene.c-
qu.edu.cn/BmncRNAdb/index.php.

Construction and content
Database architecture
The BmncRNAdb database implementation is based
on the Gentoo Linux system with the tools of Apache
2.0 [49], PHP 5.4 (Personal home page Hypertext Pre-
processor) [50], MySQL 5.16 [51], and Perl 5.12 [52].
The database architecture is illustrated in Fig. 1. Apa-
che + PHP processes the user request and responds to
user by the web browser. MySQL is used to create
data model and data storage. The Perl script calls the
background program to execute server request and
returns the results to server by the CGI (Common
Gateway Interface). Next, the web server will send
the results of background program to BmncRNAdb
user by the internet.

Data sets
New version of the silkworm genome sequence was
downloaded from the silkworm genome database,
SilkDB v2.0 [53]. The silkworm protein-coding genes
were retrieved from Ensembl database (http://meta-
zoa.ensembl.org/) [54]. All the silkworm RNA-seq data
were downloaded from NCBI (National Center for Bio-
technology Information) SRA databases (Additional file
1: Table S1) (http://www.ncbi.nlm.nih.gov/sra) [55–65].
The silkworm unigenes were downloaded from NCBI
UniGene database [66]. Non-redundant protein (nr)
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sequences were also obtained from NCBI database [66].
A comprehensive protein database, Uniref100, was
downloaded from UniProt databases (http://www.uni-
prot.org/) [67]. The current released (Pfam 28) Pfam-A
and Pfam-B were obtained from EBI ftp website (ftp://
ftp.ebi.ac.uk/) [68].

Genome-wide identification of lncRNAs in the silkworm
Two types of data from the silkworm were used for
identification of the silkworm lncRNAs. The first is the
silkworm RNA-seq data. Forty-one RNA-seq datasets
were published by other research groups before January
15(th), 2015 and four RNA-seq datasets were produced
by our laboratory (Additional file 1: Table S1) [55–65].
All the RNA-seq data are used to reconstruct the silk-
worm transcriptome using the software Tophat v2.0.13
and Cufflinks v2.1.1 [7, 25, 42, 43, 45, 46, 48, 69, 70].
The second is the silkworm unigenes. The unigene tran-
scripts were assembled from EST (Expressed Sequence
Tag) and some lncRNAs are also contained in the uni-
gene transcripts [43]. Thus, the transcripts assembled
from RNA-seq data and unigenes are used to identify
lncRNAs in this study. The whole workflow to identify
the silkworm lncRNAs is shown in Fig. 2.

RNA-seq short-reads assembly
QC (quality control) Toolkit of NGS (Next-Generation
Sequencing) is used to control the reads quality of forty-
five RNA-seq datasets [71]. High-quality RNA-seq reads
are considered as clean reads data. The clean reads data
were mapped to the newly assembled silkworm genome
sequence with TopHat v2.0.13 [69]. Mapped reads for
each sample were assembled using Cufflinks v2.1.1 with
the protein-coding gene annotations separately [13, 69,
70]. All the sample assemblies are integrated into a
merged assembly by Cuffmerge v2.1.1. We then used
Cuffcompare v2.1.1 to generate different categories of the
transcripts for the merged assembly [25, 43]. After that,
158,541 transcripts were generated from the transcrip-
tome assembly. The five categories of the transcripts are
retained including falling entirely within a reference intron
(code=‘i’), sharing at least one splice junction with a refer-
ence transcript (code=‘j’), generic exonic overlap with a
reference transcript (code=‘o’), unknown or intergenic

transcript (code=‘u’) and exonic overlap with reference on
the opposite strand (code=‘x’) [13, 69]. These five categor-
ies of the transcripts and the silkworm unigenes are used
to identify lncRNAs in the next step.

Protein-coding transcripts exclusion
LncRNAs are usually considered to have length > =200 bp
and ORFs (open reading frame) < = 100 aa (amino acids)
[7, 42, 43, 70]. The assembled transcripts and unigene
transcripts with the length < 200 bp or ORFs > 100 aa are
excluded by the Perl Script, respectively. The retained
48,621 transcripts and 5530 unigenes are evaluated to the
protein-coding potentiality for each transcript by the two
tools, CPC (Coding Potential Calculator) and CNCI (Cod-
ing-Non-Coding Index) [42, 43, 70, 72–76]. In general,
transcripts with protein-coding score < 0 in the CPC or
CNCI are regarded as non-coding potentiality [72, 73].
The CPC and CNCI can be complementary and improve
the positive rate for lncRNA identification [72, 73]. Thus,
we used two tools (CPC and CNCI) and set the protein-
coding score −1 as threshold in the CPC and −0.05 as
threshold in the CNCI [42, 43]. Only those transcripts
have CPC score < = −1 and CNCI score < = −0.05 are
retained. The retained 9345 transcripts and 733 unigenes
are translated into the corresponding proteins by six
frame translation and then the proteins were used to
search against Pfam-A and Pfam-B databases. Transcripts
that have significant hits against Pfam-A and Pfam-B will
be removed [10]. At last, the blastx searches against NCBI
Non-redundant protein (Nr) databases with the option e-
value 0.001 were performed using retained transcripts [48,
77]. Transcripts that have a hit with Nr protein sequences
were deleted in this process. In the end, 4856 lncRNAs
were identified from the silkworm RNA-seq and unigenes
(Fig. 2). The 95.65 % of lncRNAs belong to the ‘u’ (Un-
known, intergenic transcript) category (Table 1). More-
over, in order to reduce the false positive rate for
lncRNAs, 11,810 previously reported lncRNAs were re-
identified by our stringent pipeline [31] and 1565 high-
quality lncRNAs were retained, suggesting that the false
positive rate for identification of the silkworm lncRNAs in
previous study may be much higher. After removing the
redundancy, 6821 lncRNAs were recorded in the
BmncRNAdb database. A proven previously lncRNA,

Table 1 The summary of the silkworm lncRNAs identified by RNA-seq

Class code Transcript number Percentage Description

j 16 0.36 % At least one splice junction is shared with a reference transcript

o 26 0.58 % Generic exonic overlap with a reference transcript

u 4286 95.65 % Unknown, intergenic transcript

x 151 3.37 % Exonic overlap with reference on the opposite strand

i 2 0.04 % A transfrag falling entirely within a reference intron

total 4481 100 %
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Fben-1, is identified by our pipeline. This shows the
reliability of our pipeline.

Characteristics of the silkworm lncRNAs
We surveyed the comprehensive characteristics of the
silkworm lncRNAs including the length distribution, GC
content, exon number distribution, link with transposable

elements, sequence conservation and correlation with
neighbor protein genes (Fig. 3). The silkworm lncRNAs
have shorter transcript length than the protein-coding
genes (Fig. 3a). The lncRNAs also have lower GC content
and less exon number than the protein-coding genes
(Fig. 3b and c). However, the lncRNAs have a large degree
of overlap of transposable elements in the silkworm
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(Fig. 3d). The similar results were also reported in the pre-
vious studies [31, 70, 78]. The silkworm lncRNA that
overlaps with other insect lncRNAs at least 15 bp is de-
fined as sequence conservation [78]. Based on the stand-
ard, 136 silkworm lncRNAs show sequence conservation
with the Apis mellifera (Hymenoptera) lncRNAs, the high-
est sequence conservation (Fig. 3e). And the silkworm
lncRNAs also have relatively high sequence conservation
with the Plutella xylostella (Lepidoptera) and Apis cerana
(Hymenoptera) lncRNAs. However, the silkworm
lncRNAs have low sequence conservation with the Dros-
ophila melanogaster, Anopheles gambiae and Nilaparvata
lugens lncRNAs. Furthermore, the expressions of the
genes within 2 kbp neighbor regions (2 kbp upstream and
2 kbp downstream) of the putative silkworm lncRNAs are
not significantly correlated with the expressions of
lncRNAs (Spearman test) (Fig. 3f and g).

Collection of microRNAs in the silkworm
The silkworm microRNAs were comprehensively identi-
fied in the whole body, anterior or middle and posterior
silk glands by next generation sequencing technology

[28, 29]. The datasets of the silkworm miRNAs were col-
lected from miRBase and previous studies [28, 29, 40].
All miRNAs are compared by sequence pair-wise to
remove redundancy and manual correction [79]. The
formats of miRNAs are unified by the Perl Scripts.

Utility and discussion
Using the pipeline in Fig. 2, we identified and collected
6281 lncRNAs. About 58.67 % of lncRNAs can be
located on the silkworm chromosomes and the rest
lncRNAs are located in the scaffolds that cannot be
mapped to the silkworm chromosomes. All the 28 chro-
mosomes harbored lncRNAs. Interestingly, the chromo-
somal distribution of the lncRNAs is not significantly
correlated with the protein-coding genes (Spearman r =
0.017, P-value = 0.62) (Fig. 4). This is consistent with the
observation in the lncRNAs of human [12]. Moreover,
we also collected 1986 miRNAs from previous studies
and public databases [28, 29, 40]. In the end, we
organized these silkworm lncRNAs and miRNAs into
the BmncRNAdb database (http://gene.cqu.edu.cn/
BmncRNAdb/index.php). The database contains six

protein-coding genes
lncRNAs

Fig. 4 Distribution of lncRNAs and protein-coding genes on the 28 silkworm chromosomes. The abundance of lncRNAs in physical bins of 500 kb
for each chromosome. The red color represent lncRNAs and blue color represent protein-coding genes
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functional sections, data browse, keywords search, Blast
alignment, lncRNA target gene discovery, miRNA target
gene discovery and data download.

Data browse
In the left navigation, clicking the ‘Browse’, users can browse
the information of lncRNAs including lncRNA name, scaf-
fold, start position, end position, exon number and length
(Fig. 5a). By clicking the lncRNA name, users can obtain the
detail information about the lncRNAs such as the expres-
sion, max ORF length, coding potential score, neighbor
genes and fasta sequence. Moreover, clicking the names of
neighbor genes, users will obtain the corresponding genome
annotation information. If users want to browse the

information of miRNA including miRNA name, miRNA se-
quence, 5p/3p class, miRNA length, they can choose the
miRNA database and then click the ‘Browse data’ (Fig. 5b).
By clicking the miRNA name, users can obtain the miRNA
information such as miRNA length, reads count, confidence,
fasta sequence and precursor information. In the search
functional section, users can use keywords to search for
lncRNA or miRNA in the BmncRNAdb to find the interest-
ing entries. Although some databases (NONCODE,
lncRNAdb, LncRBase, deepBase, etc.) also offer data browse
for the lncRNAs, the information is mainly for human,
mouse, fruit fly, etc. [32–35]. The BmncRNAdb provides
not only the information for the silkworm lncRNAs but also
for the lncRNAs neighbor genes and the silkworm miRNAs.

a

b

Fig. 5 Data browse of the BmncRNAdb database. a The browsing interface of lncRNAs. All the silkworm lncRNAs were stored in the BmncRNAdb.
Users can browse the detailed information of lncRNA by the name. b Data browse of miRNA. Users can get information of miRNA including basic
information, fasta sequence and precursor by choosing different miRNA name
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Online analysis tools
The online analysis tools about lncRNAs and miRNAs
are provided in the BmncRNAdb to facilitate functional
research of lncRNAs and miRNAs. Four user-friendly
online analysis tools are available for users including
Blast + [80], LncTar [81], miRanda [41, 82] and PITA
[83]. In the Blast functional section, users can submit
their nucleotide sequences (fasta format) to the
BmncRNAdb and quickly do search against the silk-
worm lncRNAs by blastn or tblastx (Fig. 6a). In the blast
results, the information including the distribution of
blast hit, hit score and E-value is shown. Furthermore,
user can find the target sites of an lncRNA by the
LncTar functional section. It is well helpful for users to

find the target genes of an lncRNA by the lncRNA–
mRNA interactions and free energy between lncRNA
and mRNA [81]. When users run the LncTar, two types
of nucleotide sequences including sequences of lncRNA
and mRNA must be submitted to BmncRNAdb. An ex-
ample generated by LncTar is shown in the Fig. 6b. The
results will output the approximate binding free energy
(dG), normalized dG (ndG) and interacted position. Like
lncRNA, users can also find the target genes of a miRNA
in the miRnada functional section by submitting their
miRNA and DNA/RNA nucleotide sequences at the
same time. An example for finding the target genes of a
miRNA is shown in Fig. 6c. The score, energy and position
between miRNA and DNA/RNA are shown in the

a

b

c

Fig. 6 User-friendly online tools in the BmncRNAdb database. a Online blast program and visual output in the BmncRNAdb. Users can run blast
against the silkworm lncRNA by submitting the sequence in fasta format. b Online predicting target gene of lncRNA interface and the results in
tabular form. c Online predicting target gene of miRNA interface and detailed output by miRnada
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miRanda result. In addition, BmncRNAdb also offers
another online tool to find the target genes of a miRNA in
the PITA functional section. The usage of PITA is very
similar to the miRnada. All the online analysis tools are not
only for the silkworm, but also can be used in other species.
More help about the online tools is in the help section.
BmncRNAdb offers the download section for users to

obtain all the silkworm lncRNA sequences, miRNA se-
quences and example data. In the help section, a guide
manual is shown to help the users to learn how to better
use the BmncRNAdb for their own research. In addition,
under the left navigation, several useful or famous data-
base resources about ncRNAs are collected in the
BmncRNAdb related links. Our group will continue to
collect more information on the silkworm ncRNAs and
add more useful online tools about the functional re-
search of ncRNAs to the BmncRNAdb in the future.

Conclusions
We have systematically identified and collected 6281 silk-
worm lncRNAs using the RNA-seq data and unigenes.
We also collected 1986 silkworm miRNAs that were pre-
dicted by NGS. Integrating these lncRNAs and miRNAs
data, we have constructed a comprehensive lncRNAs and
miRNAs database (BmncRNAdb) for the silkworm (Bom-
byx mori). Through the BmncRNAdb database, users can
browse and search for the detail information of lncRNAs
and miRNAs in the silkworm. In addition, this database
provides three online tools for users to find the target
genes of an lncRNA and miRNA. BmncRNAdb will facili-
tate the ncRNA research of the silkworm and other in-
sects in the future. Moreover, the availability of the
complete set of lncRNAs from the silkworm will improve
the comparative and evolutionary analyses of lncRNAs
among different Lepidoptera or other insect species.

Availability and requirements
Database: BmncRNAdb
Database homepage: http://gene.cqu.edu.cn/BmncRNAdb/
index.php
Operating system(s): Linux
Programming language: PHP, CGI, JavaScript, Perl
Other requirements: MySQL, Apache
The database is freely available without restrictions for

use by academics and non-commercial researches. In-
quiries concerning the database may be directed to zez-
hang@cqu.edu.cn or huaxia2033@126.com.

Additional file

Additional file 1: Table S1. The detail information of RNA-seq datasets.
All the samples used to the identification of the silkworm lncRNAs.
(DOC 44 kb)
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