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Abstract

Background: Structural variations (SVs) are wide-spread in human genomes and may have important implications in
disease-related and evolutionary studies. High-throughput sequencing (HTS) has become a major platform for SV
detection and simulation serves as a powerful and cost-effective approach for benchmarking SV detection algorithms.
Accurate performance assessment by simulation requires the simulator capable of generating simulation data with all
important features of real data, such GC biases in HTS data and various complexities in tumor data. However, no
available package has systematically addressed all issues in data simulation for SV benchmarking.

Results: Pysim-sv is a package for simulating HTS data to evaluate performance of SV detection algorithms. Pysim-sv
can introduce a wide spectrum of germline and somatic genomic variations. The package contains functionalities to
simulate tumor data with aneuploidy and heterogeneous subclones, which is very useful in assessing algorithm
performance in tumor studies. Furthermore, Pysim-sv can introduce GC-bias, the most important and prevalent bias in
HTS data, in the simulated HTS data.

Conclusions: Pysim-sv provides an unbiased toolkit for evaluating HTS-based SV detection algorithms.
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Background
Structural variations (SVs) are genomic variations that
lead to structure changes of a donor genome. Indels, copy
number variations (CNV) and genomic rearrangements
are all subclasses of SVs. Many researches revealed that
SVs are wide-spread in normal human populations [1, 2]
as well as in cancer genomes [3–5]. High-throughput
sequencing (HTS) has become a major platform for SV
detection and a number of algorithms have been devel-
oped for SV detection with HTS data [6]. In genome
studies based on HTS data, an important problem is to
benchmark performances of various algorithms in differ-
ent scenarios. The performance of an algorithm depends
on its design, its implementation as well as quality and
features of the sequencing data. An ideal method for
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benchmarking is by sequencing and subsequent exper-
imental validation, but this method is expensive, labor
intensive and time-costing. Thus, simulation of HTS data
becomes a powerful and cost-effective alternative way for
benchmarking genomic variation detection algorithms.
Usually, benchmarking HTS-based SV detection algo-

rithms by simulation involves (1) generation of genomes
containing simulated SVs and (2) simulation of HTS
short reads based on the genomes with simulated SVs.
To approximate real HTS data, the generated genomes
should be similar to real genomes and the simulated HTS
data should contain various sequencing errors and biases.
Since tumor samples often contain normal contamina-
tions and heterogeneous subclonal tumor cells, simulation
data of tumor genomes should contain normal contami-
nation and/or multiple subclonses.
There are several available SV simulation packages

including RSVsim [7], SCNVsim [8], VarSim [9], IntSIM
[10] and SInC [11]. These packages provide great
resources for the community. However, as far as we
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know, no available package has systematically addressed
all issues in data simulation for SV benchmarking. For
example, RSVsim can simulate a wide range of SVs, but
it cannot generate CNVs and cannot generate tumor
data with normal contamination and subclones. SCNVsim
considered issues in simulating tumor data such as ane-
uploidy, normal contamination and multiple-subclones,
but it can only generate tumor genomes with somatic
SVs/CNVs but not other types of somatic events such
as single nucleotide variations (SNVs). VarSim can sim-
ulate comprehensive classes of genomic variations, but it
also cannot generate tumor data with aneuploidy, nor-
mal contamination and multiple-subclones. IntSim and
SInC are able to simulate both germline and somatic vari-
ants, but they can only simulate SNVs and CNVs. In
addition, it is well-known that GC-bias is wide-spread
in HTS data. Although the read simulator pIRS [12]
can introduce GC-bias in the simulation data, its GC-
bias profile was trained on one set of data and users

can essentially only generate one type of GC-bias. Our
analysis of hundreds of sequencing data from The Can-
cer Genome Atlas and the 1000 Genome project data
revealed that GC-bias can take many different forms
[13], and pIRS are not flexible enough to simulate these
GC-biases.
Here, we present Pysim-sv for SV simulation. Compared

with other HTS data simulation packages, Pysim has three
main advantages:

(1) It can simulate a full spectrum of SVs as well as SNVs;
(2) It allows simulation of tumor data with aneuploidy,

normal contamination and multiple subclones;
(3) It can generate HTS data with GC-biases of any form.

Methods
Pysim-sv uses fasta format reference genome as input.
This tool consists of three major components (Fig. 1).
The first component generates a personal genome by

Fig. 1 The workflow of Pysim-sv. Component 1 simulates a personal genome by introducing genomic variations to a given reference genome.
Component 2 generates tumor genomes by simulating aneuploidy and somatic variations. Subclones are iteratively generated. Component 3
generates HTS reads, mixes reads from different tumor/normal genomes and introduces GC-bias
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introducing germline SNVs, indels and SVs. The second
component is for tumor genome simulation. If a user
requires generating tumor data, Pysim-sv first simulates
aneuploidy based on the personal genome simulated in
the first component. Somatic variations and subclones
are then simulated. The third component generates HTS
reads and introduces GC-biases.

SNV/indel simulation
Germline SNVs and indels are sampled from existing
database such as dbSNP [14] or a VCF file provided by
users. Somatic SNVs and indels are randomly placed in
the genome, or if a tumor mutation database is given
(such as COSMIC [15, 16]), they are randomly sampled
from the given database. The SNVs can be heterozygous
or homozygous. Users can control the parameters such
as the number of SNVs/indels to be introduced and the
heterozygous/homozygous ratio according to their simu-
lation purpose.

SV simulation
Pysim-sv can simulate seven classes of SVs including
deletions, insertions, tandem duplications, inversions,
intra-chromosomal translocations, inter-chromosomal
translocations and CNVs. A deletion is generated by
removing segments from the genome. An insertion is
placed by inserting a sequence into the genome. The
inserted sequence can come from either a database of

known human insertion sequence (e.g. the Venter genome
insertion sequence) or a series of random nucleotides
with a random length. An inversion is generated by
replacing a segment by its reverse complement. We sim-
ulate translocations by taking segments from the genome
and inserting them to the same chromosomes (intra-
chromosomal translocation) or different chromosomes
(inter-chromosomal translocation). Translocations can be
balanced (no gain/loss of genome segments) or unbal-
anced (gain/loss of genome segments). Hence, the original
segments are either removed or kept in the original loca-
tion, respectively. A copy number loss event is generated
by removing a segment, and a copy number gain event
is generated by randomly inserting a segment to several
locations of the same chromosome.
Non-allelic homologous recombination (NAHR) and

non-homologous recombination (NHR) are two major
mechanisms of generating SVs [17]. Pysim-sv simulates
NAHR by placing breakpoints in repeat regions in the
RepeatMasker database [18] and simulates NHR by ran-
domly placing breakpoints in the reference genome.
As breakpoints often co -occurs with SNVs/indels [19],
Pysim-sv also introduces SNVs/indels near SV break-
points. Users can set the expected number of SNVs/indels
near SV breakpoints. Tomake sure the reported SV break-
points and SNV/indel positions are correct, the positions
of SVs and SNVs/indels are first simulated and the SVs
and SNVs/indels ordered according to their chromosome
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Fig. 2 The GC-dependency in real data and simulated data. The GC-dependency in (a, b, c) three real sequencing data from the 1000 Genome
Project and in (d, e, f) three simulated data generated by pysim-sv . The x-axis is the GC-proportion in 10 Kb bins and the y-axis is the number of
mapped reads in the bins. Note that the lower bands in the left andmiddle panel of (a, b, c) correspond to bins in chromosome X and the two
individuals here are two males. The functions in (d, e, f) are f1, f2 and f3 as presented in the GC-bias introduction section
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positions. Then, they are generated backwardly from the
last position to the first first position.

Tumor aneuploidy simulation
Aneuploidy is the deviation of ploidy number from
the normal ploidy number. It is very common in can-
cer genomes and is related with chromosomal insta-
bility [20]. Aneuploidy has important impact on tumor
CNV detection since it often causes incorrect estima-
tion of copy numbers. Pysim-sv allows generation of
aneuploidy according to user-specified aneuploidy status
(the copy number of each chromosome) of the simu-
lated genome. Pysim-sv generates genomes with aneu-
ploidy from normal diploid genomes and the resulting
genomes provide the starting genomes for somatic SV
simulation.

Tumor genome heterogeneity and purity simulation
Tumor cell populations often contain many heteroge-
neous subclones. Pysim-sv simulates new subclones from
a progenitor genome by randomly placing new somatic
variations. The number of new subclones from the pro-
genitor genome can be specified by users. Iterative appli-
cation of this procedure can be used to simulate the clone
evolution model [3] as well as the cancer stem cell model
[21]. After a specified number of subclones are simu-
lated, Pysim-sv then simulates HTS short reads from these
tumor/normal genomes, and mixes these reads according

to user specified proportions of these genomes. By default,
ART [22] is used to generate HTS data.

GC bias introduction
After the initial HTS data are generated, we further
employ a biased subsampling method to introduce GC-
biases. Specifically, Pysim-sv first calculates a subsam-
pling probability for every read pair (or every read for
single-end data). This subsampling probability depends
on the local GC-content of the sequence from which the
read pair is generated. We use the following procedure
to introduce GC-biases. Given a read pair (R1,R2), let
(S1, S2) (S1 < S2) be the positions in the simulated chro-
mosome from which the read pair was sequenced. Note
that these reads are Illunima platform type reads. Then,
the sequence S from S1 to S2 + r in the simulated chro-
mosome is the segment that generates the read pair (r is
the read length). Let GCS be the GC proportion of this
segment. Then, we will subsample this read pair (R1,R2)
with probability pS = f (GCS)/(1 + f (GCS)), where f is
a user specified function. Specifically, Pysim-sv first gen-
erates a random number from the Bernoulli distribution
with the success rate as the probability pS. Pysim-sv will
or will not select this read pair depending on whether or
not the random number is 1. Figure 2 show examples of
GC-dependency in real sequencing data (top panel) and
in simulated data by Pysim-sv (bottom panel). The GC-
dependency functions in Fig. 2d–f are chosen as f1(x) =

Table 1 The sensitivity and false discovery rate (FDR) of the different SNV detection algorithms with different simulation setups

Purity Subclone1 Subclone2 GC-bias Methods Sensitivity FDR

Purity=1 1 0

Yes
GATK 0.97679 1.13 × 10−4

Varscan 0.97892 2.36 × 10−3

No
GATK 0.97826 9.20 × 10−5

Varscan 0.98134 2.05 × 10−3

Purity=0.8 0.4 0.4

Yes
GATK 0.90253 1.93 × 10−3

Varscan 0.92501 5.36 × 10−3

No
GATK 0.90853 8.32 × 10−4

Varscan 0.93001 5.05 × 10−3

Purity=0.5 0.4 0.1

Yes
GATK 0.81253 1.09 × 10−2

Varscan 0.84501 5.34 × 10−2

No
GATK 0.81853 2.11 × 10−3

Varscan 0.85001 4.51 × 10−2

Note that the purity column represents the proportion of “tumor” cells in the simulated data. Subcolone1 and Subcolone2 columns represent the proportions of subcolone 1
and 2 in the simulated data, respectively. When purity is 1 and subclone1 is 1, it means that all data are from subclone1 and it essentially like a sequencing data from a normal
genome
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Fig. 3 The sensitivity of the four SV detection algorithms with different parameters. Deletions (black), inversion (grey) and translocations (white) are
compared, individually. a, b, and c are the simulated data with GC-bias, and d, e, f are the simulated data without GC-bias. The purities are 1
(a, d), 0.8 (b, e) and 0.5 (c, f)

−8.89x3−3.56x2+9.13x−1.58, f2(x) = −2.5(x−0.6)2+1,
and

f3(x) =
⎧
⎨

⎩

−2x + 1.8 x ≥ 0.4
4x − 0.6 0.2 ≤ x ≤ 0.4

0.1 otherwise.

Note that the GC-dependency functions of Fig. 2d–f
are not chosen to be corresponding to GC-dependency
of Fig. 2a–c. Pysim-sv is very flexible in generating GC-
bias and users can easily specify any GC-dependency
functions.

Results and Discussions
Based on the human reference genome (hg19), we simu-
lated six genomes with three levels of purity (1, 0.5, and
0.8) and two levels of GC-dependency (with and without
GC-bias). Each genome contains 100,000 SNVs and 200
SVs. We generated 30× 100 bp paired-end read data. We

used GATK [23] and Varscan [24] to detect SNVs in these
simulated data, and used Delly [25], BreakDancer [6],
GASV-Pro [26] and Meerkat [5] to detect SVs. As a com-
parison, we also ran these algorithms on a real data set
NA12878 from the 1000 Genome Project. The NA12878
data was sequenced on the Illumina platform with a read
length of 100 bp. The mean insert size is 320 bp with a
standard deviation of 60 bp. The coverage of this data set
is around 40×.
Table 1 shows the sensitivity and false discovery rate

(FDR) of GATK and Varscan on the six simulated data.
We found that Varscan had a higher sensitivity and
FDR rate than GATK. The sensitivities of GATK and
Varscan tend to decrease and their FDR rates tend to
increase when the purity decreases. Similarly, compared
with no GC-bias data, their sensitivities are lower and
their FDRs are higher when GC-bias is introduced. On
the NA12878 data, by comparing with reported SNVs

Table 2 Overlaps of deletion predictions of the four SV detection algorithms with golden standard deletions in Mills el. al. 2011

Software Total reported deletion Deletions in golden standard Precision Recall rate

Delly 1075 358/545 0.33 0.66

BreakDancer 779 328/545 0.42 0.60

Gasv-pro 1382 339/545 0.25 0.62

Meerkat 687 372/545 0.54 0.68
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of this individual from the 1000 Genome Project, the
sensitivities of GATK and Varscan were 96.8 and 96.3%,
similar to their performances on the simulated data set
with purity 1.
The sensitivities of the SV detection algorithms are

shown in Fig. 3. Compared with the SNV detection algo-
rithms, the sensitivities of these algorithms are relatively
low. All methods have sensitivities above 75%. Meerkat
and Delly achieved higher sensitivity rates than Break-
Dancer and GASV-Pro because Meerkat and Delly used
both discordant reads and split reads to detect SVs. As
the purity decreases, we also observe that the sensitiv-
ities of the SV detection algorithms tend to decrease.
For NA12878, we compared the SV calls from the four
SV detection algorithms with the golden standard SV set

as reported in Mills et al. 2011 [1]. Since most of the
reported SVs in Mills et al. 2011 are deletions, we only
considered deletion predictions. The precision and recall
rates of the four algorithms are calculated by comparing
with the golden standard deletions (Table 2). The preci-
sions of the four algorithms are relatively low, but this low
level of precision might be due to the possibility that many
true deletions are not included in the golden standard
set. For CNV detection, we generated another simulation
data containing 40 CNVs with their sizes ranging from
100 bp to 10 kb and their copy numbers ranging from 0 to
6. SNVs and Indels were also introduced to this genome
by randomly sampling from the dbSNP database. We
used Pysim-sv coupled with ART to generate 10× data of
100 bp paired-end reads with GC-bias. BIC-seq2 [13, 27]

Table 3 The running time (hour) and memory usage (Gb) for Pysim-sv simulations with different parameter settings

Simulation set up Time Memory

Genome Simulationa One subclone with 100 SVs 0.98 h 9.1 Gb

One subclone with 200 SVs 1.34 h 9.9 Gb

One subclone with 300 SVs 1.73 h 11.6 Gb

Two subclones with 100 SVs 1.03 h 9.5 Gb

Three subclones with 100 SVs 1.28 h 10.2 Gb

Read generationb Mixing reads from 2 subclones and 1 normal genome (392 M reads) 2.76 h 6.2 Gb

GC-bias Introduction (130 M reads) 4.10 h 2.5 GB

aTime and memory usage for simulating subclone genomes and a normal genome
bTime and memory usage for read generation by ART are not shown
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was used to detect CNVs based on BWA [28] mapping.
Among 40 CNVs, 35 were detected by BIC-Seq2 (Fig. 4).
To test Pysim-sv speed, we used a diploid human

genome(hg19) as reference and evaluated the computa-
tional efficiency with different parameter settings. We
simulated 2.4 million SNVs which were randomly selected
in dbSNP. We simulated 1–3 subclones with 100–300
SVs ranging from 1 to 10 kb. The test was performed
on a 32-core sever with Intel Xeon 2.40 GHz CPU, run-
ning a Linux operating system. The running time and the
memory usage of Pysim-sv were summarized in Table 3.

Conclusion
In this paper, we present Pysim-sv to simulate HTS data
for benchmarking SV detection algorithms. Pysim-sv can
simulate a wide spectrum of germline and somatic vari-
ations and thus the simulated genomes are more similar
to real genomes. Pysim-sv is the first HTS data simula-
tion tool that can introduce the GC-bias in the simulated
HTS data. These features make simulation data generated
by Pysim-sv more similar to real HTS data. We believe
that Pysim-sv is a useful toolkit for performance evalua-
tion of SV detection and SNV detection algorithms based
on HTS data.

Availability and requirements
Project name: Pysim-sv
Project home page: https://github.com/xyc0813/pysim/
Operating system(s): Windows,Unix-like (Linux, Mac
OSX)
Programming language: python(>=2.7)
Any restrictions to use by non-academics: None
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Non-allelic homologous recombination; NHR: Non-homologous
recombination SVs: Structural variations; SNVs: Single nucleotide variations
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