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Abstract

Background: Bacterial tyrosine-kinases (BY-kinases), which play an important role in numerous cellular processes,
are characterized as a separate class of enzymes and share no structural similarity with their eukaryotic counterparts.
However, in silico methods for predicting BY-kinases have not been developed yet. Since these enzymes are
involved in key regulatory processes, and are promising targets for anti-bacterial drug design, it is desirable to
develop a simple and easily interpretable predictor to gain new insights into bacterial tyrosine phosphorylation.
This study proposes a novel SCMBYK method for predicting and characterizing BY-kinases.

Results: A dataset consisting of 797 BY-kinases and 783 non-BY-kinases was established to design the SCMBYK
predictor, which achieved training and test accuracies of 97.55 and 96.73%, respectively. Furthermore, the leave-
one-phylum-out method was used to predict specific bacterial phyla hosts of target sequences, gaining 97.39%
average test accuracy. After analyzing SCMBYK-derived propensity scores, four characteristics of BY-kinases were
determined: 1) BY-kinases tend to be composed of a-helices; 2) the amino-acid content of extracellular regions of
BY-kinases is expected to be dominated by residues such as Val, lle, Phe and Tyr; 3) BY-kinases structurally resemble
nuclear proteins; 4) different domains play different roles in triggering BY-kinase activity.

Conclusions: The SCMBYK predictor is an effective method for identification of possible BY-kinases. Furthermore, it
can be used as a part of a novel drug repurposing method, which recognizes putative BY-kinases and matches
them to approved drugs. Among other results, our analysis revealed that azathioprine could suppress the virulence
of M. tuberculosis, and thus be considered as a potential antibiotic for tuberculosis treatment.
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Background

Bacterial tyrosine-kinases (BY-kinases) are enzymes that
perform protein phosphorylation and autophosphoryl-
ation, and have been identified in the majority of se-
quenced bacterial genomes [1-3]. They transfer
phosphate groups from ATP to reactive side chains of
Tyr residues, regulating processes of cellular signaling
[3]. BY-kinases have been shown to have no resemblance
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with their counterparts in Eukarya, and have been
classified as a separate protein family [1, 2].

A typical BY-kinase contains two domains: a trans-
membrane activator domain (TAD) that includes a large
extracellular loop, and an intracellular catalytic domain
(CD) [2, 3]. These domains are either encoded by a
single gene and are parts of the same protein (e.g., in
Escherichia coli), or are encoded by two adjacent genes
and exist as two proteins: one transmembrane and
another cytoplasmic protein (e.g., in Bacillus subtilis).
The CD domain performs the phosphorylation of tyro-
sine, while the intracellular juxtamembrane region of the
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TAD is essential for the activation of the CD domain [3].
The CD active site contains Walker A and B motifs that
are usually found in the P-loop-type ATP/GTP-binding
proteins, but not in protein kinases [1, 2, 4]. However,
the Walker motifs of the latter differ from the canonical
sequences found in other P-loop nucleotide-binding
folds [4, 5]. Indeed, in the Walker A motif that is located
in the N terminus of BY-kinases, only the GK[S/T]
amino acids of the canonical [G/A]X(4)GK[S/T] Walker
A motif are well conserved. GS[S/T] amino acids are
followed by an additional DXDXR (Walker A’) motif,
and then a Walker B motif (consensus sequence hhhhD),
which is extended to a [ILVFM](3)DX(2)P sequence [5].
In the C-terminal tail, BY-kinases possess a tyrosine-rich
region called the YC-cluster [1-3]. It varies in length (10
to 20 amino acids) and contains several tyrosine residues
that correspond to the BY-kinase-autophosphorylation
sites [3, 4]. The presence of these four motifs (Walker A,
Walker A, Walker B, and YC) is a typical signature of
BY-kinases [4]. BY-kinases of Proteobacteria are also
characterized by the existence of a short region rich in
Arg and Lys residues, called the “RK cluster”, in the N-
terminal part of their cytoplasmic domain [5].

The importance of BY-kinases in the physiology of
bacterial cells has been demonstrated in a number of
studies. Their best-characterized role concerns the
control of extracellular polysaccharide synthesis [2].
Indeed, BY-kinases are involved as co-polymerases in
the biosynthesis of capsular and extracellular polysac-
charides, which are recognized as important virulence
factors in bacteria [2, 6]. In E. coli, replacement of the
BY-kinase, Wzc, by a mutant form lacking autophos-
phorylation potential, abolished capsule assembly [7].
It is believed that autophosphorylation/dephosphoryla-
tion of BY-kinases is required for proper synthesis and
export of polysaccharide polymers [4], which explains
the inability of the mutant Wzc to exert its role in cap-
sule formation. Additionally, BY-kinases were found to
affect virulence or resistance to cationic antimicrobial
peptides, properties that are both associated with cap-
sular polysaccharide synthesis [3]. An example of this
is the Etk-mediated phosphorylation of UDP-Glucose
Dehydrogenase in E. coli, which has been shown to in-
duce resistance to such antibiotics as polymyxin and
cationic peptides [4]. Thus, BY-kinases are seen as po-
tential therapeutic targets for combating bacterial
pathogens [2]. BY-kinases are not only related to poly-
saccharide biosynthesis, they are also involved in ly-
sogenization, heat shock response, DNA replication,
cell cycle, etc. [3]. Results from Shi et al. [3] confirmed
that BY-kinases have evolved a relaxed substrate speci-
ficity that allows them to recognize a wide range of
substrates with totally different sequences and struc-
ture s, and evolve rapidly to adopt new substrates.
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Since BY-kinases are not homologs of eukaryotic
enzymes and are particularly interesting as therapeutic
targets, a specialized bacterial protein tyrosine-kinase
database (BYKdb) was developed to store BY-kinase
sequences, applying standardized annotations [2]. Des-
pite the importance of BY-kinases, numerous aspects of
their biological significance remain obscure. Moreover,
the tyrosine-kinase activity of Walker P-loop proteins is
assumed to be hardly predictable in silico, due to the
differences among BY-kinases originating from different
bacterial phyla [5].

In the present work, we propose a novel SCMBYK
method for predicting and analyzing BY-kinases based
on their primary sequences. To our knowledge,
SCMBYK is the first open source machine learning tool
for BY-kinase classification and characterization. We
believe that our tool can significantly increase the rate
of amassing knowledge about BY-kinases. SCMBYK
uses a newly developed scoring card method (SCM) [8—
10] to compute propensities of amino acids and dipep-
tides in order to discriminate BY-kinases from non-BY-
kinases. A dataset consisting of 558 BY-kinases and 544
non-BY-kinases was established to design the SCMBYK
predictor. The dipeptide propensity scores were calcu-
lated from the differences between the dipeptide com-
positions of BY-kinases and non-BY-kinases using a
straightforward statistical approach. These propensity
scores were further optimized using an intelligent gen-
etics algorithm (IGA) [11]. Amino acid propensity
scores, obtained from dipeptide propensity scores, were
utilized to discover informative physicochemical prop-
erties (PCPs) of BY-kinases by exploring the amino acid
indices stored in the AA index database [12]. To inves-
tigate alternative prediction methods, several typical
predictors, such as SVM, decision tree J48, and Naive
Bayes were also implemented. The results from BLAST
alignment were compared with machine learning tools.
Additionally, 26 models based on SCM were built to
predict specific bacterial phyla of target sequences.

The SCMBYK-derived propensity scores of 20
amino acids were further analyzed to identify in-
formative physicochemical properties of BY-kinases,
such as: 1) BY-kinases prefer to be composed of a-
helices; 2) the content of extracellular regions of BY-
kinases is expected to be dominated by Val, Ile, Phe
and Tyr residues; 3) BY-kinases structurally resemble
nuclear proteins; 4) different domains have different
roles in triggering BY-kinase activity. Additionally, the
analysis of potential antibiotics for BY-kinases-targeting
suggested that Azathioprine (AZA), which is administered
to transplant patients, may be able to suppress the
virulence of M. tuberculosis. Therefore, AZA could be
considered as a potential antibiotic for tuberculosis
treatment.
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Methods

In this work, we propose a novel SCMBYK method,
which is a SCM-based predictor and a first analytic tool
for the characterization of bacterial tyrosine-kinases.
The method relies on a newly established dataset of
manually selected BY-kinases from 26 different bacterial
phyla and utilizes the SCM algorithm to obtain propen-
sity scores of 400 dipeptides and 20 amino acids.
SCMBYK includes SCM-PCP mining method to rank
various physico-chemical and biochemical properties for
their relatedness to a family of BY-kinases. The method
enables visualization of available enzyme structures
using the SCM-derived propensity scores and can be ap-
plied to predict potential drugs to putative BY-kinases.
Figure 1 presents a flowchart of the experimental design,
including datasets, methods, and analysis.

Datasets
The BYK-1580 dataset was compiled from two sources:
BYKdb and Swiss-Prot. After reducing sequence identity
to < 25%, we created two datasets: BYK-TRN1102 to be
used for training the classifier to discriminate between
BY- and non-BY-kinases, and an independent test set
BYK-TST478, for the evaluation of SCMBYK perform-
ance. Table 1 provides the details on both datasets.

Here we briefly describe the steps in BYK-1580 dataset
creation:

Step 1: Collect 6,702 BY-kinases of 28 different phyla
from BYKdb.

Step 2: Collect 330,400 non-BY-kinases from Swiss-
Prot using the same 28 phyla.

Step 3: Reduce sequences identity that no pair has
more than 25% identity. In this step, two phyla,
Chlamydiae and Cloacimonetes, were excluded because
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Table 1 Summary of the training and test datasets

Dataset BYKP Non-BYKP Total
BYK-TRN1102 558 544 1102
BYK-TST472 239 239 478

their members can be expressed using corresponding
centroids after reducing identity. As a result, 26 phyla
were left.

Step 4: Select 797 BY-kinases to serve as positives.

Step 5: Select non-BY-kinases to serve as negatives,
with the number of negatives from each phylum being
the same as the number of positives collected from the
same phylum (after Step 3). After performing random
pairing of the negative data to positive data according
to their phylum, 783 sequences were selected from
non-BY-kinases.

Step 6: The BYK-1580 dataset containing 797 BY-
kinases and 783 non-BY-kinases from 26 different phyla
was randomly separated into the training (BYK-
TRN1102), and test (BYK-TST478) datasets. The details
of BYK-TRN1102 and BYK-TST478 are provided in
Table 1.

SCM-based BY-kinase classifier (SCMBYK)

The original SCM algorithm was first proposed by
Huang et al. [10] and was consequently applied to dis-
criminate and analyze proteins with various functions
[8-10, 13, 14] based on their sequence information. To
train the classifier, two FASTA files are expected as the
input: one for the positive training data and one for the
negative training data. The output is the scorecard file,
containing optimized scores of 400 dipeptides. The
SCMBYK implementation corresponds to the original
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Fig. 1 Flowchart of the system design for the prediction and analysis of BY-kinases. BYKs denote BY-kinases, non-BYKs stand for non-BY-kinases
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SCM algorithm without any major adjustments. The
method consists of the following four main phases:

Phase 1: Building of a training set and an independent
test set.

Training BYK-TRN1102 dataset was used to optimize
the initial matrix of dipeptide propensity scores (DPS)
and to determine suitable threshold value for classifica-
tion of the query sequence as a BY-kinase or non-BY-
kinase. Independent BYK-TST478 test set was used to
evaluate the prediction model.

Phase 2: Calculation of the initial matrix of dipeptide
propensity scores (DPS).

Denote by matrix DPS;;)={n ;} distribution of the
amino acid i (1<i<20) followed by the amino acid j
(1<j<20). We consider C € {0,1}, representing non-BY-
kinases and BY-kinases for binary classification in this
article. Initial DPS is computed, as follows:

Step 1: Compute matrices P = (1 ;|/C = 1) and Ny

= (n 4;|C = 0) of numbers of 400 dipeptides in BY-
kinases and non-BY-kinases. For example, n ;; (AA
dipeptide) is found 2957 times in BY-kinases and 1654
times in non-BY-kinases.

Step 2: Normalize compositions of dipeptides in
matrices Pg;) and N by dividing them by total
numbers of dipeptides in each class, as follows:

P(ij) = <L”’71 C= 1), 1<i, j<20 (1)
.
N(j) = <L”’71 C= 0> 1<i, j<20 2)

where L, and L, represent total dipeptide numbers in
BY-kinases and non-BY-kinases, respectively. For
example, total number of dipeptides in BY-kinases and
non-BY-kinases are 307,246 and 165,921, respectively.
Thus, compositions of # ;; dipeptide are 0.00962 in
BY-kinases and 0.00997 in non-BY-kinases.

Step 3: Compute initial DPS of 400 dipeptide
compositions by subtracting each dipeptide score of the
non-BY-kinases from the corresponding score of the
BY-kinases, as DPS) = P - Ng;). For example, the
score of n ;; dipeptide would be —0.00035 (=0.00962—
0.00997).

Step 4: Normalize all scores of the initial DPS;) into
the range of [0, 1000]. The score of n ;; dipeptide is
296.

The propensity scores for each of 20 amino acids are
then computed by averaging the scores of all dipeptides
containing these amino acids (ex. for amino acid A
average all AX and XA dipeptides, where X — any
amino acid).
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Phase 3: Optimization of the initial DPS using IGA

An intelligent genetic algorithm, IGA [11], is used to
optimize initial DPS in order to maximize the prediction
accuracy and conserve the original sequence informa-
tion. IGA computes a fitness function, where the area
under the ROC curve (AUC) [15], and the Pearson’s cor-
relation coefficient (R-value) between the initial and the
optimized propensity scores of 20 amino acids are
linearly combined. The weights for the AUC and R value
were set based on previous studies [8—10]. (See Eq. 3).

Max.Fit(DPS) = 0.9 x AUC + 0.1 x R (3)

Phase 4: Prediction of BY-kinases.

The optimal score separating cases from controls in
the training dataset is used to set a threshold value of a
classifier. When a query protein sequence P is encoun-
tered in a future, the class prediction is determined by a
scoring function, as follows:

1,if ZTOOWiSi > threshold

S(P) =
0,if Z?OOW,-S,' < threshold

(4)

where w; and S; are, the composition and propensity
score of dipeptide i (1 <i<400), respectively.

SCMBYK used the 10-fold cross validation scheme to
obtain optimal propensity scores to differentiate between
BY-kinases and non-BY-kinases. The independent test
set (BYK-TST478) was employed for evaluation of
SCMBYK performance to compare with other classifiers.

IGA algorithm
The IGA algorithm of the SCM for optimization of the
initial DPS consists of the following steps:

Step 1: (Initialization) For initialization, generate
randomly N,,, individuals including the initial DPS. In
this study, N, = 40.

Step 2: (Evaluation) Compute fitness values for all N,
individuals and determine /best individual in the
population.

Step 3: (Selection) Select Ps - N,,,, individuals to
establish a mating pool, using a rank-based selection. In
this study, Ps = 1.0.

Step 4: (Crossover) By performing the intelligence
crossover operation [15] between Ibest and each other
individual, determine the best two individuals among
two parents and two children as the new children.
Step 5: (Mutation) Randomly mutate individuals
(except Ibest) with a mutation probability Pm (=0.01),
using a real-valued mutation operator.

Step 6: (Termination) Stop the algorithm if the
termination condition is reached, otherwise, go to the
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Step 2. In this study, 20 generations are used as the
stop condition.

Generic-BYK classifiers

SCMBYK performance regarding identification of BY-
kinases was compared with that of three other classifiers,
SVM, the J48 decision tree, and Naive Bayes. The pre-
dictors utilized features commonly used in protein func-
tion predictions, namely amino acid composition (AAC),
dipeptide composition (DPC), and the 531 PCPs from
the AA-index database. A 10-fold cross-validation (10-
CV) scheme was employed to evaluate the results of all
classifiers.

SVM is a golden standard for predicting protein func-
tions, being widely applied in the bioinformatics field.
We used LIBSVM (library for support vector machines)
[16] to create SVM classifiers with radial basis kernel.
The optimal SVM parameters were chosen via a grid
search according to the 10-CV accuracy of the training
dataset, BYK-TRN1102. The other classifiers were imple-
mented using WEKA package [17], and the default
WEKA parameter settings, when applying both the deci-
sion tree (J48) and the Naive Bayes classifiers.

BY-kinases characterization

BY-kinases were analyzed using the SCM-PCP, as well as
propensity score visualization methods. SCM-PCP is a
PCP mining method used to identify the important
physicochemical properties (PCPs) based on the propen-
sity scores of 20 amino acids [13]. To find a set of PCPs
possibly correlated with a considered protein function,
we examined the 544 indices representing different PCPs
available from the AA-index database. After removing
the PCPs containing the value “NA”, 531 PCP indices
remained and were considered in this study.

The visualizing method aimed to express the BY-
kinase propensity scores to determine their characteris-
tics. The structure coordination files of the proteins were
colored according to the amino acid or dipeptide scores,
and expressed using PyMOL [18].

Predicting putative BYKs and their potential drugs

The current study proposes a novel drug repurposing
method. The disease-related protein targets are selected
using protein function predictors, and then the Drug-
Bank drug database is used to select the potential candi-
dates from a list of approved drugs. In this study,
putative BY-kinases in Swiss-Prot were identified by
SCMBYK, and then the drugs that potentially interact
with the putative BY-kinases were selected using
BLASTp. Putative BY-kinases are defined as the se-
quences that had no detectable transcripts (PE levels
from 3 to 5) [19] in Swiss-Prot and are predicted as BY-
Kinases using SCMBYK. Then, BLASTp was used to
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select all the drugs in the DrugBank database that poten-
tially interact with the putative BY-kinases. The detailed
procedure consists of the following steps:

Stepl: Retrieve the protein sequences from the 26
phyla hosts from Swiss-Prot.

Step2: Select the putative BY-kinases that are predicted
as BY-kinases by SCMBYK and have PE levels from 3
to 5.

Step3: Align putative BY-kinases using BLASTp against
target sequences listed in DrugBank that are known to
interact with approved drugs. The BLASTp uses an E-
value threshold of 0.01, while other parameters were
set to default [20].

Results

Performance comparison of different BYK predictors
BYK-TRN1102 and BYK-TST478 datasets were used to
design various BY-kinase classifiers based on different
feature types. The proposed SCMBYK method was
compared with BLASTp [21], SVM, decision tree (]J48),
and Naive Bayes. They utilized amino-acid composition
(AAC), dipeptide composition (DPC) and the 531 PCPs
from the AA index as features.

To evaluate BLASTp as a BY-kinase predictor, the
training dataset was used to build a sequence database.
Afterwards, the sequences from the test dataset were
treated as query sequences and aligned against the data-
base. The E-values ranged from 0.1 to 0.00001. The
results are summarized in Table 2, and indicate that the
BLASTp method, which is a homology-based tool for
predicting protein functions based on their sequence
similarities, does not provide satisfying results in predict-
ing BY-kinases. The highest accuracy of 73% was ob-
tained with the E-value cut-off set to 0.1. E-values of
0.01 and 0.001 yielded a lower accuracy (71%). Table 3
lists the prediction accuracies of SVM, J48 decision tree,
and Naive Bayes classifiers with various features. SVM
outperformed the other predictors. The highest training
accuracy of 97.27% was obtained by the SVM-DPC clas-
sifier, while the corresponding test accuracy was 95.76%.
The J48 decision tree performed slightly better than the
Naive Bayes method, with the highest training accuracy
of 88.75% observed in the J48 /AA-index model. The

Table 2 Performance of established datasets as compared for
various E-value cut-offs by BLASTp

E value Hit rate ACC
0.1 74% 73%
0.01 72% 71%
0.001 71% 71%
0.0001 70% 69%
0.00001 69% 68%
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Table 3 Comparison of the prediction accuracies (%) of
BY-kinase predictors

Classifier Training accuracy Test accuracy Specificity Sensitivity
SVM/DPC 97.27% 95.76% 95.28% 96.23%
SVM/AAC 96.07% 95.13% 96.57% 93.72%
SVM/AA-index  94.56% 94.07% 94.85% 93.31%
J48/DPC 80.94% 82.63% 83.70% 81.50%
J48/AAC 86.48% 89.62% 87.00% 92.30%
J48/AA-index  88.75% 88.35% 90.40% 86.30%
NB/DPC 84.85% 86.23% 86.20% 86.30%
NB/AAC 77.22% 78.18% 67.80% 88.80%
NB/AA-index  76.50% 71.19% 90.00% 51.90%
SCMBYK 97.55% 96.73% 98.00% 96.00%

corresponding test accuracy was 88.35%. The Naive
Bayes predictor produced its best results (84.85% for
training accuracy and 86.23% for test accuracy) when it
utilized dipeptide composition as a feature set.

Table 4 presents the results from 10 independent runs
of the SCMBYK method on the BYK-TRN1102 and
BYK-TST478 datasets. The scoring card used to build
SCMBYK predictor was chosen as the one having the fit-
ness score closest to the average fitness score. Hence,
Experiment #10 with a training accuracy of 97.55% was
chosen as a model for SCMBYK. The SCMBYK method
achieved a test accuracy of 96.73%, a Matthews Correl-
ation Coefficient (MCC) of 0.93, a sensitivity of 0.96,
and a specificity of 0.98. Using IGA algorithm improved
training and test accuracies of the initial scoring card
from 87.18 to 97.55% and from 81.57 to 96.73%, respect-
ively. The corresponding threshold value was raised
from 406 to 468. The histogram in the Additional file 1
shows that the BY-kinases and non-BY-kinases sequence’
scores in a test dataset (BYK-TST478) became more sep-
arable after the optimization by IGA.
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Our results suggest, that SCMBYK method outper-
formed other classifiers, including SVM-DPC in terms
of both accuracy, sensitivity and specificity. High predic-
tion performance of SCMBYK can be explained by the
fact, that dipeptide composition is an optimal and repre-
sentative feature for the task of discrimination between
BY-kinases and non BY-kinases. This also follows from
the high training accuracies of SVM-DPC, J48-DPC and
NB-DPC classifiers, being 97.27, 80.94 and 84.85%
respectively.

Furthermore, the SCM-based SCMBYK method have
the following advantages over other classifiers: (i) Dis-
tinctive to SVM, which is a prevalent method for protein
classification, SCM does not function like a black box.
The biological interpretation of the model is more
straightforward, as long as it generates propensity scores
of dipeptides, which can be further analyzed. (ii) Amino
acid propensities, derived from SCM allow to rank
physico-chemical properties relevant to a given protein
family and inspire biological application. (iii) In terms of
prediction accuracy, the SCM method is comparable
with SVM.

SCMBYK performance for identifying BY-kinases using
different phyla of datasets

The leave-one-phylum-out test is applied to evaluate the
ability of SCMBYK to predict BY-kinases from novel
phyla, ie, from phyla that were not included in the
training dataset. For each of the 26 phyla included in the
BYK-1574, training was based on a dataset composed of
the BYK-1574 sequences minus the sequences corre-
sponding to the specific phylum, the latter forming the
independent test dataset for the particular phylum. Ac-
cording to the results (Additional file 2), the mean train-
ing accuracy and test accuracies achieved were 97.00
and 97.39%, respectively. The MCC, sensitivity and spe-
cificity of test were rather high. Therefore, we conclude

Table 4 The performance of 10 independent runs using BYK-TRN1102

Fitness Training ACC (%) Test ACC (%) MCC Sen. Spe. Threshold
#1 99.21 97.36 96.27 0.93 0.97 0.95 474
#2 99.24 97.55 96.55 0.93 0.97 0.96 475
#3 99.21 97.82 96.36 0.93 0.97 0.95 486
#4 99.08 97.73 96.82 0.94 0.98 0.95 485
#5 99.32 97.64 96.82 0.94 0.99 0.95 484
#6 99.16 97.36 96.00 0.92 0.99 0.93 460
#7 99.02 97.00 96.27 0.93 0.95 0.98 496
#8 98.94 97.18 96.18 092 0.98 0.95 470
#9 99.08 97.82 96.91 0.94 0.97 097 464
#10 99.20 97.55 96.73 0.93 0.96 0.98 468
AVEG 99.19 97.50 96.49 093 097 0.96 476.20

The bold indicate the performances of SCMBYK
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that SCMBYK performs well at distinguishing between
BY-kinases and non-BY-kinases of novel phyla.

Analysis of SCMBYK-derived propensity scores

The SCMBYK predictor operates by calculating dipep-
tide (DP) and amino acid [22] propensity scores of BY-
kinases and non-BY-kinases. Calculated propensities
quantitatively represent the impact of each dipeptide
and amino acid on the structure and functionality of a
given protein class. We used visualization techniques to
color structures of known BY-kinases according to
SCMBYK-derived DP and AA scores.

Dipeptide propensity scores analysis

Figure 2 shows a heat map of the SCMBYK-derived
propensity scores of 400 dipeptides as BY-kinases and
non-BY-kinases. The five top-ranked dipeptides are DM,
LG, QD, LV, and AM, with respective scores of 998, 987,
986, 979, and 965. The five dipeptides with the lowest
scores are GG, SA, YE, GS, and GI, scored 0, 4, 8, 9, and
10, respectively.

Figure 3 presents the visualization of the distributions
of DP propensity scores of the cytoplasmic domains of
Etk [23] in the gram-negative bacterium E. coli, and of
CapB2 [24], which is the cytoplasmic, catalytically active
BY-kinase-subunit in the gram-positive bacterium S.
aureus.

Visualization of the Etk and CapB2 structures accord-
ing to the DP scores shows that both dark blue and deep
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red regions are present and spread equally on a-helices
and B-strands. Among the signature motifs of the Etk
kinase, the Walker B motif appears to be composed of
the most highly-scored DPs (Fig. 3a). On the other hand,
no motif from the CapB2 active site was colored com-
pletely in red. However, a long stretch of residues
between the Walker A’ and Walker B motifs, starting
from Ser95 / Ser96 and spreading up to Serl34, display
DP with a minimum blue hue (Fig. 3b). Clearly, regions
colored red contribute more to the SCMBYK scores,
which determine whether the overall sequence will be
predicted as a BY-kinase, compared to the blue ones.

Amino acid propensity scores analysis
The amino acid scores of BY-kinases were calculated
from dipeptide propensities using a straightforward stat-
istical approach. These scores reflect the frequency of
each amino acid in a polypeptide chain as well as its
unique impact on the functionality of a protein. How-
ever, it is not a trivial task to delineate these correlations,
as BY-kinase sequences display a high level of substitu-
tion saturation which allows them to maintain their
status as platforms for adopting new substrates [3].
Additional file 3 presents the 20 amino acid propen-
sities as well as the AA compositions of BY-kinases and
non-BY-kinases. The high correlation coefficient (R =
0.99) between the propensity scores of amino acids and
composition difference in BY-kinases and non-BY-
kinases indicates that SCMBYK-derived AA propensities
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Fig. 3 The DP visualization of BY-kinase structures. a Visualization of the overall structure of the Etk kinase domain (PDB code 3CIO), and a close view
of the high-score Walker B motif. b CapB2 DP visualization (PDB code 3BFV), and a close view of the highly scored stretch between the Walker A" and
Walker B motifs. The red color is used to mark the positions of high-score dipeptides, in contrast to the low-score dipeptides, which are colored blue

are effective for discriminating between BY-kinases and
non-BY-kinases.

The five amino acids with the highest SCMBYK scores
include Ser, Leu, Gln, Arg, and Thr with scores of 594,
571, 522, 500, and 475 respectively. The five amino acids
with the lowest SCMBYK scores are Gly, Phe, His, Lys,
and Trp, with scores of 287, 305, 342, 371, and 373 re-
spectively. Remarkably, all high-score amino acids are
polar, with the exception of Leu. Furthermore, most aro-
matic residues obtained low scores, with only Tyr being
in the middle of the range.

Recently, much effort has been put to solve crystal
structures of BY-kinases. Analysis of crystallized cyto-
plasmic domains of the E. coli tyrosine kinase Etk and of
its orthologue CapB (which is the endoplasmic, tyrosine-

kinase active subunit of the BY-kinase) from the Firmi-
cute S. aureus, gave interesting clues regarding the role
of several amino acid residues in the active sites of BY-
kinases [4, 25]. The conserved Lys and Thr residues of
the Walker A motif, the two conserved Asp residues of
the Walker A’ motif, and the single conserved Asp of the
B motif, interact with the phosphate moiety of the
bound nucleotide and the associated magnesium ion [4].
Replacing a P-loop Lysine with Methionine is known to
inhibit the phosphate-transfer activity of the shikimate
kinase without impairing ATP binding [26]. The side
chain of the penultimate Phe221 residue of CapA, which
is stacked on the base part of the bound ADP molecule,
associates with it through a strong hydrophobic inter-
action, stabilizing nucleotide binding and explaining the
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activation mode of CapB [4]. The study performed on
the Wzc BY-kinas of E. coli showed that phosphorylation
of the Tyr569 residue results in an increased protein-
kinase activity, and can in turn phosphorylate YC [5].
Additionally, the second Asp of the Walker A’ motif
(hhhhDXDXR) directly interacts with the phosphorylata-
ble hydroxyl of the Tyr, most probably acting as an acid
catalyst [4]. The high-resolution crystal structure of the
non-phosphorylated form of CapB2 showed that CapB2
forms a ring-shaped octamer [5]. The conserved Arg of
the Walker A’ motif plays a crucial role in stabilizing the
octamer [4]. Additionally, Asp77 and Asp79 of the
Walker A’ motif, as well as Asp157 and Prol59 of the
Walker B motif, are conserved in this protein [5].

In the SCMBYK scale both Arg and Thr are among
the five highest-scoring residues. They are followed by
the middle-score residues, Asp, Tyr and Pro. Although
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Lys and Phe were mentioned previously as functionally
crucial in BY-kinase active sites, they are low-score
residues according to the SCM method.

The propensities obtained from the SCMBYK predictor
can be efficiently utilized for mutagenesis studies. Since
their role of in bacterial extracellular polysaccharide
synthesis makes them potential therapeutic targets,
mutations that can block these enzymes can affect
bacterial virulence.

For the visualization of the distributions of AA
propensity scores, the catalytic, intracellular domains of
Etk in E. coli and CapB2 in S. aureus were chosen. In
Fig. 4, the overall tones of the Etk kinase structure visu-
alized according to the SCMBYK-derived AA scores are
more homogenous without clear extremes either in
high- or low-scores sides. Here, Walker A motif from
the active site contained the most low-scored residues
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(Fig. 4A). The tones of the CapB2 structure, however,
are more blue than red. All signature motifs contained
predominantly low-scored residues (Fig. 4B).

SCM scores of BY-kinases’ motifs
As mentioned previously, catalytic, intracellular domains
of BY-kinases, which contain Walker A, A’ and B motifs
are required for their kinase activity. Therefore, we used
annotated domains from Pfam database to calculate cor-
responding SCMBYK scores of BY-kinase active frag-
ments. The SCMBYK scores were determined in a
positive subset for the PF01656 Pfam domain, which in-
cluded all signature motifs. According to our results, the
average PF01656 motif scores were 508, and the average
scores of the whole sequences were 495. Both values are
higher than the model threshold of 468. The difference
between the average PF01656 motif scores and whole se-
quence scores proved to be significant (p < 0.05). Hence,
the fragments with signature motifs play a crucial role
for the identification of BY-kinases by our model.
Furthermore, we estimated the average SCMBYK-
derived scores for the signature motifs of the top-30
scored sequences that are selected depending on the
score of each sequence in training dataset. The average
scores were 668, 572, and 603 for Walker A, A, and B,
respectively. This is much higher than the model thresh-
old of 468. Thus, amino acid consensus sites in BY-
kinases play crucial role for the BY-kinase prediction. Se-
quence logos of signature motifs of top-30 SCMBYK-
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scored proteins are presented in Fig. 5. Sequence logos
were generated with the Weblogo program [27].

Overall a-helical preference of BY-kinases

The highest positive correlation (p =0.53) of BY-kinases’
amino acid propensities was obtained with the
MAXF760106 scale from the AA index, which represent
the Normalized frequency of alpha helices. MAXF760106
contains the indices of 20 amino acids related to the fre-
quency of their being topologically in alpha regions as one
of five possible conformational states [28]. Originally,
Maxfield and Sheraga [28] used data from 20 proteins
with known three-dimensional structures to determine
specific backbone dihedral angles for each amino acid
residue [28]. Consequently, Kidera recalculated these
values using a different set of proteins, and normalized
given values by the residue total number.

The residue conformational states defined in terms of
the backbone dihedral angles can be further used by pre-
diction algorithms to assign starting conformations of
proteins from their amino acid sequences following the
energy-minimization method. The positive correlation
between SCM-derived scores and the MAXF760106-
scale indices could account for the topological prefer-
ences of BY-kinases in terms of residue conformational
states. In this regard, we can state that alpha regions are
the most preferable structures among BY-kinases. Not-
ably, three out of the five SCMBYK top-score residues,
Ser, Arg and Thr, are also among the top-5 residues in
the MAXF760106 scale. Additionally, Gly which has a
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Fig. 5 Schematic organization of BY-kinases and their active sites. a Organization of BY-kinases in Proteobacteria and Firmicutes. Walker motifs (A,
A" and B), extracellular hairpin domains, and transmembrane spans are colored yellow, purple, and blue, respectively. In Proteobacteria, the
extracellular loop and the intracellular domain are parts of the same protein, whereas in Firmicutes they are linked via specific protein-protein
interactions. b Sequence logos of signature amino-acid sites of top-30-scored BY-kinases. “GK" in Walker A, “DXDXR" in Walker A’, and "“DXPPX" in
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low score in the MAXF760106 scale, is also one of the
five bottom-5 property is one of the five SCM lowest-
scoring amino acids (Gly, Phe, His, Lys, and Trp).

Determination of the structure of the extracellular
domain of BY-kinases can provide important clues for
its function. Given their modular organization, it is
tempting to speculate that BY-kinases topology can be
associated with their specific functionality. There are
clear parallels between BY-kinases” overall a-helical pref-
erences and the predicted presence of extended pB-
structures in the extracellular domains, which implies an
additional sensor-activity role for these domains,
especially in the BY-kinases of Proteobacteria [4, 6].
However, no high-resolution data on the external
domains of BY-kinases are available to date [5]. To esti-
mate the preference of BY-kinases, two sequence-based
secondary structure predictors were used, SOPMA [29]
and NetSurfP [22]; the results are presented in Add-
itional file 4. According to SOPMA, BY kinases have sig-
nificantly (p <0.001) higher (45.44) o-helical-structure
content compared to non-BY-kinases. NetSurfP also de-
tects a significant (p < 0.001) difference between BY- and
non-BY-kinases, with the respective a-helical-content
values being 48.13 and 42.05.

Specific BY-kinase topology

The RACS820107 property is defined in the AA index as
the “average relative fractional occurrence in Aq (i-1)”
and refers to structural features of polypeptide back-
bones related to distributions of the 20 amino acids
within the polypeptide chain [25]. More precisely, it
defines the role of each amino acid in the formation of
Ay regions.

Based on the concepts of differential geometry, the
protein backbone structure is viewed through a virtual-
bond representation, in which the C* atoms of
successive residues are considered to be connected by
imaginary bonds. The four successive C* atoms are con-
sidered to be the smallest length of backbone over which
the chain can be folded [30]. At the four-C® length scale,
a-helical structures appear nearly flat and called Ag re-
gions [25, 30]. Rackovsky et al.[25] presented a scale,
which determines the effect of every single amino acid
in forming A, structures if these residues are located at
the third position of a four-C* unit.

By comparing these values with the SCM-generated
amino acid scores, a negative correlation has been obtained
(p = -0.40). Thus, it can be assumed that BY-kinases do not
favor the formation of flat a-helical structures. This assump-
tion, however, is not extended to other types of a-structures
(right-handed and left-handed).

Moreover, in an attempt to correlate composition and
structure of polypeptide chains, Rackovsky et al. [25]
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further defined two groups of amino acids which are re-
sponsible for the formation of different structures.
Group I residues (Ser, Thr, Val, Arg, Gln, Leu, Ala, Asp,
Glu, Lys, Met, Ile, and Phe) favor the formation of A
structures (Ar helices and Ag, A;, and Ay bends) in
four-C® units, when located at the second position, and
Eo and Ay structures, when located at the third position.
Group II residues (Pro, Gly, His, Tyr, Cys, Asn, and Trp)
are responsible for the formation of Ey and Ay structures
when located at the third position.

The correlation results between the RACS820107 scale
and the SCM-derived scores allow for the conclusion,
that group I and group II amino acids may play similar
roles in the formation of BY-kinase- structures, such as
bends, helices, and extended regions.

Amino acid composition of BY-kinases extracellular
regions

The NAKH920103 property is the AA composition of
EXT of single-spanning proteins and provides the aver-
age amino acid composition of the extracellular regions
of single-spanning transmembrane proteins [31]. The
SCM-generated amino acid scores, positively correlated
(p =0.50) with the NAKH920103 scale. This scale was
derived by the results of Nakashima et al. [31], who
studied 73 peptides longer than 50 residues, from 45
single-spanning membrane proteins. The BY-kinases can
be divided into two groups based on their architecture.
In Proteobacteria, these enzymes are found in the form
of membrane proteins with large outside loops linked to
the catalytic cytoplasmic domains [1, 4]. in contrast, BY-
kinases of Firmicutes possess the cytoplasmic catalytic
domain in a polypeptide that interacts with a separate
membrane protein, homologous to the extracellular do-
main of proteobacterial BY-kinases [4].

The positive correlation results suggest that cytoplasmic
(CYT) and extracellular (EXT) regions of BY-kinases have
different amino acid compositions. More specifically, the
extracellular regions are expected to be dominated by resi-
dues favoring the B-sheet structure, such as Val, Ile, Phe
and Tyr. Interestingly, aromatic residues (Trp, Tyr and
Phe) are preferred on the extracellular side of membranes,
whereas charged residues, both basic (Arg, Lys) and acidic
(Glu, Asp), are preferentially sited on the cytoplasmic side
[31]. These results are in accord with previous studies that
performed structural predictions and showed that the
extracellular domains of BY-kinases from Proteobacteria
tend to favor B-structures [6].

BY-kinases resemble nuclear proteins

The CEDJ970105 property is described in the AA index
as the “composition of amino acids in nuclear proteins”
[32]. The amino acid indices of CEDJ970105 property
were derived from a set of sequences with verified
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cellular locations, and represent the scores of the fre-
quencies for each amino acid residue to be found in one
of five protein-location classes. Prokaryotic proteins that
interact with DNA were classified as “nuclear”. The
CED]J970105 indices correlate positively (p =0.48) with
the SCM-derived propensity scores for BY-kinases. This
is in accord with previous studies showing that the
active sites of BY-kinases share signature Walker A and
B motifs with a number of ubiquitous ATP/GTPases [1,
2, 4], and one should keep in mind that nucleotides not
only serve as the building blocks for the transmission of
genetic information, but are also involved in energy
transfer and storage. Moreover, nucleotide-binding folds
are ancient and widespread [33]. According to Gran-
geasse et al. [4], BY-kinases exhibit significant sequence
similarity with nucleotide-binding motifs of arsenite
ATPases (ArsA) and MinD proteins, a fact that leads to
the hypothesis that they have all evolved from the same
ancestral bacterial ATPase [3].

Notably, both SCM-derived and CEDJ970105 scales
rank Ser as a top-score residue. Furthermore, among the
SCM five top-score amino acids (Ser, Leu, Gln, Arg, and
Thr), there are two, Arg and Leu, that are also among
the top five in the CEDJ970105 scale. Additionally, two
of the low-score CEDJ970105 residues, His and Trp, are
among the five lowest-score SCM amino acids (Gly, Phe,
His, Lys, and Trp).

However, our results indicate that BY-kinases could
also possess similarities with nucleotide-binding motifs
of nuclear proteins. As the whole cluster of BY-kinases
has yet no equivalents, even among their close structural
homologues, other templates must be sought [4]. The
positive correlation leads us to the assumption that a
considerable degree of similarity in amino acid compos-
ition exists between BY-kinases and the proteins charac-
terized as nuclear in a previous paper [32]. These
proteins are generally poor in hydrophobic (especially
aromatic) amino acid residues and rich in charged
residues. They also have a high content of serine, threo-
nine, proline, asparagine and glutamine residues [32].

BY-kinases as anchored proteins
The SCM-derived amino acid scores also show a posi-
tive correlation (p =0.43) with the CEDJ970102 prop-
erty, which can be described as the “composition of
amino acids in anchored proteins” [32]. Out of the
five SCM top-score amino acids (Ser, Leu, Gln, Arg,
and Thr), two (Ser and Leu) are also among the top
five in the CEDJ970102 scale. Furthermore, two of
the low-score CEDJ970105 residues, His and Trp, are
also among the five SCM lowest-scoring amino acids
(Gly, Phe, His, Lys, and Trp).

BY-kinases possess a transmembrane domain and can-
not be considered anchored proteins [1]. However, the
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positive correlation was obtained with the scale, corre-
sponding to anchored proteins, rather than integral
membrane proteins [32]. It should be mentioned that
protein kinase phosphorylation events in eukaryotes are
tightly regulated by anchoring proteins, as in the case of
the complexes consisting of protein kinase A (PKA) and
A-kinase anchoring proteins (AKAPs). AKAPs stimulate
PKA holoenzymes and bring them in a close proximity
with a variety of signaling partners. Additionally, AKAPs
are conformationally and compositionally flexible and
able to modulate multiple signal pathways [34].

BY-kinases in firmicutes and proteobacteria differ with
respect to how the transmembrane domains interact
with the catalytic domains. In proteobacteria, the two
domains are located in the same polypeptide chain,
while in Firmicutes they are linked through a specific
interaction of helices [1]. Hence, not all species adhere
to the “one-chain” model. As pointed out by Grangeasse
et al. [1], the transmembrane protein in firmicutes influ-
ences the kinase activity itself, whereas in proteobacteria
the situation is less clear. Based on the correlation re-
sults and our previous observations on the influence that
the BY-kinase TAD domain exerts on enzyme activity,
we can assume that there are close parallels between its
role in triggering the BY-kinase activity of the CD do-
main and the function of anchored proteins, especially
the anchored proteins that interact with kinases in eu-
karyotes [1]. Depending on the species, the TAD domain
can have different signal input. This, however, needs fur-
ther experimental verification.

Discussion

Predicting potential drugs for BY-kinases

Tyrosine phosphorylation by BY-kinases has been shown
to regulate many cellular processes in bacteria, such as
virulence and proliferation [35]. Due to the arising pre-
dominance of antibiotic-resistance bacteria, BY-kinases
are considered as possible targets for curing bacterial in-
fections. The results of Sajid et al. [36] indicate that the
host immune systems affect the responses of bacteria,
which use signal proteins such as kinases or phospha-
tases to sense the environment and transduct signals.
Discovery of more chemical molecules that can prevent
bacteria from modifying their overall behavior in re-
sponse to the host would be helpful in the fight against
antibiotic-resistant bacteria. In the pharmaceutical in-
dustry, development of alternative purposes for mar-
keted drugs is not a new strategy. Andronis et al. [37]
remarked that the methods mainly used for drug repur-
posing are based on literature mining and ontologies. In
this study, an alternative strategy that uses SCMBYK to
select potential BYKs and select approved chemical mol-
ecules that may possibly interact with BYKs, is proposed
as a novel method of drug repurposing.
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The results included 27,474 interactions derived from
5,022 putative BY-kinases and 586 approved drugs (from
the DrugBank database) as shown in the Additional file
5. The putative BY-kinases annotated with PE level 5 are
listed in Table 5. There are three proteins, 00531,
P76123, and Q92HCY, from three different hosts, E. coli,
H. influenza, and R. conorii, respectively. O0531is is an-
notated with a function description of “Truncated aceto-
lactase synthase; no longer catalytically active”
(Additional file 5), while the other two, P76123 and
Q92HCY9, have unknown functions. Beside antibiotics
(DB00336 and DB01091), the selected drugs include
anti-cancer (DB00336) and antifungal agents (DB00735
and DB00857), drugs for the treatment of hypertension
(DB09242) and eye disease (DB03147), as well as a
pharmaceutical agent used in spasticity management
(DB00697).

Finding new antibiotics against antibiotic-resistant
Mycobacterium tuberculosis, the bacterium that causes
tuberculosis, is also of extreme importance. The World
Health Organization (WHO) estimates that 9.6 million
people worldwide suffered from tuberculosis during
2014, and 480,000 of them were infected with multiple-
drug-resistant species, which are becoming a major
threat to global public health security [38]. Hence, many
studies emphasize the importance of finding new anti-
microbial drugs [38] or identify new BY-kinases as po-
tential drug targets [4]. Here, we analyzed the putative
BY-kinases from M. tuberculosis, as shown in the Add-
itional file 5. The putative BY-kinases having a PE level
of 3 from M. tuberculosis were selected because of the
absence of kinases with PE levels 4 and 5. Consequently,
15 putative BY-kinases and 35 drugs were chosen.
Among these drugs, some have already been reported to
possess anti-tuberculosis properties, such as mercapto-
purine. Notably, the results of this study present
Azathioprine (AZA), which is used to manage transplant
patients, as a drug that may suppress the virulence of M.
tuberculosis. This could provide an alternative explanation
for the observations of Mercadal et al.[39] who reported
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tuberculosis after switching from AZA to mycophenolate,
and suggested that mycophenolate was responsible for late
reactivation of dormant tuberculosis. Our results, accord-
ing to which AZA may interact with BY-kinases and
suppress the virulence of M. tuberculosis, suggest that it
was the removal of AZA, and not the introduction of
mycophenolate, that led to the appearance of tuberculosis
in the patients that switched medication.

Conclusions
Since their discovery BY-kinases have been receiving a
growing amount of attention. This is especially true for
the biomedical field, where they are seen as promising
targets for anti-bacterial drug design. In this study, sev-
eral methods, including the homology-based BLASTYD,
SVM, the J48 decision tree, and Naive Bayes, were ap-
plied to predict BY-kinases based on their sequence in-
formation. The efficiency of these «classifiers was
compared to that of a novel SCMBYK method, which
yielded an excellent prediction performance. Further-
more, our PCP mining method revealed a high correl-
ation between the propensity scores of 20 amino acids
and such PCPs as: MAXF760106, RACS820107,
NAKH920103, CEDJ]970105, and CEDJ970102. In sum-
mary, 1) BY-kinases prefer to be composed of a-helices;
2) the content of extracellular regions of BY-kinases is
expected to be dominated by such residues, as Val, Ile,
Phe and Tyr; 3) BY-kinases structurally resemble nuclear
proteins; 4) different domains have different roles in
triggering BY-kinase activity. Since the BY-kinases are
highly correlated to the virulence of bacteria, looking for
new drugs would be helpful for the treatment against
the antibiotic-resistant bacteria. This study identified
three approved drugs that are currently not used as anti-
biotics. Notably, as azathioprine is predicted to suppress
the virulence of M. tuberculosis and, it could prove to be
a potential antibiotic for tuberculosis treatment.

To the best of our knowledge, enzyme-specific
SCMBYK classifier is the first open source machine
learning tool for the BY-kinase classification and

that patients with a long-lasting renal allograft developed  characterization. Compared to earlier SCM-based
Table 5 The putative BY-kinases and the potential drugs

Drug ID Drug name Target protein Organism Score
DB00724 Imiguimod P76123 Escherichia coli . 47839
DB09242 Moxonidine P76123 Escherichia coli . 478.39
DB00697 Tizanidine P76123 Escherichia coli . 47839
DB00336 Nitrofural 005031 Haemophilus influenzae 474.70
DB03147 Flavin adenine dinucleotide 005031 Haemophilus influenzae 474.70
DB01091 Butenafine Q92HC9 Rickettsia conorii 47228
DB00857 Terbinafine Q92HC9 Rickettsia conorii 472.28
DB00735 Naftifine Q92HC9 Rickettsia conorii 47228
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methods [10, 13, 14], SCMBYK is more strictly formu-
lated for the purpose of characterization of BY-kinases,
as long as it relies on a carefully selected dataset of 26
different bacterial phyla. With the advent of next-
generation sequencing, the rate at which protein data-
bases grow is very fast. The leave-one-phylum-out ex-
periment has proved, that our algorithm can effectively
predict BY-kinases even if their bacterial hosts were not
included into the training dataset. Moreover, we show
that SCMBYK classifier scored BY-kinase signatures,
namely Walker A, A’ and B motifs, much higher than its
threshold value, showing that our method can be helpful
in identification of meaningful motifs of BY-kinases.
Thus, we believe that SCMBYK is a useful tool to guide
experimental studies on putative BY-kinases, and is very
important for the various applications in medicine and
pharmacology.
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Additional file 1: Figure S1. The histogram of the BY-kinase and
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Additional file 3: Table S2. The propensity scores and composition (%)
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Additional file 4: Table S3. The averaged a-helices contents. (DOCX 15 kb)

Additional file 5: Showing interactions between 5,022 putative BY-kinases
and 586 approved drugs (from the DrugBank database). Open in Excel.
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