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Abstract

Background: We propose a new, continuous model of the fractionation process (duplicate gene deletion after
polyploidization) on the real line. The aim is to infer how much DNA is deleted at a time, based on segment lengths
for alternating deleted (invisible) and undeleted (visible) regions.

Results: After deriving a number of analytical results for “one-sided” fractionation, we undertake a series of simulations
that help us identify the distribution of segment lengths as a gamma with shape and rate parameters evolving over
time. This leads to an inference procedure based on observed length distributions for visible and invisible segments.

Conclusions: We suggest extensions of this mathematical and simulation work to biologically realistic discrete
models, including two-sided fractionation.
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Background
In the course of evolution, new genomes occasionally
arise by duplication or triplication of an existing genome,
so that there are two or three identical copies of each
maternal and each paternal chromosome. After a (usually)
transient period of polyploidy marked by unusual patterns
of meiosis where more than just one maternal and pater-
nal chromosome are aligned and recombine, processes
of sequence divergence and chromosome rearrangement
lead to more familiar diploid patterns. At the same time
a process of fractionation eliminates some or most of the
duplicate genes, some from each chromosomal copy, but
in the simplest model, never all members of a duplicate
pair or triple - for reasons of viability. Fractionation pro-
cesses have been surveyed across evolutionarily diverse
types of eukaryote organisms [1].
Since one copy of a duplicate pair of genes must be

retained, we can identify not only the chromosomal
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regions that have been retained – by simple observation
of the genome – but also each region that is now invisible
– by reference to the duplicate chromosome that has nec-
essarily retained a copy of this region. Thus, the data on
which inferences about the deletion process can be made
consist of alternating segments of deleted and undeleted
genome of varying lengths.
Among the important questions about the nature of

the deletion process, we can ask whether deletion pro-
ceeds one gene at a time or by larger chromosomal
fragments. In this paper, we model the process as the
deletion of segments from the real line, with a biolog-
ically realistic treatment afforded to overlapping dele-
tions. Previous work focused on the difficult question
of how many overlapping deletion events are responsi-
ble for each contiguous deleted region [2–4], but was
not able to account analytically for the dynamics of the
process.
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In the present paper we attack and solve the inference
problem of the size, form and spacing of deletion events,
allowing for a number of sweeps over the genome as a
way of accounting for overlapping deletions. We carry this
out in a continuous analog of the original discrete gene-
order context, and address the “one-sided” version of the
problem, where all deletions occur on one of the duplicate
chromosomes.
There has been a certain amount of work on the quan-

tification of the fractionation process, starting in 2006
with [5], which claimed deletions involved one gene at
a time, and [6], which treated the number of genes
deleted in a single event as a random variable with mean
greater than 1. Other work of this kind includes [1]
and [7]. However, the modelling of fractionation where
the whole genome evolves as a stochastic process began
with [2]. The previously unstudied phenomenon taken
into account in that work was the overlap of deletion
events, something that assumes much importance soon
after the fractionation process commences. Overlap must
be handled differently if all deletions occur from one
copy of the genome or in either copy. To isolate the
most important aspect of overlap, [2] gave analytical
results for the case where deletions all occurred on one
copy (“one-sided” model). Then [3] extended this to the
more realistic case where deletion could occur at dif-
ferent rates, or the same rate, from either copy of the
genome (“two-sided” model). This analysis was more dif-
ficult and could not be taken as far as with the one-sided
model.
For the one-sided model, a closed form solution of how

many deletion events contribute to a deleted region after
a single event (i.e., at a single step in the fractionation
process) was obtained in [4].

Methods
The proposedmodel
We model the fractionation process in terms of a number
of successive sweeps of a point process with parameter ν

on the positive reals, i.e., ν ∈ R+, representing one copy
of the genome. At the origin, we say that all points of this
genome are “visible”. A deletion event, rendering a seg-
ment of exponentially (mean μ) distributed length “invisi-
ble”, occurs at each point determined by the point process.
The second copy of the genome remains undisturbed
throughout and retains a 1-to-1, length preserving, corre-
spondence with the fractionating copy, without regard to
any disruption caused by invisibility. In applications, the
acceptance of the one-gene-at-a time theory of deletion
depends on whetherμ is below or above a certain absolute
value, but the present work is part of the mathematical
preliminaries to the practical questions. The eventual goal
of this work is to determine the relative size of the “spac-
ing” parameter ν and the deletion length parameterμ. The

model innovation here is to introduce the parameter ν in
the place of a rate parameter in previous work, which was
awkward to work with.
During the first sweep, illustrated at the top of Fig. 1

at time (or step) t = 1, the first deletion point x1 is
determined by sampling from the exponential distribution

ρ(x) = 1
ν
e−

x
ν , x ≥ 0, (1)

with mean ν. Then a deletion length a1 is chosen from
another exponential distribution

γ (a) = 1
μ
e−

a
μ , a ≥ 0, (2)

with mean μ. Normally, ν � μ, but this is not necessary
to the analysis. The segment [ x1, x1+a1) is “deleted", or is
designated as invisible. The next deletion point x2 is cho-
sen by sampling x′

2 from the first exponential distribution
(mean ν), so that x2 = x′

2 + x1 + a1. Then the length a2
of the second deleted segment is determined by sampling
from γ again. The process continues in this way to find
x3, a3, . . . Concatenating only those segments that are still
visible, we see that x1, x2, . . . are points determined by a
point process with parameter ν. Associated with each of
these points x is an “event counter" C(x). Initially, each
C(x) = 1. We define a function πt(i), i = 1, . . . measur-
ing the proportion of event counters registering i events at
time t ≥ 1. Thus π1(1) = 1 and π1(j) = 0, for all j > 1.
At times t = 1, 2, . . ., the second, third, . . . sweeps begin,

all independent of the first sweep and each other, and each
applied to the concatenated visible segments only. We
sample x(t)

1 and a(t)
1 in the same way as x1 and a1 according

to ρ and γ , respectively, to determine a deletion interval
[ x(t)

1 , x(t)
1 + a(t)

1 ).

Fig. 1 Processes pertinent to first sweep and t-th sweep. Solid
horizontal bars represent the visible regions of the genome. Grey
curves represent invisible regions. Dashedmarkers represent deletion
points, solid markers represent end of deletion segments. ν and μ are
the means of the deletion point spacing and deletion segment
length variables, while λ(t−1) is the mean space (=λt−1 in the text)
between visible deletion points after the t − 1-st sweep
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If the interval [ x(t)
1 , x(t)

1 + a(t)
1 ) contains no previously

defined deletion point, a new event counter at C(x(t)
1 ) is

set at 1. If [ x(t)
1 , x(t)

1 + a(t)
1 ) already contains j > 1 deletion

points z1, . . . , zj, the event counter at C(x(t)
1 ) is set at 1 +

∑j
i=1 C(zi). The j deletion points z1, . . . , zj become invisi-

ble, along with the rest of the segment [ x(t)
1 , x(t)

1 +a(t)
1 ) that

contains them.
We find the next deletion point by sampling x(t)′

2 from
ρ, and setting x2(t) = x(t)

1 + a(t)
1 + x(t)′

2 . We continue the
t sweep, adding visible deletion points and making oth-
ers invisible. Some deletion points from the earlier sweep
will remain unchanged, i.e. are still visible. The x(t)

i by
themselves define a point process with parameter ν on the
concatenated visible segments. But the x(t)

i and the addi-
tional deletion points remaining from the earlier sweep
define a process with mean λt , a parameter that decreases
with t, as the undeleted segments are interrupted by more
and more deletions. This parameter is important as it is
directly inferable from the observed genome at time t.
More important, it is clear, that at each sweep, more

and more of the genome becomes invisible. Since each
concatenation of visible segments still extends to the pos-
itive reals, we cannot observe directly how much the
genome has been reduced in absolute terms. But thanks

to the length-preserving isomorphism between the sec-
ond copy of the genome and the fractionating one, for any
large finite interval we can observe the proportion of the
genome that is left by time t and we can predict that it is
approximately (1 − μ

ν+μ
)t .

We will calculate λ, the number of deletion points in
[ xi, xi+1), the distribution p(j), j = 1, ... of the number j
of pre-existing deletion points in intervals deleted during
each sweep, and discuss how to calculate π1(j), j ≥ 1, the
proportion of event counters with C = j.

Results
The length of undeleted segments λ

After the first sweep, xi is the only deletion point in
[ x(1)

i , a(1)
i ) and the only deletion point in the visible

[ x(1)
i , x(1)

i+1), so that λ1 = ν. During the second sweep, the
number of these first-sweep deletion points that the visi-
ble [ x(2)

i , x(2)
i+1) contains is Poisson distributed with mean

ν
ν+μ

, while the remaining first-sweep deletion points that
the invisible [ x(2)

i , a(2)
i ) contains are Poisson distributed

with mean μ
ν+μ

. (These are approximations, since the true

means are x(2)
i+1−x(2)

i
x(2)
i+1+a(2)

i −2x(2)
i

and a(2)
i −x(2)

i
x(2)
i+1+a(2)

i −2x(2)
i
, respectively.)

In addition the visible segment contains one new deletion

Fig. 2 Cullen-Frey diagrams for length distributions of invisible (top) and visible (bottom) segments
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Table 1 Simulated values of shape and rate when μ
ν

= 1
3 , for a

range of values of μ, and t = 2

μ ν shape α rate β 1/β

1 3 0.8994863 0.7801536 1.281798866

2 6 0.8713054 0.3645944 2.742773888

3 9 0.8943245 0.2557653 3.909834524

4 12 0.8551860 0.1863732 5.365578313

5 15 0.8479933 0.1504409 6.647128540

6 18 0.8673458 0.1250687 7.995605615

7 21 0.8793444 0.1044622 9.572840702

8 24 0.91907486 0.09607099 10.40896945

9 27 0.91503151 0.08817842 11.34064321

10 30 0.82931206 0.07483308 13.36307419

point, created during the second sweep itself. We can then
predict λ2 to be roughly

λ̂2 = ν

1 + ν
ν+μ

. (3)

Suppose λt−1 is the parameter of the point process that
generates the deletion points visible after sweep t − 1.
Then, in the sweep at time t, the number of deletion points
that the invisible [ x(2)

i , a(2)
i ) will contain is Poisson dis-

tributed with mean μ
λt−1

. The number of deletion points
in the visible [ xi, xi+1), not including xi, is Poisson dis-
tributed with mean ν

λt−1
. In addition, the visible segment

contains one new deletion point, created during the t-th
sweep itself. λt can thus be predicted to be approximately

λ̂t = ν

1 + ν

λ̂t−1

. (4)

Fig. 3 Linear relation between 1/α and t − 1 for fixed μ
ν

Since λ̂1 = ν,

λ̂t = ν

t
. (5)

The treatment of overlapping deletions
The discussions in this section and the next do not depend
on t, so let 	 be the exponential distribution with mean λ.
From [4], the probability p0 that a deletion event contains
no extant deletion points is

p0 =
∫ ∞

l=0

l	(l)
λ

∫ l

x=0

1
l

∫ l−x

y=0
γ (y)dy dx dl. (6)

Carrying out the integrations, we find

p0 = λ

μ + λ
. (7)

The probability p1 that a deletion event overlaps exactly
one existing run of deletions is:

p1 = 1
λ

∫ ∞

l=0

∫ ∞

z=0
	(l)	(z)

∫ l

x=0

∫ l−x+z

y=l−x
γ (y)dy dx dz dl

(8)

= λ

μ + λ
· μ

μ + λ
. (9)

It can be proved by induction that the probability a dele-
tion event overlaps exactly q existing runs of deletions is:

pq = λ

μ + λ

(
μ

μ + λ

)q
. (10)

Thus we have the surprisingly uncomplicated result that
the number q of pre-existing runs of single-copy regions
overlapped by a new deletion event is geometrically dis-
tributed on q = 0, 1, . . . with parameter μ/(μ + λ).

Fig. 4 Relation between slope of 1/α as a function of t, and μ
ν



The Author(s) BMC Bioinformatics 2016, 17(Suppl 14):412 Page 237 of 282

The distribution of event counts π

The event count C(x) at a visible deletion point x tells
us how many deletion events have occurred to make
up the invisible segment adjacent to x. In contrast to
the undeleted segments, where we know that no events

occurred, observing that a segment has been deleted does
not tell us C(x). Some work has focused on the distribu-
tion π(i) of the probabilities that a deletion point x has
C(x) = i, and we are able to calculate how π changes
with each sweep. Then we can update πt by a linear

Fig. 5 Relation between 1/rate (1/β) as a function of t for fixed μ
ν
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Fig. 6 Relation between slope of ln 1/β as a function of t, and μ
ν

combination of the distribution of changes due to the dele-
tion and the existing πt−1. Let 
(i) represent the change
in πi at any sweep t. This can be calculated from Eq. (10)
and the net effect that a deletion overlapping q existing
runs has on the various π . Without giving details here,


(1) = p0 − p1 [π(1)] − 2p2 [π(1)] − 3p3 [π(1)]
− 4p4 [π(1)] − . . . (11)


(2)= p1 [π(1)] − p1 [π(2)] − 2p2 [π(2)] −3p3 [π(2)]
− 4p4 [π(2)] − ... (12)


(3) = p1 [π(2)] + p2
[
(π(1))2

] − p1 [π(3)]
− 2p2 [π(3)] − 3p3 [π(3)] − 4p4 [π(3)] − ...

(13)

(4) = p1 [π(3)] + 2p2 [π(1)π(2)] + p3

[
(π(1))3

]

− p1 [π(4)] − 2p2 [π(4)] − 3p3 [π(4)] (14)
− 4p4 [π(4)] − . . .


(5) = p1 [π(4)] + p2
[
2π(1)π(3) + (π(2))2

]

+ 3p3
[
(π(1))2 π(2)

] + p4
[
(π(1))4

]
(15)

− p1 [π(5)] − 2p2 [π(5)] − 3p3 [π(5)]
− 4p4 [π(5)] − 5p5 [π(5)] − . . . (16)

. . .

Unfortunately, even knowing the dynamics of C does
not help us with the inference problem, since the num-
ber of events associated with an invisible segment, is not
directly associated with the total length of the segment.
It is known that the overlapping gamma variables making
up each segment are related in a complex way, and cannot
simply be treated as the sum of gammas drawn a single
population.
This leads us to the approach in the next two sections,

where simulations strongly suggest the functional form
of the distribution of invisible segment lengths, including
shape and rate parameters that can be observed, leading
to inference of the simulation parameters based on the
observations.

Simulation
Our simulation experiments were based on initial visible
segments of length 10,000, which is very long in com-
parison to the deletion lengths with μ ≤ 10. In other
words, we do not risk artificial effects, like a disappear-
ing genome, after a few sweeps, t ≤ 10. Moreover, after
each sweep, if the total undeleted length = L, we add, to
the end of the remaining visible portion, segments where
the lengths of the visible portions total 10, 000− L, copied
from a replicate trial. The program, written in Java, was
repeated 5 times for each configuration of the parameters
μ, ν and t. Each set of 5 trials averaged a total of less than
3 min on a Lenovo Y50 laptop.
After each sweep, we calculated the distribution of seg-

ment lengths for both the invisible and visible parts of the
model genome.

Parameter estimation
The results of the simulations strongly suggest that the
lengths of the invisible segments are gamma distributed,
as illustrated in the Cullen-Frey graphs at the top of Fig. 2.
As the parameters ν,μ and t change, the moments of the
simulated distributions also change, but remain those of
a gamma distribution. Similarly, the distribution of the
lengths of the visible segments is always exponential, as at
the bottom of Fig. 2, with rate

λ−1 = t
ν
. (17)

Table 2 μ = 1, ν = 3, t = 5, λ−1 = 0.16656,α = 0.6711,β = 0.3504

par\time t 3 4 5 6 7

μ 1.231661635 1.063543459 1.021578166 1.018615845 1.033112259

ν 1.801158145 2.401544193 3.001930241 3.602316289 4.202702338

βt 0.30056014 0.338494894 0.338654644 0.325314125 0.306788889

100δ 14.23403354 3.409208693 3.363623543 7.170390806 12.4566366

Bold entry indicates the tmost consistent with the observed data on α,β and λ
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As a first step towards the ability to infer μ and ν from
the length distributions of invisible and visible segments,
we would like to predict α and β , the shape and rate
parameters of the gamma distribution, from t,μ and ν.
Table 1 suggests, for a fixed value of t and a fixed value μ

ν
,

that shape is constant as μ changes, and that the rate is
inversely proportion to μ.
Similar results hold for each combination of t and

μ
ν
, with different shape constants and rate proportions.

Figure 3 shows how the shape constant varies with t for
four values of μ

ν
.

The four coefficients of the linear relationships inferred
from Fig. 3 are plotted in Fig. 4. Fitting this curve with a
quadratic yields

α−1 − 1 =[−0.1725(
μ

ν
)2 + 0.5333

μ

ν
− 0.039] (t − 1).

(18)

As for the rate parameter of the gamma, Fig. 5 shows
that it is the logarithm of the rate that behaves linearly
over time for a fixed value of μ

ν
.

The four coefficients of the linear relationships inferred
from Fig. 5 are plotted in Fig. 6. Fitting this curve with a
quadratic yields

β−1 = μ exp
[(

−0.2458
(μ

ν

)2+ 0.9257
μ

ν
− 0.0212

)

(t − 1)
]

(19)

The observable quantities in our model are the distri-
bution of visible segment lengths, predicted to be expo-
nential with mean λ, and the shape and rate parameters
α and β of the predicted gamma distribution of invis-
ible segment lengths. These three observable quantities
are related to the unknown model parameters μ, ν, and t
through Eqs. (17), (18) and (19). With the given value of
these parameters, we can estimate the values ofμ, ν, and t.
Lacking a closed form solution for μ, ν, and t in terms of

λ,α and β , we use the following procedure. Since t must
be an integer, we can find values of νt and μt for each t =
1, 2, . . . with Eqs. (17) and (18). Then we can solve Eq. (19)
to find βt .

Table 3 μ=6, ν =12, t=2, λ−1 = 0.17,α = 0.8488,β = 0.12063

par\time t 2 3 4 5 6 7

μ 5.7892 4.7235 4.7286 4.9648 5.2990 5.6560

ν 12 18 24 30 36 42

βt 0.1195 0.1406 0.1342 0.1220 0.1094 0.0976

100δ 0.9107 16.5215 11.2325 1.1655 9.3410 19.0791

Bold entry indicates the tmost consistent with the observed data on α,β and λ

Table 4 μ = 1, ν = 3, t = 3, λ−1 = 1.017737,α = 0.7977859,
β = 0.5649623

par\time t 2 3 4 5 6

μ 1.4006 1.0332 0.9909 1.0102 1.0523

ν 1.9651 2.9477 3.9303 4.9129 5.8954

βt 0.4271 0.5606 0.5596 0.5246 0.4810

100δ 24.39 0.7780 0.9497 7.15 14.87

Bold entry indicates the tmost consistent with the observed data on α,β and λ

We then compare all the βt , for t = 1, 2, . . . with the β

observed in the simulation, and set

t̂ = argmin
{

β − βt
β

}

(20)

As an example, in one set of simulations where μ =
1, ν = 3 and t = 5, the experimental value of parame-
ters are λ−1 = 1.665595, shape = 0.6711252 and β =
0.3504422. When t ≤ 2, there is no solution for μ. For
t > 2, Table 2 shows the results of this procedure, where
100δ is 100 × the normalized difference between β and βt
in Eq. (20).
The minimum value of 100δ occurs when t = 5,

expressing the fact that the inferred values of μ and ν,
together with t = 5, are the parameter values most consis-
tent with the observed values of α,β and λ. Other typical
examples spanning a range of parameter values are given
in Tables 3, 4 and 5.
It can be seen, at least in these diverse examples, that the

inference procedure generally identifies the correct value
of t, and good estimates of μ and ν.

Discussion
The introduction of sweeps consisting of alternating
jumps and deletions, with time-invariant parameters ν

and μ, provide us with an improved possibility of solving
the fractionationmodel completely.We do announce such
a solution, though it has much room for improvement.
Though the exponential distribution of visible segment
lengths should be easy to establish analytically, it is also
possible that the gamma distribution of invisible segment
lengths could be proved, including the α and β parame-
ters as a function of the number of sweeps. Depending on

Table 5 μ = 5, ν = 15, t = 8, λ−1 = 0.532632,α = 0.53869147,
β = 0.03107084

par\time t 4 5 6 7 8 9 10

μ 6.2529 5.4956 5.2256 5.1247 5.1051 5.1313 5.1861

ν 7.5099 9.3873 11.2648 13.1423 15.0198 16.8972 18.7747

βt 0.0281 0.0317 0.0324 0.0318 0.0306 0.0292 0.0277

100δ 9.43 2.18 4.22 2.33 1.39 6.00 10.97

Bold entry indicates the tmost consistent with the observed data on α,β and λ
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the functional form of such a solution, the inference of t,μ
and ν might be amenable through closed form formulae
rather than the quadratic modeling. Nevertheless, we have
succeeded for the first time in inferring the parameters
of a fractionation model, albeit a “one-sided” model and a
continuous analog of more realistic discrete fractionation
models.

Conclusions
Aside from theoretical improvements, the first priority for
this work should be the return to a discrete gene-order
model of fractionation with the insights gained in the cur-
rent report. This should be extended to, or at least tested
on simulations of, two-sided fractionation models with
subgenome dominance (higher deletion rates on one copy
of the genome than the other).
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