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Abstract

Background: Given two genomes that have diverged by a series of rearrangements, we infer minimum Double
Cut-and-Join (DCJ) scenarios to explain their organization differences, coupled with indel scenarios to explain their
intergene size distribution, where DCJs themselves also alter the sizes of broken intergenes.

Results: We give a polynomial-time algorithm that, given two genomes with arbitrary intergene size distributions,
outputs a DCJ scenario which optimizes on the number of DCJs, and given this optimal number of DCJs, optimizes on
the total sum of the sizes of the indels.

Conclusions: We show that there is a valuable information in the intergene sizes concerning the rearrangement
scenario itself. On simulated data we show that statistical properties of the inferred scenarios are closer to the true
ones than DCJ only scenarios, i.e. scenarios which do not handle intergene sizes.
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Background
In a previous publication [1], we have argued that inter-
genic sizes were a crucial parameter to infer genome rear-
rangement distances. Indeed, ignoring this information,
as all published distance estimations were doing so far
[2], leads to strong biases in all estimations and validation
procedures. Here we explore the information contained
in intergene size distributions, not for rearrangement dis-
tances but for rearrangement scenarios.We use a weighted
DCJ operation that acts both on gene order and inter-
gene sizes [3]. In addition, in order to account for all
the size variations in intergenic regions, we introduce the
possibility of performing indels in intergenes.
We present a polynomial-time algorithm that recon-

structs a DCJ scenario which optimizes on the number of
DCJs, and given this optimal number of DCJs, optimizes
on the total size of the indels.We use it to restrict the solu-
tion space of rearrangement scenarios. Indeed it is known
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that such a space is huge [4, 5], which makes it hard to
analyze; several methods have thus been devised to add
genomic or epigenomic constraints to restrict the search
space [6–8]. So far, the potential of intergenic sizes has
only been explored for distance computations [1, 3]. We
show that it can also contain information on the scenar-
ios, by characterizing categories of DCJs that can be used
in optimal DCJs and indels scenarios.
In “Statement of the problem” section we define

the model, give mathematical objects for genomes
and rearrangement operations, from which we derive
and prove some useful properties. Then we describe
our algorithm in “Methods” section. We finally give
the results of an implementation of our algorithm
on simulated genomes, showing the limits of optimiz-
ing on indel sizes due to signal saturation, and how
this optimization can improve the statistical proper-
ties of inferred DCJ scenarios. In the last section we
explicit the limits of using this approach on biological
data, and discuss some possible improvements on the
model.
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Statement of the problem
Genomes and DCJ
A genome g is defined as a set of n pairwise disjoint edges
within a set of 2n vertices V (i.e., a perfect matching).
A genome is weighted if a non negative integer weight
(denoted by function w) is assigned to each edge, and
unweighted otherwise. For the relation of this definition
with various usual definitions of genomes in the context
of rearrangements, see [2, 3, 9].
A DCJ is an operation on an unweighted genome trans-

forming any pair of edges ab and cd into ac and bd. A
wDCJ [3] acts similarly on a weighted genome, and addi-
tionally reassigns weights to the newly formed edges with
the condition that w(ac) + w(bd) = w(ab) + w(cd), while
the weight of the other edges remains unchanged. To any
wDCJ can thus be associated an underlying DCJ, of which
it is said to be a weighted realization.
An indel of size δ (where δ is a strictly positive inte-

ger) is an operation on a weighted genome consisting in
increasing or decreasing the weight of an edge by δ.

Breakpoint graph and valid scenario
Given two genomes g1 and g2 on the same vertex set V,
we define the breakpoint graph as BG(g1, g2) = (V , g1 ∪
g2). This is a 2-regular multi-graph which can be par-
titioned into vertex-disjoint cycles, each of even length
(the length of a cycle being defined as the number of
edges it contains). A cycle of length 2 (thus consisting
of twice the same edge: one from g1 and one from g2) is
called trivial. In the case of weighted genomes, a trivial
cycle containing edges e1 and e2 is said to be balanced if
w(e1) = w(e2).
A DCJ (or wDCJ) on g1 or g2 is valid if, after it is applied,

the number of cycles in the corresponding breakpoint
graph is increased by one. Note that a valid DCJ (or wDCJ)
necessarily acts on two edges that belong to the same
cycle (see Fig. 1 for an illustration). The DCJ-distance [10]
between two unweighted genomes is the minimum num-
ber of successive DCJs one needs to apply to g1 (or to g2)
to obtain a breakpoint graph containing only trivial cycles.
This distance is equal to n − c (where n is the number
of edges in a genome and c is the number of cycles in
BG(g1, g2)), and can be achieved by applying any valid DCJ
at each step. Such a series of successive valid DCJs is called
a valid DCJ scenario. We similarly define a valid wDCJ
(or valid wDCJ scenario) if the underlying DCJ (or DCJ
scenario) is valid. Note however that when genomes are
weighted, a valid wDCJ scenario gives a breakpoint graph
that is composed of n trivial cycles, but these may not all
be balanced.
A wDCJ scenario with indels is a sequence of wDCJs

and indels transforming one genome into the other (or,
equivalently, transforming BG(g1, g2) into n trivial bal-
anced cycles). It is valid if the underlying wDCJ scenario

is valid. Its cost c(g1, g2) is the sum of the sizes of the indels
it contains.

Balancing cycles
Given a path (or cycle) P of a breakpoint graph BG(g1, g2),
seen as a set of edges, let wi(P) = ∑

e∈P∩gi w(e) for i ∈
{1, 2}. Path P has imbalance I(P) = w1(P) − w2(P) and
absolute imbalance |I(P)|. The imbalance of a breakpoint
graph I(BG(g1, g2)) is the sum of the absolute imbalances
of the cycles it contains.
Given g1 and g2, a wDCJ on g1 that yields g′

1 is
called steady (resp. increasing, decreasing) if the imbal-
ance of the breakpoint graph remains unchanged (resp.
increases, decreases), i.e. I(BG(g1, g2)) = I(BG(g′

1, g2))
(resp. I(BG(g1, g2)) < I(BG(g′

1, g2)), I(BG(g1, g2)) >

I(BG(g′
1, g2))).

Sorting by wDCJs and indels in intergenes
We introduce the following optimization problem.

SORTING BY WDCJS AND INDELS IN INTERGENES

Instance : Two genomes g1 and g2 defined on the same
set V of vertices.
Find : A valid wDCJ scenario with indels, whose cost
c(g1, g2) is minimized.

In other words, the above problem asks for a wDCJ sce-
nario of minimum length (since it must only contain valid
wDCJs) that, on the way, performs small indels in order
to balance the intergene size. This definition is motivated
by a parsimony argument: we look for a scenario minimiz-
ing the amount of genome events, especially large-scale
events such as DCJs.
In the following, for ease of presentation, instead of con-

sidering wDCJ scenarios with indels that act on only one
genome (e.g. g1) in order to reach the other, we actually
consider wDCJ scenarios with indels acting on both g1
and g2, until both genomes become identical (i.e., until the
breakpoint graph contains only balanced trivial cycles).
This approach implicitly yields a scenario of same cost for
transforming g1 into g2: first apply all wDCJs and indels for
g1, in the same order, then apply all inverses of the wDCJs
and indels for g2 in reverse order.
In the following, we prove that in any wDCJs and indels

scenario, the minimum cost of the indels is equal to the
total imbalance of the breakpoint graph, I(BG(g1, g2)). We
also provide a polynomial-time algorithm that outputs
a valid wDCJ scenario with indels which achieves such
cost.

Methods
In this section, we present our algorithm for sorting by
wDCJs and indels in intergenes. In the following, we
define a simple condition on the weights of a pair of edges
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Fig. 1 Illustration of a DCJ acting on edges e and f in a cycle C of a breakpoint graph. This DCJ is valid: two cycles are obtained from C, thus the
number of cycles is increased

in BG(g1, g2). If this condition is fulfilled, such a pair will
be called bounded. We then prove that there always exists
a pair of bounded edges in a breakpoint graph (Lemma 1),
and that any valid DCJ using a bounded pair of edges
can be extended into a weighted realization keeping the
total imbalance of the graph unchanged (Lemma 2). Along
the way, we additionally show that no valid wDCJ can
decrease the imbalance of the breakpoint graph, and that
any steady scenario (i.e., any scenario using steady wDCJs
only) must use only bounded pairs. In other words, we
give a necessary and sufficient condition for a wDCJ to
belong to an optimal scenario in terms of number of DCJs
plus sizes of indels.

Definition 1 Consider two edges e, f of a breakpoint
graph in the same cycle C and in the same genome (say g1),
and let P1 and P2 denote the two paths obtained from C
after removing e and f. Let also W = w(e)+w(f ). Then the
pair (e, f ) is said to be bounded if both paths P ∈ {P1,P2}
satisfy the following conditions:

If I(C) ≥ 0 : I(P) ≥ −W
If I(C) ≤ 0 : I(P) ≤ 0

If e, f are both in g2, the same definition applies using −I
instead of I for computing the imbalance.

We first prove that there is always a bounded pair in a
breakpoint graph of two weighted genomes.

Lemma 1 Let C be a non-trivial cycle, em be an edge of
minimumweight in C, and e, f be the two neighboring edges
of em in C. Then (e, f ) is a bounded pair.

Proof Assume wlog that em is in g2 and e, f are in g1.
After removing e, f , one obtains two paths: P1 = {em} and
P2 = C \{e, f , em}. LetW = w(e)+w(f ). For the first path,
we have I(P1) ≤ 0 and I(P1) ≥ −min(w(e),w(f )) ≥ −W ,
since I(P1) = −w(em). Consider now P2, and note that
I(P2) = I(C) − W + w(em). Hence, if I(C) ≥ 0, we have

I(P2) ≥ −W . Otherwise, since w(em) ≤ W , we have
I(P2) ≤ I(C) ≤ 0.

We now prove that bounded pairs can be used to
perform wDCJs preserving the total imbalance of the
breakpoint graph.

Lemma 2 Let g1 and g2 be two weighted genomes, and
consider a valid wDCJ transforming g1 into g′

1. Then this
wDCJ cannot be decreasing, and, if it is steady, then the
pair of edges it is applied on is bounded. Conversely, any
bounded pair of edges can be used to form a valid steady
wDCJ.

Proof Let e and f be the edges used by the wDCJ, e′ and
f ′ be the two edges it creates, C be the cycle containing
both e and f, P1,P2 be the two paths obtained by removing
e, f from C, and C1 = P1 ∪ {e′} and C2 = P2 ∪ {f ′} be the
two cycles created by the wDCJ.
Clearly, the imbalance of any other cycle than C remains

unchanged. Thus the difference in the imbalance of the
breakpoint graph, �, satisfies

� = |I(C1)| + |I(C2)| − |I(C)|
Note that the imbalance can be decomposed as follows:

I(C) = I(P1) + I(P2) + w(e) + w(f )
= I(P1) + I(P2) + w(e′) + w(f ′)
= I(C1) + I(C2).

Hence � = 0 if both I(C1) and I(C2) have the same sign
(or one is zero), and � > 0 otherwise. Thus, we already
know that this wDCJ cannot be decreasing. Assume now
that it is steady (i.e., � = 0). Let W = w(e) + w(f ) =
w(e′) + w(f ′). We distinguish two cases.

• If I(C) ≥ 0, then I(C1) ≥ 0 and I(C2) ≥ 0. Hence,
I(P1) + w(e′) ≥ 0 and I(P1) ≥ −W . Similarly
I(P2) ≥ −W .
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• If I(C) < 0, then I(C1) ≤ 0 and I(C2) ≤ 0. Hence,
I(P1) + w(e′) ≤ 0 and I(P1) ≤ 0. Similarly I(P2) ≤ 0.

In both cases, the pair (e, f ) is bounded.
We now look at the converse case: any bounded pair of

edges e, f can clearly be used to form a valid wDCJ. Using
the same notations as before, it remains to assign weights
to e′ and f ′ to create a steady wDCJ. Let W = w(e) +
w(f ), and note that I(P1)+ I(P2)+W = I(C). We consider
several cases:

• If I(C) ≥ 0 and I(P1) ≤ 0, let w(e′) := −I(P1) and
w(f ′) := W − w(e′) = W + I(P1). Then both
quantities are positive (since by assumption
I(P1) ≥ −W ), I(C1) = I(P1) + w(e′) ≥ 0, and
I(C2) = I(P2) + w(f ′) = I(C) ≥ 0.

• If I(C) ≥ 0, I(P1) ≥ 0 and I(P2) ≥ 0, then any
assignment of the weights (say,
w(e′) = w(f ′) := W/2) satisfies I(C1) ≥ 0, and
I(C2) ≥ 0.

• If I(C) ≥ 0 and I(P2) ≤ 0, we are in a case similar to
the first one: it thus suffices to set w(f ′) := −I(P2)
and w(e′) := W − w(f ′).

• If I(C) < 0, then I(P1) ≤ 0 and I(P2) ≤ 0, and
I(P1) + I(P2) + W = I(C). We let
w(e′) := min(−I(P1),W ) and w(f ′) := W − w(e′).
Then I(C1) = I(P1) + w(e′) ≤ I(P1) + (−I(P1)), and
consequently I(C1) ≤ 0.
We now have two cases to consider.

– if −I(P1) ≥ W , then w(e′) = W . Thus
I(C2) = I(P2) + W − W = I(P2), from which
we conclude I(C2) ≤ 0.

– if −I(P1) < W , then w(e′) = −I(P1), and
consequently
I(C2) = I(P2) + W + I(P1) = I(C), and we
also have I(C2) ≤ 0.

In all cases, the imbalance of the two created cycles have
the same sign as the imbalance of C, so |I(C)| = |I(C1)| +
|I(C2)|, and the wDCJ is steady.

By the above lemma, we know that no valid wDCJ sce-
nario can be decreasing. Consequently, only an indel can
reduce the imbalance of the breakpoint graph. We thus
have the following corollary.

Corollary 1 Any valid wDCJ scenario with indels
between two weighted genomes g1 and g2 satisfies
c(g1, g2) ≥ I(BG(g1, g2)).

Wenow formally introduce our algorithm that optimally
solves SORTING BY WDCJS AND INDELS IN INTERGENES
for two genomes g1 and g2 (Algorithm 1).

Theorem 1 Algorithm 1 solves SORTING BY WDCJS
AND INDELS IN INTERGENES in time O(n log n).

Algorithm 1 Computes an optimal wDCJs+indels
scenario from genomes g1 and g2

Input : Two genomes g1 and g2 expressed on the same
set V of vertices
Output: An optimal scenario for the SORTING BY
WDCJS AND INDELS IN INTERGENES problem

1: Compute the breakpoint graph BG(g1, g2)
2: while BG(g1, g2) contains a non-trivial cycle C do
3: Find a minimum-weight edge em in C
4: Perform a steady wDCJ using the neighboring

edges of em
5: end while � All cycles are now trivial
6: while BG(g1, g2) contains a cycle C with imbalance

δ 	= 0 do
7: Perform an indel of size |δ| on the edge of C ∩ g1

to make the cycle balanced
8: end while
9: return the scenario obtained as the concatenation of

all performed wDCJs and indels.

Proof We first need a straightforward sanity check on
Algorithm 1. First note that applying Line 4 is always pos-
sible due to Lemmas 1 and 2 (the edges neighboring em
form a bounded pair, and this pair yields a steady wDCJ).
Algorithm 1 yields two scenarios transforming g1 (resp.
g2) into identical genomes (as obtained when the break-
point graph contains only balanced trivial cycles), which
in turn is equivalent to outputting a single scenario from
g1 to g2 with the same cost. By Corollary 1, we know that
I(BG(g1, g2)) is a lower bound on the cost of any valid
wDCJ scenario with indels. Moreover, during the first
while loop (Lines 2–5) our algorithm produces a scenario
using only steady wDCJs, hence the imbalance of any
intermediate breakpoint graph is the same as the original,
i.e. I(BG(g1, g2)). During the second while loop (Lines 6–
8), an indel of size |I(C)| is performed for each imbalanced
cycle, hence the total cost of indels is I(BG(g1, g2)).
Overall Algorithm 1 is correct and reaches the lower

bound of I(BG(g1, g2)) for the cost of the indels, hence it
is optimal.
The running time can be achieved by sorting the edges

by weight once (in O(n log n) time), and then keeping
this structure sorted through wDCJs (each wDCJ needs
to read and edit a constant number of weights, with cost
O(log n) each time).

Results and Discussion
In order to test the efficiency of our model and algorith-
mic result, we constructed simulated data in the following
way: start with an arbitrary genome with n = 1 000
edges, with arbitrary non negative integer weights of total
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sum 1 000 · n. Perform a burn-in step of 100 000 wDCJs,
such that each couple of distinct edges ab and cd is
equiprobable, and transform these edges into ac and bd
(or with the same probability into ad and bc). The weights
of the resulting edges ac and bd are chosen by pick-
ing two random numbers r1 and r2 uniformly in resp.
[ 0,w(ab)] and [ 0,w(cd)]. The abovementioned burn-in
step is performed so that the weight distribution reaches
an equilibrium.
Then from the resulting genome, we perform 500

wDCJs in the same way. We limited ourselves to 500
wDCJs after the starting point because it is the expected
point where real scenarios stop to be parsimonious in
terms of the number of DCJs. So over this point, comput-
ing parsimonious scenarios and comparing them to the
real ones has less sense. Concerning the indels, between
two wDCJs, we perform an indel in each edge with a cer-
tain probability p. We generated four sets of simulated
data, one for each p ∈ {0, 10−3, 10−2, 10−1}. An indel con-
sists in picking a random number in an exponential law
withmean 1, and randomly adding or retracting its integer
part δ to the edge weight.
In order to evaluate the capacity of the model to infer

the right indel size, we first computed, at each step, the
difference between the total size of the simulated indels
and the sum of the cycle imbalances, which we intepret
as indels in the scenarios (see Corollary 1). The result is
shown on Fig. 2. For p ∈ {0, 10−3}, the estimations are

very good (for p = 0 there is no indel so it is just a check
that our algorithm has the expected behavior). For larger p
the signal saturates, as the number of real indels becomes
quickly much larger than the number of inferred ones.
This is explained by indels hitting several times the same
cycle with high probability.
We then discarded the simulation with probability p =

0.1, since the results are too divergent from the simulated
numbers – in other words, our model cannot handle such
an indel rate. For each of the three remaining simulations,
we first computed a random DCJ scenario, consisting in
picking a random valid DCJ at each step, without con-
sideration towards the weights. We then drew a random
wDCJ scenario with indels – that we will denote by wDCJ
scenario in the following. The wDCJ scenario is con-
structed from a randomized variant of Algorithm 1 which
works as follows: in Line 4, instead of picking a bounded
pair of edges in a deterministic way, we pick a random
bounded pair of edges, by sampling random wDCJs until
one is picked that acts on a bounded pair of edges.
In order to verify first that there indeed is some signal

on the scenario within intergene sizes, we computed the
frequency at which a random DCJ scenario could lead to
an optimal wDCJ scenario, in terms of total indel sizes.
The result is shown on Fig. 3. Random DCJ scenarios,
if genomes are sufficiently distant, are very improbably
compatible with a scenario guided by intergene sizes.
Indeed after approximately 100 wDCJs in the simulation,

Fig. 2 A simulation for n = 1 000 edges, and k = 500 successive wDCJs. The x axis is the step of the simulation, and the y axis is the difference
between the real and inferred indel size
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Fig. 3 A simulation for n = 1 000 edges, and k = 500 successive wDCJs. The x axis is the step of the simulation, and the y axis is the proportion of
random wDCJ scenarios which contain only bounded wDCJs

no scenario was using only bounded DCJs, i.e. DCJs acting
on bounded pairs.
We then tested the ability of our algorithm to produce

scenarios that are closer to the real ones. We measured
in particular, for each vertex of the breakpoint graph (i.e.,
each gene extremity), how many times a wDCJ chose an
incident edge in one scenario. This gives, for one scenario,
a vector with one entry per vertex, and a reconstructed
scenario can be compared with a real one. We could com-
pare two scenarios by computing the sum of the squares
of the differences between each vector entry.
We checked that with this measure the computed wDCJ

scenario was in mean less distant to the real scenario
than a random wDCJ scenario, for all simulation condi-
tions (with a mean improvement of 4, 1, 1.7 and 2.7 %
for p = 0, 0.001, 0.01 and 0.1 respectively) . This again
argues for the existence of information on the real sce-
nario in the intergene sizes. However the difference with
random scenarios, while real, is not sufficiently spectacu-
lar to encourage us to test the algorithm on real genomic
data. This would require a finer model.

Conclusions
The contribution of this paper is twofold. First, the def-
inition of weighted genomes [1, 3] opens combinatorial
questions, one of which being the transformation of a
genome into another in a minimum number of steps. In

a previous paper [3] we solved the strict version of this
problem, where genomes were forced to have the same
total intergene sizes and only wDCJs were allowed. Here
we add some flexibility to the problem, which allows all
pairs of genomes to be compared, while indels are intro-
duced to account for possible deviations in intergene sizes.
Thus the present model is definitely closer to reality,
where two genomes, even very close, cannot be expected
to contain exactly the same total intergene sizes.
We give a polynomial solution to the distance

problem, where only wDCJ optimal scenarios are
allowed, and the total indel size of a scenario is
minimized.
Second, this combinatorial question is related to the

choice of a DCJ scenario among the many possible ones.
It is a crucial question for several biological studies,
about potential rearrangement hotspots for example [11].
Pevzner and Tesler [11] concluded about the existence
of hotspots from the inversion distance computation, but
were unable to localize them. It has even been argued that
the conclusion on the existence of hotspots might depend
on the choice of the scenario [12]. So it is important to
exploit every available information on what might have
been real scenarios. We show that some information is
available in intergene sizes, by defining a necessary and
sufficient property for a wDCJ to participate to an optimal
scenario.
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Additional work is necessary to use this information
on biological data. Indeed, if there is information about
the scenarios in intergene sizes, our combinatorial algo-
rithm does not exploit it entirely. The solution space of
our restricted version is still too large to propose a small
number of scenarios with confidence. Statistical proper-
ties of the sub-space of solutions are only slightly closer
to true scenarios than statistical properties of the whole
space.
Consequently, this work opens several perspectives con-

cerning the model, and more precisely the scoring func-
tion that should be used. One possibility is to weight indels
differently. For example, one could weight an indel by an
affine or an exponential function of its length. This would
be biologically more relevant and would also restrict fur-
ther the scenario space. Another possibility is to extend
our model so as to allow other wDCJs than valid ones, i.e.
wDCJs that either decrease or do not change the num-
ber of cycles in the breakpoint graph. This would allow
more flexibility as, for instance, merging two unbalanced
cycles may lead to a balanced one, and may thus avoid
some further indels. This, however, raises the question of
a good scoring function, since four events are allowed in
that case (indels, and 3 types of wDCJs, depending on
whether the number of cycles is decreased, unchanged
or increased), and one should cleverly weight each such
event.
In all cases, the study of such optimization problems,

ranging from combinatorial properties to algorithmic
solutions to validation of the model (via e.g. tests on
simulated and real data) remains open.
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