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Abstract

Background: The next-generation of sequencing technologies, along with the development of bioinformatics, are
generating a growing number of reads every day. For the convenience of further research, these reads should be
aligned to the reference genome by read alignment tools. Despite the diversity of read alignment tools, most have
no comprehensive advantage in both accuracy and speed. For example, BWA has comparatively high accuracy, but
its speed leaves much to be desired, becoming a bottleneck while an increasing number of reads need to be
aligned every day. We believe that the speed of read alignment tools still has huge room for improvement, while

maintaining little to no loss in accuracy.

Results: Here we implement a new read alignment tool, Fast Seed-and-Vote Aligner (FSVA), which is based on
seeding and voting. FSVA achieves a high accuracy close to BWA and simultaneously has a very high speed. It only
requires ~10-15 CPU hours to run a whole genome read alignment, which is ~5-7 times faster than BWA.

Conclusions: In some cases, reads have to be aligned in a short time. Where requirement of accuracy is not very

stringent, FSVA would be a promising option.
FSVA is available at https://github.com/Topwood91/FSVA
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Background

Next-generation sequencing technologies have devel-
oped rapidly in recent years mainly in two regards. On
the one hand, the throughput potential is tremendous.
For example, a system consisting of a set of 10 HiSeq X
ultra-high-throughput instruments (HiSeq X10) can de-
liver over 18,000 human genomes per year. On the other
hand, the cost of whole genome sequencing is decreas-
ing steadily. Currently the cost of whole genome sequen-
cing for an individual or patient stands at roughly
$1,000. It seems likely that this trend will continue, and
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sequencing costs will continue to fall. This allows access
to genome sequencing for a large percentage of the
population. All of these changes have led to a sharp in-
crease in the amount of sequence data and pose a new
challenge to sequence analyzers.

Usually, the data produced by a sequencing platform is
not a single sequence with all DNA information, but
consists instead of a large number of short subse-
quences, called reads, with partial DNA information.
Read alignment is then required to map reads to a refer-
ence genome and identify the coordinate of each individ-
ual read on the reference. The past few years have
witnessed the appearance of diverse read alignment
tools, which can be roughly divided into two categories:
tools based on hash table and tools based on prefix/
suffix trie [1]. A tool from the first category usually
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builds a hash table for the genome reference, which
enables a shorter part of the read (called seed) to be
mapped to the genome in constant time. Then, the
coordinate of the read is determined from the result
of seed extension at each of its mapping locations.
Representatives of this category are BLAST [2], SOAP
[3] and MAQ [4]. A tool of the second category, on
the other hand, usually searches the prefix/suffix trie
of the genome and then calculates the coordinate of
each individual read with the help of Burrows-Wheeler
Transform [5]. Representatives of this category include
BWA [6], Bowtie [7] and SOAP2 [8].

Read alignment is usually the first and most time con-
suming step of genome sequence analysis. Although
some existing tools are widely used with great success,
their speeds cannot keep up with data increases. The
very widely-used BWA definitely has many advantages
and achieves relatively accurate results, but its speed is
not as fast as could be desired. Several new versions of
BWA such as BWA-SW [9] and BWA-MEM [10] are
still limited by low speeds. For example, using BWA-
MEM to process a read alignment on a whole genome
(the library size is ~200 GB) usually takes ~70-80 CPU
hours when running on a single core. This means that
16-20 CPU cores are required to ensure the speed of
read alignment can keep up with the speed of data gen-
eration for a HiSeq X10. Other tools have no prominent
advantage in speed at the same accuracy level as BWA.
Thus, speeding up the read alignment is of vital import-
ance and can significantly improve the efficiency of
sequence analysis.

To accelerate the speed, researchers have tried many
methods, such as seeking assistance from GPU [11],
cloud computing [12] and distributed computing [13].
But these methods usually have a high requirement for
hardware and often cannot be implemented due to re-
source limitation. Naturally, improvement in algorithm
is a better option, such as in Subread [14]. Subread is
also based on hash table, which adopts a seed-and-vote
strategy instead of the extending step of usual hash-table
methods. Like many read alignment tools, Subread first
builds an index for the reference genome, which enables
a subread, a subsequence of a read, to identify its coord-
inate on the reference genome in constant time. Then, it
extracts multiple subreads from each individual read,
gets the coordinate of the subread on the reference gen-
ome, and uses the coordinates of the subread to vote the
final mapping location of the read. Although the seed-
and-vote strategy is time-saving, the mapping accuracy
of Subread is rather unsatisfactory in practice. Besides,
our tests on real data show that Subread does not work
well with large sequence data (over 300GB). It produces
one third of the output only, while running for more
than 500 CPU hours.
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In this study, we propose a new read alignment tool,
Fast Seed-and-Vote Aligner (FSVA), which is ~5-7 times
faster in running time than BWA-MEM while keeping a
similar mapping accuracy as BWA-MEM. In practice, for
a whole genome read alignment (library size ~200 GB),
FSVA costs ~10-15 CPU hours on a single core and ~4-6
CPU hours on four cores. The respective time cost of
BWA-MEM in the same scenario is about ~70 CPU hours
and ~20 CPU hours. This advantage of speed makes FSVA
a promising read alignment tool for big data.

FSVA, borrowing the seed-and-vote strategy, builds a
hash table for a reference genome and extracts seeds
from the read to vote the coordinate. Compared with
Subread, the main improvement of FSVA lies in the lon-
ger seed, which allows improved running speed and ac-
curacy. While a longer seed cannot be represented as an
integer in many programming languages, we avoid this
problem by expressing the seed as a large prime number,
guaranteeing a seed can be represented as an integer,
and the size of hash table is not too big. This specific
method is introduced in detail in the METHODS sec-
tion. Experiments on simulated data and real data illus-
trate the great advantages of FSVA on time saving and
present the alignment accuracy of FSVA as close to that
of BWA-MEM, which is shown in the RESULTS section.

Methods

FSVA, based on a seed-and-vote strategy, extracts seeds
from a read and makes them vote the coordinate of the
read. This method includes two steps: indexing and vot-
ing. The detailed methods are described in following
sections. One point to note is that in the METHODS
section, our algorithm is introduced based on 150 bp
reads, which is the read length of HiSeq X10. In the ac-
tual situation, our tool FSVA can automatically adjust its
parameters to fit various read lengths.

Building the index

Building the index refers to the building of a hash table
for a reference genome sequence. In our hash table, the
key is a 32bit unsigned integer converted from a subse-
quence of the reference genome. The value is a vector of
32bit unsigned integer, representing the location of the
reference which a seed can be exactly mapped to.

Calculating keys

A DNA sequence, which usually contains only 4 charac-
ters (A, G, C, T), can be converted to a quaternary num-
ber. Thus an n-long DNA sequence can be converted to
an unsigned quaternary integer with n digits, or an un-
signed binary integer with 2n digits, namely, a 2n bit
binary integer. Here we extract 31 bp subsequences from
the beginning of a reference genome as keys, and the
size of a sliding window of each pair of neighbor
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Fig. 1 The process of key calculation. X; is a 62bit unsigned integer calculated by converting a 31 bp subsequence into a binary number. key; is a

32 bit unsigned integer, calculated by X; modulo a large prime number M

subsequences is set as 8 bp. To store a 31 bp subse-
quence, a 62bit unsigned binary integer is needed. For
the sake of memory saving, we designate the 62bit un-
signed integer modulo a large prime number M. Herein
M is no bigger than the maximum of a 32bit unsigned
integer. Thus the 62bit unsigned integer is converted to
a 32bit one, which is the final key utilized in the hash
table. If a 31 bp subsequence extracted from the refer-
ence genome consists of other characters (not A, C, G
and T), it is dropped without key calculation. The
process of key calculation is shown in Fig. 1.

Building the hash table

The hash table has M pairs of key and value, with the
key coming from the modulo operation. Since the key is
calculated from converting an unsigned 62bit integer
into a 32 bit one by modulo M operation, different sub-
sequences may be given the same key. Therefore, a vec-
tor is utilized to store coordinates of the subsequences
with the same key, and the value of the key is this vec-
tor. If no value exists for a key, we mark NULL. Figure 2
shows an example of the hash table.

Generating seeds and voting

We treat each one 31 bp subsequence extracted from a
read as a seed. Thus an n-long read can generate a total
of n-30 different seeds. The process of key calculation of
hash table building is utilized also to get the key of a
seed. Then, by querying the hash table with the key of a
seed, the location of the seed can be located. The seed
set with size n-30 of an n-long read can search out its
corresponding coordinate set with at most n-30 vectors.
Coordinates recorded in these vectors vote the coordin-
ate of the read, and the one with most votes is selected.

ATCCTTGGAGGCTGAGTCACTGAGCCATCGCTAGCTAGCATGACGCGTAGCTA...

11 1

Xl XZ X3

!

key:  key, keys

Fig. 2 An example of our hash table. Vectorn represents the vector
of coordinates of subsequences with the same key n. If no
subsequences with the key m, the value of m is NULL

Herein, the vote counting is based on a block. A block is
an interval of the genome reference with same length of
the read. Figure 3a shows the process of generating
seeds and voting.

In practice, the final mapping block should have at
least two votes; otherwise, we believe this read cannot be
mapped to the reference genome. Second, if more than
one block is tied for most votes, we choose one ran-
domly and set its mapping quality as 0. Third, if the
alignment has more than two mismatches, we perform a
Smith-Waterman dynamic programming between the
read and the extending block. The extending block is
the block with the most votes extending towards up-
stream and downstream with 36 bp (Fig. 3b). Fourth,
our experience from a range of experiments shows that
99% seeds will vote less than ~450 coordinates on the
default condition (read length is 150 and seed length is
31), and if a seed votes more than 450 coordinates, we
believe this seed is unrepresentative. These unrepresen-
tative seeds are dropped to avoid time-wasting. This
threshold of how many coordinates at most a seed can
vote is a tradeoff between time cost and alignment ac-
curacy. In our tool, this threshold can be set by users for
specific requirements.

In our experiment, we set the length of seed as 31 bp,
and for hash table also 31 bp subsequences are extracted
from the genome reference to calculate keys. If seed is
shorter, many seeds will be generated from a read and
much more coordinates could be selected as candidates
waiting to be voted upon. Consequently, the time cost is
higher. On the other hand, if the seed length is larger
than 32 bp, it cannot be converted to a 64bit integer and
cannot be represented in most programming languages,
which will introduce trouble on the programming side.

Besides, in our algorithm, 31 bp and not 32 bp is se-
lected as seed length is to avoid an unwanted situation
where a perfect match block gets less votes than a block
with mismatches. In general, we should ideally prefer
the perfect match block. We give an example in Fig. 4.
Assuming the read length is 150 bp without loss of gen-
erality, if the seed length is 32 bp, a block with 2 mis-
matches, shown in Fig. 4a, could get one more votes
than a perfect match block shown in Fig. 4b. The voting
strategy selects the block with most votes, while in most
situations, the perfect match block shown in Fig. 4b is
preferable to the block with mismatches shown in Fig. 4a.
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reads GGAGCTAGTCGATTGCGTACGATTCATGTCTGGTAC...
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3GBP\ More than 2 mismatches jGBP
reference ... GCTAG...GTCGTAGCCCTGTC...TGGATCGTATGCTATT...ACCGT......
reads TCGCCCGATC...TGGATGGTATG
L]
b Smith-Waterman

Fig. 3 a The process of generating seeds and voting. a, b, ¢, d and e are determined by the same method of key calculation and used to query
the hash table. If the value is not NULL, we can get a vector which stores some coordinates and then votes on each one of all coordinates in the
value vector. After voting from all seeds is completed, the block with the most votes is selected as the mapping coordinate of the read. b In case
of more than 2 mismatches between a read and its mapping block (block with the most votes), the mapping block is extended towards bi-directions
with 36 bp, then Smith-Waterman algorithm is applied on the read and the extending block. In this figure, green, red, and blue represent a match, a
mismatch, and the 36 bp upstream and downstream of the extending block, respectively
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Fig. 4 a A block having 2 mismatches. In this situation, the first seed of the read voting to the block starts at the first base pair. Since the gap
between two neighbor seeds is 8, the seeds start at the 1st, 9th, 17th, 25th, 33rd, 41st, 49th, 57th, 65th, 73rd, 81st, 89th, 97th, 105th, 113rd base
pair voting to the block, and totals 15 votes. b A block having 0 mismatches. In this situation, the first seed of the read voting to the block starts
at the 8th base pair, and the 8th, 16th, 24th, 32nd, 40th, 48th, 56th, 64th, 72nd, 80th, 88th, 96th, 104th, 112nd base pair voting to the block,
totaling 14 votes. Here, green color stands for a match and red color for a mismatch
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Generally, with a read length of 150 and a seed length of
32, the read with the first seed starting at the first seven
base pairs or at the eighth base pair will gain at most 15
and 14 votes, respectively.

In this way if the seed length is set as 31 bp, the ab-
normal voting results caused by 32 bp seed length could
be avoided. Each case of exact match will be given 15
votes. If the read length is not 150 bp, FSVA can auto-
matically adjust the seed length to fit the read length by
default. Users can manually set seed length also in our
tool configuration.

Mapping quality

For each alignment, FSVA calculates a mapping quality
score by comparing the votes of the optimal and the
suboptimal blocks. Specifically, the mapping quality
score is calculated as following:

mapq = min((optimal-suboptimal) x 6, 60)

Where optimal and suboptimal represent the number
of votes of the block with the most votes and second
most votes, respectively. Obviously our mapping quality
score is a multiple of 6 and no more than 60.

Results

To study the performance of FSVA, we compared FSVA
with Subread, BWA and Bowtie2 [15]. BWA is a widely-
used read alignment tool based on prefix trie and per-
forms well in practice. BWA has three modes: aln/
samse/sampe, bwasw and mem. Here we chose mem,
because mem is the best choice for no time cost concern
and alignment accuracy for reads with a length more
than 100 bp [16]. Bowtie2, a tool from the hash table
category, locates a seed using the hash table and imple-
ments a single-instruction-multiple-data-accelerated dy-
namic program to extend the seed. Both BWA and
Bowtie2 are very popular in read alignment. Subread is
the tool closest to FSVA in its methodology.

In our experiments, when running BWA-MEM, Sub-
read and Bowtie2, all options are set as default. Although
FSVA can run on multiple threads, to simplify the com-
parison of time cost, we ran the test only on single
thread for both the simulated data and the real data.

Evaluation on simulated data

Simulated dataset

Our simulated data is produced by wgsim, a tool pro-
vided by SAMtools [17]. With the help of wgsim, we can
get a set of reads from the reference genome sequence.
As the reads are fetched from the reference, we know
the exact coordinate of each individual read. Thus, we
can compare the predicted location by each alignment
tool and the real location to evaluate their accuracy.
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Here we use wgsim to fetch 1 million simulated reads
from the whole genome sequence hs37d5. Some argu-
ments in Wgsim are set to simulate the properties of
reads. To simulate the real situation, we allowed the base
error rate be 0.4% and the mutation rate be 0.1%, in
which the rate of SNP mutations is 0.085%, and the rate
of indel mutation is 0.015%. To study the effect of read
length, we generate 125 bp and 150 bp reads respectively
in the simulation test.

Results on simulated data

As the read is taken from the reference, we know its
exact coordinate. If the distance between the real read
and the predicted one from a tool is no more than
30 bp, we treat it as a correct alignment.

First, to evaluate the influence of seed length on the
final alignment results in FSVA, we did a test on 150 bp
reads and 125 bp reads using seeds with different length,
and Table 1 shows the result. The comparisons are based
on three aspects, time cost, confident mapping percent
(with a mapping quality higher than the threshold), and
error rate. Obviously, with the seed length increase, the
cost of time also increases, and the performance of
ESVA is first improved then reduced. To guarantee the
speed of FSVA, at the same time taking the situation de-
scribed by Fig. 4 into consideration, we decided to use
31 bp seed and 30 bp seed respectively when processing
150 bp reads and 125 bp reads, and the test shows FSVA
has the best performance using these parameters. Here,
32 bp is the max value of seed length in our program,
and users should avoid setting a seed length bigger than
32.

The overall performances of BWA-MEM, Subread,
Bowtie2 and FSVA on simulated data are shown in
Table 2. These tests are implemented on 125 bp and
150 bp reads respectively, where the number following
the tool name indicates the read length. In regards to
time cost, obviously FSVA holds great advantage. The
time cost of FSVA on either 125 bp or 150 bp reads and
either single-end reads or pair-end reads is much lower
than other tools. Concretely, FSVA runs 3—4 times faster

Table 1 Evaluation using seeds with different length

rl 125 bp 150 bp

sl Time(s) Conf(%) Err(%) Time(s) Conf(%) Err(%)
32bp 146 954 0.081 174 96.3 0.048
31 bp 176 96.2 0.035
30 bp 152 95.4 0.041
23bp 174 95.5 0.062 213 96.2 0.040
16bp 218 95.0 0.100 269 96.0 0.072

rl represents read length, sl represents seed length. All the experiments run on
a single core of Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz.The bold texts rep-
resent the best performance on different read length
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Table 2 Evaluation on simulated data
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Tool sTime(s) sConf(%) SErr(%) pTime(s) pConf(%) pErT(%)
BWA-MEM-125 581 96.2 0.030 642 97.8 0.018
Subread-125 227 935 0.896 204 95.8 1.268
FSVA-125 170 935 0.014 150 954 0.041
Bowtie2-125 792 94.9 0.020 772 94.9 0.297
BWA-MEM-150 748 96.7 0.023 737 98.0 0.012
Subread-150 271 95.0 0.728 246 96.9 1.054
FSVA-150 188 95.0 0.014 173 96.2 0.035
Bowtie2-150 966 95.0 0.015 929 94.9 0.260

Except in the ‘Tool’ column, the left three columns starting with ‘s’ represent the performance on single-end data, and the right three columns starting with ‘p’
represent the performance on pair-end data. ‘sTime] ‘sConf, ‘sErr’ refer to time cost, confident mapping percent and error rate correspondingly for single-end data.
In the first element of each row, such as ‘BWA-MEM-125; the number 125 following the tool name BWA-MEM represents read length for this test. All the experiments

were run on a single core Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

than BWA-MEM, 1-2 times faster than Subread and 4—
5 times faster than Bowtie2. In time cost considerations,
indexing time is not included, because all four tools need
to index, which thus is not a main factor for whole gen-
ome data processing. Compared with BWA-MEM, FSVA
performs a little worse on confident mapping percent
and error rate. The difference is not high, 1-2% in
confident mapping percent and about 0.02% in error
rate. Excluding time cost, on single-end data, perform-
ance of FSVA and Bowtie2 are very close, while on pair-
end data, the error rate of Bowtie2 is a little higher,
0.297 vs 0.041 and 0.260 vs 0.035. Subread is closest to
ESVA in methodology, however the performance of Sub-
read in our test is comprehensively behind FSVA, espe-
cially the error rate of Subread, which is too high to be
satisfactory.

Consistent with intuitions, longer reads lead to better
confident mapping percent, error rate and higher time
cost for all tools. For FSVA, the time increase caused by
long reads could almost be ignored, which means FSVA
will be more competitive with the trend of reads becom-
ing longer and longer.

Figure 5 shows the relationship between unmapped
percent and error mapped percent on pair-end data for
the 125 bp reads (5(a)) and 150 bp reads (5(b)). Obvi-
ously BWA-MEM has the best performance, with both
error mapped percent and unmapped percent being very
low and varying in a small range. Our FSVA performed
a little worse than BWA-MEM and much better than
Subread and Bowtie2. When the mapping quality thresh-
old is low, in the range of 1-6, FSVA has a relatively low
unmapped percent and a high error mapped percent.
With the quality threshold increasing, FSVA’s unmapped
percent rises while error mapped percent declines.
Noticeably, there is no difference in the error rate be-
tween BWA-MEM and FSVA when the mapping
quality threshold is higher than 18. This means we

can confidently set the threshold as 18 in practice.
Under this condition, FSVA has the almost same accuracy
as BWA-MEM, except for a slightly lower confident map-
ping percent. Subread and Bowtie2 show a similar trend
as FSVA, but have worse performance than FSVA both on
unmapped percent and error mapped percent. Besides,
comparing the results on 125 bp vs 150 bp for each tool,
we find the performance of all four tools are improved
with the increase of read length increases, especially for
FSVA. FSVA is more applicable for long reads since longer
reads means more seeds, and consequently less uncer-
tainty on voting. Due to this feature, the performance
of FSVA is improved further when the read length
increases.

Although FSVA is not superior to BWA-MEM in
terms of mapping accuracy, its advantage of time saving
is extremely significant. In some cases, read data needs
to be processed in a short time and the requirement of
accuracy is not very stringent, and for this FSVA is un-
doubtedly the best choice. In next section, tests on real
data proves that the difference of accuracy between
FSVA and BWA-MEM does not have much influence on
downstream variant calling.

As for storage memory, BWA-MEM, FSVA, Subread
and Bowtie2 need 5.2, 7.1, 6.7 and 3.2GB respectively,
on both 125 bp and 150 bp reads. This level of memory
cost can be tolerated by a modern personal computer,
let alone a server. Thus, memory cost is not a major
concern of read mapping tools.

Evaluation on real data

Real dataset

Five real whole genome sequenced datasets from Illumina
HiSeq X10 were used to evaluate these four tools. All the
reads were 150 bp and the number of reads varied from
~300 to ~500 million. The library sizes of these five data-
sets are shown in Table 3.
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Fig. 5 The variety between unmapped percent and error rate on the 125 bp reads (a) and the 150 bp reads (b). These two figures show the
unmapped percent and error rate at each mapping quality level from 1 to 60. The two figures show a similar trend in that the error mapped
percentage declines with the rise of unmapped percentage. This is because with the rise of mapping quality threshold, the number of
alignments with a mapping quality below the threshold increases, and the alignment with a high mapping quality is less likely to be an
error mapping

Results on real data

Table 4 presents the time cost of BWA-MEM, Subread,
FSVA and Bowtie2 on five real data sets shown in
Table 3. As in the simulation tests, FSVA is the most
time-saving method and this element of FSVA is

Table 3 Library size of the five datasets
Dataset1
201 GB

Dataset3
298 GB

Dataset2
290 GB

Dataset5
342 GB

Dataset4
284 GB

Library size

much more significant (6 ~7 times faster) when com-
pared with BWA-MEM. For a genome sequences
dataset with a library size of ~300 GB, FSVA requires
less than 1 day while BWA-MEM requires almost
6 days. The time cost of FSVA is also much less than
that of Bowtie2, almost 6 times less. On the real
dataset, Subread cost more time than BWA-MEM
and Bowtie2, let alone FSVA. And in the case of big
sequencing data (Dataset 2-5 in Table 3), after over
30,000 min (almost 21 days) Subread had only processed
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Table 4 Time cost on real data

Tool Timel(m) Time2(m) Time3(m) Time4(m) Time5(m)
BWA-MEM 4443 7783 8311 8056 9181
Subread 8894 - - - -

FSVA 812 1184 1385 1335 1541
Bowtie2 5191 6384 6998 6694 7781

Time cost (minutes) of BWA-MEM, Subread, FSVA and Bowtie2 on real data.
These tools all ran on a single core Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

one third of the input data. Therefore, it was dropped by
us for big data.

To study the influence of alignment results on down-
stream variant calling, we rely on SAMtools. SAMtools
is a suite of utilities for interacting with high-throughput
sequencing data. One of its utilities is taking output gen-
erated by short read aligners like FSVA and BWA-MEM,
and calling variants. For each of these four tools, FSVA,
BWA-MEM, Bowtie2 and Subread, we consistently uti-
lized SAMtools as variant caller. Then, with some statis-
tical factors of the called variants starting from each
aligner, we compared the performance of the four tools.
These statistical factors included the number of variants
and Ti/Tv ratio. For variants, Ti/Tv is a ratio of the
number of transition to transversion substitutions. Re-
cent human studies particularly from the 1000 Genomes
Project have been showing that for whole human gen-
ome, this ratio should be around 2-2.1. Since Subread
did not complete output in the big sequencing datasets
(as seen in Table 4), the following analysis is based on
Datasetl of Table 3.
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In Fig. 6, relationship between Ti/Tv ratio and called
variant quality is shown. In general, higher variant qual-
ity means less variants and bigger Ti/Tv ratio. The
curves of Ti/Tv to variant quality of FSVA and BWA-
MEM are closest, and are in the middle of the curves of
Bowtie2 and Subread. In the very low quality region, the
Ti/Tv ratio of FSVA is still above 2, better than those of
other three tools.

Figure 7 shows the number of called variants by
SAMtools given the alignment results from BWA-MEM,
Subread, Bowtie2 and FSVA, respectively. If the variant
quality threshold is set as 50, the number of called vari-
ants is in the range of 3.6—4 million, and it decreases to
around 2 million if the quality threshold is above 200.
Overall, for variant calling, BWA-MEM is the tool with
most sensitivity, and consequently false positives of
BWA-MEM may be more frequent than FSVA and
Bowties with high probability. To further illustrate the
confidence of called variants of each tool, we present a
Venn diagram of the number of variants with high qual-
ity (higher than 200) in Fig. 8. For FSVA, the vast major-
ity of the variants can also be called from the alignment
output of at least one of the other three alignment tools.
Specifically, 89.05% is identified from the results of all
the four tools and only 0.19% (4816) cannot be called via
any one of other three tools. For BWA-MEM, the
corresponding two numbers are 76.68 and 6.35%. For
Bowtie2, these numbers are 88.04 and 0.43% corres-
pondingly. The total number of called variants based on
Subread is very close to BWA-MEM, while the number
of called variants only via Subread is highest, and at
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Fig. 6 The Ti/Tv ratio of the variants called by SAMtools using the result of BWA-MEM, Subread, Bowtie2 or FSVA. The x-axis stands for the quality

quality
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Fig. 7 Number of variants called by Samtools using the result of BWA-MEM, Subread, Bowtie2 and FSVA separately. The x-axis stands for the quality of
the variant, and the y-axis for the number of variants called by BWA-MEM, Subread, Bowtie2 and FSVA
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293,674 it is much higher than that of BWA-MEM
(185,402). Only 4814 variants are called only via FSVA.
This may demonstrate the specificity of called variants
based on FSVA is best when compared with the other
three tools. The difference between FSVA and each one
of the other three tools is studied even further from the
point of frequency of called variants in cohort, shown in
Fig. 9. Variant frequency is extracted from cohort studies
including 1000 Genome Project, EXAC and CHARGE.

We can infer that over one third of the variants called
via FSVA but not called via BWA-MEM or Subread have
a frequency higher than 10%, and almost two third of
the variants called via FSVA but not called via Bowtie2
have a frequency higher than 10%.

According to the results of the real data, it is reason-
able to say that the read alignment performance of FSVA
can be used to get a high-quality variant set. The tests
on real data supplement evidence from the simulation

Rowtie?
bowtiel

Fig. 8 A Venn Diagram of the number of variants with high quality
.

Subread
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Fig. 9 Frequency distribution of the differential variants between FSVA and other tools. The red line, blue line and green line represent variants
called via FSVA but not called via BWA-MEM, Subread and Bowtie2, respectively

test, and show the higher performance of FSVA. Consid-
ering both the simulation test and real data test, we be-
lieve FSVA is a very competitive read alignment tool.

Discussion

FSVA utilizes the seed-and-vote strategy. Like most read
alignment methods, it builds a hash table for a reference
genome first. Then it extracts seeds from each read and
searches the hash table to find the location of the seed
in the reference genome. The coordinate of a read is
voted by the seeds of the read.

The most significant advantage of FSVA is its time
saving potential. For a whole set of human genome se-
quencing data, the time cost of FSVA is one sixth or one
seventh of BWA-MEM or Bowtie2. For example, for a
sequencing library with 200G size, time cost of FSVA is
13.5 h while BWA-MEM costs 74 h, and Bowtie2 re-
quires 86.5 h on a single CPU core. This impressive
feature makes FSVA very competitive in short read
alignment with large size, especially for cohort study.

The accuracy of FSVA is illustrated here both on simu-
lation data and real sequencing data. Experiments on
simulation data show that the alignment accuracy of
FSVA is almost good as BWA-MEM, especially when
the mapping quality is selected as over 18, the difference
on error rates between BWA-MEM and FSVA is very

small, which can basically be ignored. On real sequencing
data, since we do not know the correct coordinate of short
reads, and usually the main focus of a pipeline for whole
genome sequencing data analysis lies on variant calling,
read alignment is just the first step. We explored the influ-
ence of four mapping tools, FSVA, BWA-MEM, Bowtie2
and Subread, on variant calling. In most cases, variants
called based on the results of BWA-MEM are highest,
0.3—-0.4 million more than that of FSVA and Bowtie2. For
variant calling, BWA-MEM may be the most sensitive,
while FSVA appears to have the best specificity. About
99.8% of variants called base on FSVA also could be found
based on other short read alignment tools, and 85.67% of
variants called based on BWA-MEM could be identified
based on FSVA. For a cohort study, where the data in-
volved is almost a tsunami and the accuracy for an indi-
vidual is not critical, FSVA is a good choice.

ESVA is not suitable for very short reads. As FSVA
uses the seed-and-vote strategy, if the read is too short,
the extracted seeds should be shortened, otherwise the
number of seeds is not enough to vote. But very short
seeds are unrepresentative and will introduce too much
noise. We suggest FSVA being applied to any library in
which read length is over 100 bp. Fortunately, the trend
in biotechnology development is towards reads becom-
ing longer and longer.
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FSVA is sensitive to SNP and error base. For FSVA,
the location of an SNP or an error base will affect the
voted output. It is clear enough that an SNP or a base
error appearing in the head or tail of a read exists in less
seeds than one appearing in the middle of the read. This
means an SNP or a base error in the middle of a read
will introduce more wrong-voting than if it were at the
end of a read. If an indel exists in the middle of a read,
the wrong-voting is again worsened. For whole genome
sequencing or whole exon sequencing, this problem is
alleviated since the reads are randomly cut and an SNP
or an indel will be in the middle of some reads and will
be at the end of other reads. For amplicon sequencing,
since there are a lot of replicate reads, FSVA should be
considered more before use.

Conclusions

In this paper, we proposed a new short read alignment
algorithm, named FSVA. FSVA adopts the seed-and-vote
strategy, achieving a significant improvement on speed
over existing methods. In some cases, reads have to be
aligned in a short time and requirements of accuracy are
not very stringent. In these incidences, FSVA would be a
good choice.
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