
The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59
DOI 10.1186/s12859-017-1466-6

RESEARCH Open Access

A framework for space-efficient read
clustering in metagenomic samples
Jarno Alanko1*, Fabio Cunial2, Djamal Belazzougui3 and Veli Mäkinen1

From The Fifteenth Asia Pacific Bioinformatics Conference
Shenzhen, China. 16-18 January 2017

Abstract

Background: A metagenomic sample is a set of DNA fragments, randomly extracted from multiple cells in an
environment, belonging to distinct, often unknown species. Unsupervised metagenomic clustering aims at
partitioning a metagenomic sample into sets that approximate taxonomic units, without using reference genomes.
Since samples are large and steadily growing, space-efficient clustering algorithms are strongly needed.

Results: We design and implement a space-efficient algorithmic framework that solves a number of core primitives
in unsupervised metagenomic clustering using just the bidirectional Burrows-Wheeler index and a union-find data
structure on the set of reads. When run on a sample of total length n, withm reads of maximum length � each, on an
alphabet of total size σ , our algorithms take O(n(t + log σ)) time and just 2n + o(n) + O(max{�σ log n, K logm}) bits
of space in addition to the index and to the union-find data structure, where K is a measure of the redundancy of the
sample and t is the query time of the union-find data structure.

Conclusions: Our experimental results show that our algorithms are practical, they can exploit multiple cores by a
parallel traversal of the suffix-link tree, and they are competitive both in space and in time with the state of the art.

Keywords: Metagenomics, Read clustering, Text indexing, Burrows-Wheeler transform, Suffix-link tree, Right-maximal
k-mer, Submaximal repeat

Background
High-throughput sequencing has made it fast and cost-
effective to sequence DNA from entire environments at
once. The collection of all genomes in an environment
is called the metagenome of the environment. A funda-
mental problem in metagenomics is to cluster the reads
produced by a high-throughput experiment, according to
which species (or, more generally, taxonomic unit) they
originate from. This can be done in a supervised manner,
by mapping the reads to a database of known genomes,
or in an unsupervised way, by performing extensive com-
parisons of all reads against each other without relying on
any reference database. Unsupervised methods are attrac-
tive, and in most practical cases the only option available,

*Correspondence: jarno.alanko@cs.helsinki.fi
1Department of Computer Science, University of Helsinki, Gustaf Hällströmin
katu 2b, 00560 Helsinki, Finland
Full list of author information is available at the end of the article

since the genome of most organisms (e.g. prokaryotes)
that inhabit complex environments is unknown.
Having accurate clusters for reads that come from

unknown taxonomic units allows one to estimate key
measures of environmental biodiversity, and to assemble
the corresponding genomes more accurately and using
less memory [1–3]. Clusters have also natural applications
to comparative genomics, as well as to the emerging field
of comparative metagenomics that is becoming increas-
ingly crucial for managing and understanding collections
of hundreds of thousands of samples, like those already
available in [4, 5]. For example, a cluster corresponding
to an unknown taxonomic unit could be positioned inside
a taxonomy of known genomes by comparing their sub-
string composition, and two metagenomic samples with
annotated clusters could be compared in time propor-
tional to the number of clusters, for example using the
measures described in [6], rather than in time propor-
tional to the number of distinct substrings of a specific

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1466-6&domain=pdf
mailto: jarno.alanko@cs.helsinki.fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 50 of 175

length, as done e.g. in [7, 8], or to the number of reads, as
done in [9].
The problem of building a scalable, accurate and unsu-

pervised metagenomic clustering pipeline is fairly recent
and still open. Most existing approaches exploit the
same signal as alignment-free genome comparison tools,
namely taxon-specific biases in the frequency of sub-
strings of a specific length, and they use such signal in hid-
den Markov models [10, 11], maximum likelihood Monte
Carlo Markov chains [12], and expectation maximization
algorithms [11, 13]. Other pipelines blend statistics with
combinatorial criteria, merging e.g. reads that share long
substrings first, and then further merging such groups
by similarity of their k-mer composition vectors (see e.g.
[14–16] and references therein). A single metagenomic
sample contains tens of gigabases, and to improve accu-
racy it is becoming more common to cluster the union of
multiple samples that are believed to contain shared taxo-
nomic units, as described e.g. in [17, 18]. Notwithstanding
such issues of scale, no existing clustering pipeline is
designed to be space-efficient, and can thus handle with
commodity hardware the largest datasets available.

Read clustering
Read clustering tools share a number of core combinato-
rial primitives, which they blend with statistical consid-
erations and with ad hoc heuristics to achieve accuracy.
A pipeline that contains most such primitives is the one
described in [15], which we summarize in what follows,
pointing the reader to the original paper and to its refer-
ences for statistical considerations and for criteria used to
set the parameters. The same primitives recur in a number
of other pipelines [14, 16, 19]. As customary, we call k-
mer any string of length k, and we call coverage the average
number of reads that contain a position of the genome of a
taxonomic unit. We also use the term taxon as a synonym
for taxonomic unit.
The first step of the pipeline consists in detecting and

filtering out reads sampled from low-frequency taxa, since
in practice the presence of such reads tends to degrade the
quality of the clusters of high-frequency taxonomic units.
Reads from low-frequency taxa should also be clustered
with dedicated settings of the parameters. Such filtering
has the additional advantage of removing reads with a
large number of sequencing errors, and of reducing the
size of the input to the following stages. Specifically, given
integers k and τ > 1, a read is filtered out iff all its distinct
k-mers occur (possibly reverse-complemented) less than
τ times in the read set, where τ is set according to error
rate, expected coverage, and read length.
Given a DNA string r, let r̃ denote its reverse comple-

ment. Consider the graph where reads are vertices and
two vertices are connected by an edge iff they are related
in the following sense:

Definition 1 (k-RC-relation) Two DNA strings r1 and r2
are related iff there is a string α of length k such that α

occurs in r1, and α or α̃ occurs in r2.

The requirement of sharing a k-mer in either the for-
ward or the reverse-complement orientation comes from
the fact that we ignore whether a read was sampled
from the forward or the reverse-complement strand of
its genome. The second step of the pipeline consists in
computing the connected components of the read graph
defined by the k-RC-relation: we call such components
the k-RC connected components. We omit k whenever its
value is clear from the context. The value of k is typically
set using statistics on the substrings of known genomes.
The connected components of the k-RC-relation loosely
correspond to unassembled contigs. Moreover, assuming
that the genomes of distinct taxonomic units have approx-
imately the same length, different taxonomic units should
get approximately the same number of connected compo-
nents. Connected components can be further merged if
we have paired-end labels on the reads.
In this paper we will also consider the following relation,

whose connected components are a refinement of those
induced by the previous one:

Definition 2 (k-relation) Two strings r1 and r2 are
related iff there is a string α of length k such that α occurs
in r1 and α occurs in r2.

Note that there is a one-to-one correspondence between
the connected components of the k-relation and the con-
nected components of the de Bruijn graph of order k of
the set of reads.
The third step of the pipeline consists in computing

composition vectors of h-mers, where h < k, for every con-
nected component: a composition vector is an array of 4h
elements, where each element corresponds to a distinct
h-mer, and where the value of element α is the (normal-
ized) frequency of string α in the connected component.
Since reads can be sampled from both strands of a double-
stranded DNA molecule, the frequency of an h-mer and
of its reverse complement are summed, and a composi-
tion vector consists just of the distinct h-mers that are
lexicographically smaller than their reverse complement.
Composition vectors are computed from connected

components, rather than from single reads, since reads
are typically too short for their h-mer composition to
approximate the one of their corresponding genomes.
Due to multiple occurrences of the same string inside
the same connected component, the h-mer composition
is not estimated directly from the reads in the connected
component, but rather from distinct long substrings that
repeat inside the connected component, specifically from
distinct substrings of length at least e > h which occur

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 51 of 175

(possibly reverse-complemented) at least τ ′ times in the
connected component.
Composition vectors are finally clustered using e.g. the

k-means algorithm, since connected components with
similar h-mer composition are likely to correspond to long
fragments of the same genome.

Strings and string indexes
Let S[1, n] be a string with alphabet � =[1, σ]. For sim-
plicity, we assume in what follows that S[0] means S[n],
and that the substring S[0, n] means S[n, n]. We denote by
S the reverse of S. Given a bijective mapping f : � → �

that defines a complement character for each character
in �, we call reverse complement of S the string ˜S =
f (S[n])·f (S[n−1])·· · ··f (S[1]). Unless otherwise noted,
in this paper we assume f to be the natural complemen-
tarity of DNA bases, i.e. f (A) = T, f (T) = A, f (C) = G,
f (G) = C, although our algorithms do not exploit this
specific mapping.
We denote by PS(α) the set of all starting positions of a

string α ∈ �+ in the circular version of S. We set �r
S(α) =

{c ∈ � : |PS(αc)| > 0} and ��
S(α) = {c ∈ � : |PS(cα)| >

0}. A repeat α ∈ �+ is a string that satisfies |PS(α)| > 1.
A repeat α is right-maximal (respectively, left-maximal)
iff |�r

S(α)| > 1 (respectively, iff |��
S(α)| > 1). A maxi-

mal repeat is a repeat that is both left- and right-maximal.
It is well known that a maximal repeat corresponds to an
equivalence class of the set of all right-maximal repeats.
A supermaximal repeat is a maximal repeat that is not a
substring of any other maximal repeat. We say that a left-
maximal repeat α is strongly left-maximal iff there are at
least two distinct characters a and b in � such that both
aα and bα are right-maximal repeats of S. Clearly only
right-maximal repeats of S can be strongly left-maximal,
thus the set of strongly left-maximal repeats of S is a sub-
set of the maximal repeats of S. Given a string α that
occurs in S, we call λ(α) the number of (not necessarily
proper) suffixes of α that are strongly left-maximal repeats
of S, and we call λS = max{λ(S[1, i]) : 1 ≤ i ≤ n)}.
Clearly λS ∈ O(n). Strong right-maximality is defined
symmetrically. A string α ∈ �+ is a reverse-complement
right-maximal repeat (RC right-maximal for short) of S
if it is a right-maximal repeat of S$˜S, where $ � is a
separator: in other words, there are two distinct char-
acters c, d ∈ � such that αc or α̃c is a substring of S,
and αd or ˜αd is a substring of S. Reverse-complement
left-maximal repeats and reverse-complement maximal
repeats are defined symmetrically.
The suffix tree of a string S ∈[1, σ]+ is the compacted

trie built on the set of all suffixes of string S$, where
$ = 0[1, σ] [20]. There is a bijection between the set of
leaves of the suffix tree and the set of suffixes of S $, and
there is a bijection between the set of internal nodes of the
suffix tree and the set of right-maximal repeats of S. We

denote by �(v) the label of a node v in the tree, i.e. the con-
catenation of the labels of all edges in the path from the
root to v. The locus of a nonempty substring α of S in the
suffix tree of S is the node v such that α is a (not neces-
sarily proper) prefix of �(v) and �(u) is a proper prefix of
α, where u is the parent of v. A suffix link connects the
node of the suffix tree that corresponds to a string α, to
the node of the suffix tree that corresponds to the string
α[2, |α|]. Inverting the direction of all suffix links gives the
so-called explicit Weiner links. The suffix link tree of S is
the trie whose set of nodes consists of the set of all inter-
nal nodes of the suffix tree of S, and whose set of edges
consists of all the explicit Weiner links (that start from
internal nodes) of the suffix tree of S. An internal node of
the suffix tree that corresponds to a right-maximal string
α is the source of an implicit Weiner link, labelled by char-
acter c, if string cα occurs in S, but is not right-maximal:
the target of such implicitWeiner link is the node that cor-
responds to the shortest string prefixed by cα that labels a
node of the suffix tree. The number of implicit and explicit
Weiner links (that start from internal nodes) in the suf-
fix tree of a string S$ of length n is upper-bounded by
2n − 2 [21]. The generalized suffix tree of a set of strings
S1, S2, . . . , Sm on alphabet [1, σ] is the suffix tree of the
concatenation S1 ·$1 ·S2 ·$2 · · · · ·Sm ·$m, where $1, . . . , $m
are distinct separators that are lexicographically smaller
than every character in [1, σ].
The Burrows-Wheeler transform (BWT) is a standard

tool in text indexing. For convenience, we define the
Burrows-Wheeler transform only for strings terminated
with a unique character $ = 0 that is lexicographically
smaller than all characters in �. The suffix array SAS[1, n]
of S is an array such that SAS[i] is the starting position of
the suffix of S with lexicographic rank i among all suffixes
of S. The Burrows-Wheeler transform BWTS[1, n] of S is
the string such that BWTS[i]= S[SAS[i]−1] if SAS[i] �= 1,
and BWTS[i]= S[n] otherwise. Given a collection of
strings S1, S2, . . . , Sm, where Si ∈ �+ for all i ∈[1,m],
we call BWT of the collection the string BWTS, where S =
S1 ·$1 ·S2 ·$2 ·· · ··Sm ·$m, and $1, . . . , $m are distinct separa-
tors that are lexicographically smaller than every character
in �. The BWT can be used as a full-text index, by encod-
ing it to answer rank queries rankBWT(i, c), which return
the number of times character c ∈ � occurs in the prefix
BWT[1, i], and by augmenting it with array C[1, σ], such
that C[i] is the number of characters in BWT whose lex-
icographical rank is strictly less than i. In this paper we
assume that the BWT is encoded as a wavelet tree, thus
rank operations on the BWT takeO(log σ) time [22]. Rank
operations on a bitvector of length n take constant time if
such bitvector is augmented with suitable data structures
of o(n) bits; such data structures can be built in O(n) time
and o(n) bits of working space [23, 24]. Rank queries and
theC array enable a backward step operation on the BWT:

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 52 of 175

given the lexicographic rank i′ of suffix S[i, n], a backward
step gives the lexicographical rank of suffix S[i − 1, n]
using the formula C[BWTS[i′]]+rankBWT(i′, BWTS[i′]).
In what follows, we drop the subscript from SA, BWT and
rank whenever it is clear from the context.
We can associate to each substring α of S the interval

SAS[i, j] that contains the starting positions of all the suf-
fixes of S prefixed by α, i.e. the starting positions of all
occurrences of α in S. There is a bijection between the
set of all such intervals of size at least two and the set of
all internal nodes of the suffix tree of S. Given any such
interval associated with string α, and given a character
c, we can compute the interval of string cα if it exists
(or return an empty interval otherwise), using just two
rank queries on BWTS 1. If α is right-maximal, this oper-
ation corresponds to taking a Weiner link labelled by c
from the internal node of the suffix tree labelled by α.
We can traverse the entire suffix-link tree by performing
a linear number of such operations, and by using a suit-
ably designed stack [25]: many algorithms based on the
suffix tree can be simulated space-efficiently using such
traversal [25].
The bidirectional Burrows-Wheeler index [26–29] con-

sists of BWTS and of BWTS, which we also denote by
BWTS. BWT can be interpreted as the list of left exten-
sions of all lexicographically sorted suffixes of S, and BWT
can be interpreted as the list of right extensions of all
colexicographically sorted prefixes, where a string α is
colexicographically smaller than a string β iff α is lexico-
graphically smaller than β . A substring α of S is associated
with a contiguous lexicographic (respectively, colexico-
graphic) interval, i.e. with the lexicographic (respectively,
colexicographic) range of all suffixes (respectively, pre-
fixes) of S that are prefixed (respectively, suffixed) by α.
We denote the first and last position of the lexicographic
interval of a substring α with i→α and j→α , respectively, and
the first and last positions of the colexicographic inter-
val of the same substring with i←α and j←α , respectively.
Given a string α, indices i→α , j→α , i←α , j←α and a charac-
ter c ∈ �, it is possible to compute a left-extension,
i.e. the indices i→cα , j→cα , i←cα , j←cα and a right-extension,
i.e. the indices i→αc , j→αc , i←αc , j←αc in time O(σ log σ): see
Algorithm 1.Within the same space budget, the time com-
plexity can be further improved to O(log σ), by replacing
the sum in line 4 of Algorithm 1 with the count opera-
tion provided by wavelet trees [30], and finally to O(1) by
using monotone minimal perfect hash functions [25]. In
what follows, we use extendLeft and extendRight
to denote these two primitives of a bidirectional BWT
index. We also assume that a bidirectional BWT
index provides operation enumerateLeft (respectively,
enumerateRight), which, given a string α, i→α , j→α
(respectively, i←α , j←α), and a character c ∈ �, returns the
set of all d distinct characters that occur in BWTS[i→α , j→α]

(respectively, in BWTS[i←α , j←α]), in lexicographic order.
Operations enumerateLeft and enumerateRight
can be implemented in O(d log(σ/d)) time using wavelet
trees [28].

Algorithm 1 Implementing extendLeft on a bidirec-
tional BWT index. The pseudocode for extendRight is
identical, but uses BWT rather than BWT, and swaps i←
with i→, and j← with j→.
1: procedure EXTENDLEFT(intervals [i→α , j→α] and

[i←α , j←α], character c)
2: i→cα := C[c]+rankBWT(i→α , c)
3: j→cα := C[c]+rankBWT(j→α , c)
4: i←cα := i←cα+

∑

d∈�:d<c

(

rankBWT(j→α ,d)−rankBWT(i→α −1,d)
)

5: j←cα := i←cα + (j→cα − i→cα)

6: return [i→cα , j→cα], [i←cα , j←cα]
7: end procedure

Methods
We show how to implement in small space the key primi-
tives of the read clustering pipeline, using the bidirectional
BWT index of the concatenation of all reads in the sample.
Specifically, we focus on the step that builds the connected
components, since this is the space bottleneck of the entire
pipeline in practice, and since the same techniques can be
applied to the initial filtering of reads from low-frequency
taxa. Building composition vectors and clustering them
requires negligible space compared to the other steps.
We say that the rank of a read is the number of reads

that come before it in the concatenation, plus one to make
the ranks start from one. We first describe how to iterate
over all the RC right-maximal substrings of S, a result that
will be useful in what follows:

Lemma 1 Given the bidirectional BWT index of a string
S ∈[1, σ]n−1 $, where $ = 0, we can iterate over all the
RC right-maximal substrings of S in O(n log σ) time and
O(σ log2 n) bits of space in addition to the input and the
output.

Proof We use the recursive procedure in Algorithm 2
to enumerate all the nodes of the generalized suffix tree
of S and ˜S, as described in [25]. Each frame in the
iteration stack represents the four intervals that iden-
tify the lexicographic and colexicographic ranges of a
string and its reverse complement. To decide whether
substring cα is RC right-maximal, we just need inter-
vals [i←cα , j←cα] and [i→̃cα , j→̃cα]. Recall that interval [i←cα , j←cα]
in the reverse BWT lists all the right extensions of cα,
and interval [i→̃cα , j→̃cα] in the forward BWT lists all the

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 53 of 175

left extensions of c̃α. Let �′
1 = {c : c ∈ BWT[i←cα , j←cα] }

be the set of distinct characters in BWT[i←cα , j←cα], and let
�′

2 = {̃c : c ∈ BWT[i→̃cα , j→̃cα] } be the set of distinct
reverse complements of the characters in BWT[i→̃cα , j→̃cα].
String cα is RC right-maximal iff

∣

∣�′
1 ∪ �′

2
∣

∣ > 1:
this can be checked by calling the enumerateLeft
and enumerateRight operations provided by the
bidirectional index, and by taking the union of their
output.
Every element in the output of enumerateLeft and

enumerateRight can be either charged to an implicit
or explicit Weiner link of the generalized suffix tree
of S and ˜S, or to an edge of the same tree, thus the
total number of such calls is O(n), and the total num-
ber of calls to extendLeft and extendRight is O(n)

as well. The claimed time bound comes from proper-
ties described in the “Background” section. As used in
Algorithm 2, the stack takes O(λSσ log n) bits, since in
the worst case it consists of λS levels, each of which con-
tains up to σ quadruplets of intervals in BWT and BWT.
We reduce the number of levels in the stack to O(log n)

by pushing first, at every iteration, the left-extension with
largest sum of interval lengths in, say, BWT, as described
in [25].

Recall that in our case S is a collection of reads,
thus, even without applying the logarithmic stack tech-
nique described in [25], the space used by Lemma 1
is O(�σ log n) bits, where � is the maximum length
of a read.

Algorithm 2 Iterating over all RC right-maximal sub-
strings of a string using the bidirectional BWT index.
1: stack ← Empty iteration stack
2: push (([1, n] , [1, n]), ([1, n] , [1, n])) to stack
3: while stack is not empty do
4: [i→α , j→α] , [i←α , j←α] , [i→̃α , j→̃α] , [i←̃α , j←̃α]← pop

stack
5: �1 ← enumerateLeft([i→α , j→α])
6: �2 ← enumerateRight([i←̃α , j←̃α])
7: �3 ← {̃c | c ∈ �2}
8: for c ∈ �1 ∪ �3 do
9: [i→cα , j→cα] , [i←cα , j←cα]←

extendLeft([i→α , j→α] , [i←α , j←α] , c)
10: [i→̃cα , j→̃cα] , [i←̃cα , j←̃cα]←

extendRight([i→̃α , j→̃α] , [i←̃α , j←̃α] , c̃)
11: if cα is RC right-maximal then
12: report cα
13: stack.push

(

[i→cα , j→cα],[i←cα , j←cα],[i→̃cα, j→̃cα],[i←̃cα , j←̃cα]
)

14: end if
15: end for
16: end while

We compute k-RC connected components in two steps:
first, we compute connected components of the k-relation
on reads. Then, we merge every two connected compo-
nents C1 and C2 for which there is a k-mer α such that
α is contained in some read in C1, and α̃ is contained in
some read in C2. As done in [15], we use a union-find
data structure on the set of reads to implement the merg-
ing operations (see e.g. [31]). We assume that such data
structure supports the following queries: find(r), which
returns the handle of the connected component contain-
ing read r; union(C1,C2), which merges components C1
andC2 and returns the handle of the resulting component;
and size(C), which returns the number of reads in com-
ponent C. We initialize the data structure so that every
read belongs to a distinct component.

Lemma 2 Let S = S1$S2$ · · · Sm$$ be a string of length
n such that Si ∈ �+ for all i ∈[1,m], and $ = 0 is a sep-
arator. Assume that we are given the bidirectional BWT
index of S, a union-find data structure initialized with
m sets and supporting find and union in time t, and
an integer k. Then we can encode, in the union-find data
structure, all the connected components of the k-relation
graph on set {S1, S2, . . . , Sm}, in O(n(t + log σ ′)) time and
in n + o(n) + O(max{�σ ′ log n,K logm}) bits of space in
addition to the input, where σ ′ = σ + 1, � = max{|Si| : i ∈
[1,m] } and K is the number of distinct k-mers of S.

Proof We enumerate the nodes of the suffix tree of S
in the order induced by the suffix-link tree of S, using
a recursive procedure similar to Algorithm 2. Specifi-
cally, we keep just [i→α , j→α] and [i←α , j←α] for every right-
maximal substring α of S, and we use the fact that α is
right-maximal iff BWT[i←α , j←α] contains at least two dis-
tinct characters (see [25] for further details). Note that
the BWT intervals of distinct k-mers are disjoint. Thus,
during the iteration, we mark in a bitvector B, of length
equal to the size of BWT, the first position of the lexi-
cographic interval of every k-mer. This can be done as
follows (see e.g. [21]). We initialize B to all ones and,
whenever we enumerate a right-maximal substring α of
length at least k, we use operations enumerateRight
and extendRight provided by the bidirectional index
to compute the interval [i→αc , j→αc] of every right-extension
αc of α, in lexicographic order. Then, we flip bit B[i→αc]
for all c except the first in lexicographic order. At the end
of this process we index B to answer rank queries in con-
stant time, so that we can compute the ID of the k-mer
whose BWT interval contains a given position i in BWT by
rankB(i).
Every k-mer interval is associated with the set of dis-

tinct reads that contain the starting points of the suffixes
of S inside the interval. For each k-mer interval, we store
the handle of one of such read. The handles are stored in

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 54 of 175

an array H, of length equal to the number of k-mer inter-
vals, such that the handle corresponding to the interval
of the k-mer that contains position i in BWT is stored in
H[rankB(i)].We initialize arrayH with null values. Then,
we backward-search string S in BWTS, maintaining the lex-
icographic rank i→ of the suffix that starts at the current
position, and the rank r of the read that contains such
suffix. At each step we compute p, the ID of the k-mer
whose interval contains i→: if H[p] is null, we set H[p] to
find(r); otherwise, if H[p] is different from find(r), we
set H[p] to the output of union(H[p] ,find(r)).

Note that in Lemma 2 we do not use a distinct separator
for every read, but instead we use the same separator for
all reads. The result is unaffected by this change, and we
will use this convention in the rest of the paper. We leave
details to the reader.
Clearly it suffices to consider just k-mers that do not

contain $ and that occur at least twice in S. More tightly, it
suffices to consider just right-maximal k-mers that do not
contain $: indeed, if a k-mer α is always followed in S by
character c, then the set of reads that are merged by α is
a subset of the set of reads that are merged by α[2, k] ·c.
Lemma 2 can be adapted to use just right-maximal k-
mers:

Corollary 1 Lemma 2 can be implemented in n+o(n)+
O(max{�σ ′ log n,K ′ logm}) bits of space in addition to the
input, where K ′ is the number of distinct right-maximal
k-mers of S.

Proof We follow the same approach as in Lemma 2. The
intervals of all right-maximal k-mers are disjoint and of
size at least two. We mark the first and the last posi-
tion of every such interval in array B, by iterating over all
right-maximal substrings of S and by setting B[i→α]= 1
and B[j→α]= 1 for every right-maximal α of length k.
This marking technique was introduced independently by
[21, Lemma 16.5] and by [32]. As we backward-search S
in BWTS, we decide whether the k-mer that prefixes the
current suffix of S is right-maximal, by checking whether
B[i]= 1 or rankB(i) is odd, where i is the lexicographic
rank of the current suffix. We proceed only in the posi-
tive case, using the handle that corresponds to the k-mer
located at position 	rankB(i)/2
 of H.

Note that the running time of Corollary 1 is O(occ ·
t+n log σ), where occ is the total number of occurrences
of all right-maximal k-mers. In real datasets, for typical
values of k (e.g. 36), the number of distinct k-mers can
be approximately 45 times bigger than the number of dis-
tinct right-maximal k-mers, and the length of the string
can be approximately 17 times bigger than the number of
occurrences of right-maximal k-mers.

Consider the set R of all distinct maximal repeats of S
of length at least k: every substring S[i, j] that equals a
right-maximal k-mer of S is a suffix of a substring S[i′, j],
with i′ ≤ i, that equals a maximal repeat in R, and every
substring S[i′, j] that equals a maximal repeat in R has
a right-maximal k-mer as a suffix. Thus, issuing union
queries using the elements of R is equivalent to issuing
union queries using all right-maximal k-mers. The size of
R, however, is at least the number of right-maximal k-
mers. Specifically, the number of right-maximal k-mers
equals the size of set R′ ⊆ R, where R′ is the set of ele-
ments of R that do not have another element of R as a
suffix. In other words, the elements ofR′ are the reversed
labels of the loci of the reversed right-maximal k-mers of
S in the suffix tree of the reverse of S.
More tightly, every substring α of a maximal repeat β ∈

R occurs in S whenever β occurs, and possibly at other
positions, therefore the union operations induced by β are
a subset of the union operations induced by α, and we can
safely disregard β for clustering. We are thus interested in
the following subset of the maximal repeats of S:

Definition 3 Let S ∈ �n be a string and let k be an inte-
ger. A repeat of S is called k-submaximal if it is a maximal
repeat of S of length at least k, and if it does not contain
any maximal repeat of length at least k as a substring.

Note that the set of k-submaximal repeats is a subset of
R′. Lemma 2 can be adapted to use just the k-submaximal
repeats of S:

Corollary 2 Lemma 2 can be implemented in
2n + o(n) + O(max{�σ ′ log n,K ′′ logm}) bits of space in
addition to the input, where K ′′ is the number of distinct
k-submaximal repeats of S.

Proof Since the set of all k-submaximal repeats is a sub-
set of R′, and since the elements of R′ are the reversed
labels of the loci of the reversed right-maximal k-mers of
S in the suffix tree of S, there is a one-to-one correspon-
dence between the set of occurrences of k-submaximal
repeats and the set of occurrences of their right-maximal
suffixes of length k. We can thus issue union queries using
just right-maximal k-mers that are the (not necessarily
proper) suffix of a k-submaximal repeat, or equivalently
using just right-maximal k-mers such that the label of the
locus of their reverse in the suffix tree of S is the reverse
of a k-submaximal repeat.
Assume that we have bitvector B from Corollary 1,

with the intervals of all right-maximal k-mers marked
with ones, indexed to support rank queries. We mark in
another bitvector B′ (initialized to all zeros) the subset
of such intervals that correspond to k-mers that are the
suffix of a k-submaximal repeat, as follows. We scan B

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 55 of 175

sequentially, and for every pair (i, j) of ones such that
the first has odd rank x and the second has even rank
x + 1, we check whether BWTS[i, j] contains at least two
distinct characters: if so, the right-maximal k-mer α that
corresponds to interval [i, j] is also left-maximal, α is a
k-submaximal repeat, and we set B′[i]= B′[j]= 1.
Otherwise, let v be the locus of α in the suffix tree

of S, let u be the parent of v, let the label of v be
�(v) = �(u)βγ , let α = �(u)β , and let |γ | = g. We
iteratively take backward steps from [i, j] until we find
a BWT interval that contains at least two distinct char-
acters. This is equivalent to reading the characters of γ

sequentially. Let such sequence of backward steps yield
intervals [i1, j1] , [i2, j2] , . . . , [ig , jg] corresponding to
right-maximal strings γ [1]α, γ [2] γ [1]α, . . . , γα.
Assume that, using rank queries on B, we detect that one
such interval [iy, jy] is contained inside the interval of a
right-maximal k-mer θ . Let v′ be the locus of θ in the
suffix tree of S. Then �(v′) is a substring of �(v) and �(v′)
is an element of R′, thus �(v) is not k-submaximal, we
leave B′[i] and B′[j] to zero, and we move to the next pair
of ones in B. If none of the intervals [i1, j1] , . . . , [ig , jg] is
contained inside the interval of a right-maximal k-mer,
we set B′[i]= B′[j]= 1 and we move to the next pair of
ones in B.
At the end of this process, we index B′ for rank queries,

we replace the indexed B with the indexed B′, and we con-
tinue as in Corollary 1. The total number of backward
steps performed by the algorithm isO(n), since every step
visits a distinct right-maximal substring of S.

Slightly more involved arguments allow one to shave
n bits from the space complexity of Corollary 2. The
running time of Corollary 2 is O(occ · t + n log σ),
where occ is the total number of occurrences of all
k-submaximal repeats. In real datasets, for typical val-
ues of k (e.g. 36), the number of right-maximal k-
mers can be approximately 1.8 times the number of k-
submaximal repeats, and the total number of occurrences
of right-maximal k-mers can be approximately 1.5 times
the number of occurrences of k-submaximal repeats.
Once again, we can discard k-submaximal repeats that
contain $.
Before completing the construction of the k-RC con-

nected components, we note that the technique described
in Lemma 2 allows one to detect reads whose k-mers
occur all less than τ times in the dataset (without consid-
ering reverse complements), inO(n log σ ′) time and in n+
O(�σ ′ log n) bits of space in addition to the input and the
output. Once all reads from low-frequency species have
been detected, it is also possible to derive the BWTof such
reads, as well as the BWT of all reads from high-frequency
species, directly from BWTS. We leave such details to
the reader.

To complete the pipeline, we just need to merge all
pairs of components C1 and C2 that share a reverse
complemented k-mer. Once again, it suffices to consider
just the RC right-maximal k-mers that occur in both
S and˜S:

Lemma 3 Let S = S1$S2$ · · · Sm$$ be a string of length n
such that Si ∈ �+ for all i ∈[1,m], and $ = 0 is a separa-
tor. Assume that we are given the bidirectional BWT index
of S, a union-find data structure initialized with m sets
and supporting find and union in time t, and an integer
k. Then we can encode, in the union-find data structure,
all the connected components of the k-RC-relation on set
{S1, S2, . . . , Sm}, in O(n(t+ log σ ′)) time and in 2n+o(n)+
O(max{�σ ′ log n,K ′′′ logm}) bits of space in addition to
the input, where σ ′ = σ + 1, � = max{|Si| : i ∈[1,m] }
and K ′′′ is the number of distinct RC right-maximal k-mers
of S.

Proof Let B2 and B3 be two bitvectors, of length equal to
the length of BWT, initialized to all zeros. We iterate over
every RC right-maximal k-mer α using Algorithm 2: if
none of the intervals [i→α , j→α] and [i→̃α , j→̃α] is empty, then
the reads corresponding to interval [i→α , j→α] should be in
the same connected component as the reads correspond-
ing to interval [i→̃α , j→̃α]. Thus, if i→α �= j→α we set B2[i→α]=
1 and B2[j→α]= 1, otherwise we set B3[i→α]= 1. Similarly,
if i→̃α �= j→̃α we set B2[i→̃α]= 1 and B2[j→̃α]= 1, otherwise
we set B3[i→̃α]= 1. At the end of this process we index B2
and B3 for rank queries, we allocate a vector H2 of length
equal to the number of distinct intervals marked in B2,
and we store in H2[i] the handle of any read that contains
the k-mer that corresponds to the i-th marked interval,
by backward-searching S in BWTS as described in Corol-
lary 1. We similarly fill a vector H3, of length equal to the
number of bits marked in B3. Finally, we use again Algo-
rithm 2 to iterate over every RC right-maximal k-mer α:
if none of the intervals [i→α , j→α] and [i→̃α , j→̃α] is empty, we
issue union(h1, h2), where h1 = H2[rankB2(i→α)/2
]
if i→α �= j→α , otherwise h1 = H3[rankB3(i→α)]. Simi-
larly, h2 = H2[rankB2(i→̃α)/2
] if i→̃α �= j→̃α , otherwise
h2 = H3[rankB3(i→̃α)].

Note that, if the complementation function reverses the
alphabet (and DNA complementation does), we can avoid
executing Algorithm 2 twice. Indeed, we could just run
Algorithm 2 and mark in a bitvector A the interval of α

in BWT, and in a bitvector B the interval of α̃ in BWT, for
every RC right-maximal k-mer α that occurs both in S and
in ˜S. Then, we could allocate two vectors Ha and Hb, of
length equal to the number of marked intervals in A and
B, and we could store in Ha[i] (respectively, in Hb[i]) the
handle of any read that contains the k-mer corresponding
to the i-th marked interval inA (respectively, in B). Finally,

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 56 of 175

we could issue union(Ha[i] ,Hb[K ′′ − i + 1]) for all
i ∈[1,K ′′′].
Recall that the very last step of the pipeline consists in

extracting repeated substrings of length at least e > h
from each connected component. Every such string is a
substring of a maximal repeat of S · ˜S of length at least
e. If the user has set e > k, every such maximal repeat
occurs in exactly one connected component: we could
thus extract all the (supermaximal) repeats of S·˜S of length
at least e, in a single traversal of the generalized suffix-link
tree of S and ˜S and within the same budget as the other
algorithms (see [25] for details).
Finally, the value of k in the k-RC-relation can be esti-

mated from the dataset itself: specifically, given a range
[kx, ky] of possible values, one might want to compute the
value of k such that the majority of distinct k-mers of S
and ˜S occur at least twice in S · ˜S, i.e. most of such k-
mers are not likely to contain sequencing errors. Such k
can be computed within the same time and space bud-
get as the algorithms in this paper, using the algorithm
described in [33].
In practice the memory used by the enumeration stack

is negligible in all algorithms, the peak space usage of the
entire pipeline is achieved by Lemma 3 and, assuming that
the bidirectional index takes 2n log σ ′ + o(n log σ ′) bits,
such peak is approximately 2n log σ ′ + (2m+K ′′′) logm+
2n+o(n log σ ′) bits. The 2m logm bits of space come from
the union-find data structure, which stores for each com-
ponent a pointer to its parent in a tree structure, and the
size of the subtree attached to it to maintain balancing.
Note that 2m logm ∈ O(n log σ) if all reads are distinct.
Rather than using the union-find data structure for clus-
tering reads, we could use it for clustering distinct k-mers
or repeats, and then we could propagate such clustering
to reads (as done e.g. in [19]). This could decrease peak
memory when clustering the union of a large number of
very similar samples.

Results
The purpose of this section is just to show that our
algorithms are practical. Our implementation of the bidi-
rectional BWT index is based on C++, on the SDSL library
[34], and on the ropebwt2 library [35]. For simplicity we
implement Corollary 1 rather than Corollary 2.We use the
multithreading support of the C++ 11 standard library to
take advantage of multiple cores.
Specifically, since all our algorithms are traversals of a

suffix-link tree, we run them on c parallel cores by dividing
the BWT into c intervals of similar length and by assign-
ing each interval to a distinct core. This work balancing
technique is effective, since the length of the BWT inter-
val of a node v of the suffix tree correlates well in practice
with the number of nodes in the subtree of the suffix-
link tree rooted at v. We parallelize the backward search

of a sequence of reads in its own BWT by dividing the
sequence into c blocks of approximately equal length, and
by backward-searching each block in parallel.
We observe that the parallel traversal of the suffix-

link tree fails to use more than four cores efficiently,
thus more advanced work-balancing strategies might be
needed: engineering our implementation to exploit a large
number of cores is outside the scope of this paper.
The other purpose of this section is to show the poten-

tial of our framework, both in terms of clustering quality
and in terms of computational resources, by compar-
ing our implementation (called bwtCluster) to a sampler
of recent, state-of-the-art tools. Specifically, we compare
bwtCluster to MetaCluster [15], MBBC [11] and BiMeta
[14]. Such comparisons are inherently unfair, for a num-
ber of reasons. First, MetaCluster is a highly engineered,
parallel version of the read clustering pipeline, extensively
tuned over multiple years both in terms of quality and of
speed [15, 36–39]. Comparing bwtCluster to MetaCluster
should thus penalize bwtCluster in terms of quality, and
possibly of speed. Second, BiMeta and MBBC differ from
the pipeline we described, BiMeta is single-threaded, and
MBBCuses less than two cores on average, thus they could
be penalized in terms of speed. Performing an exten-
sive analysis of the clustering results of our framework,
and augmenting it with advanced heuristics to make it as
accurate as possible, are outside the scope of this paper.
To the best of our knowledge there is no standard

dataset for evaluating the performance of unsupervised
metagenomic clustering algorithms yet, thus we experi-
ment with the following samples of increasing complexity.
First, we build three simple, error-free datasets, to mea-
sure how well an algorithm can separate two species that
belong to distinct units at different levels in the taxon-
omy. Such datasets contain exactly two species each, with
tenfold coverage and paired-end reads of length 100 base
pairs, with no errors2. We call the datasets the species
level, genus level and family level datasets, respectively.
The reference genomes are taken from theNCBI database,
and sampled at random locations of the genomes. Second,
we replicate the simulated, high-complexity datasets A, B
and C described in [15]. Such datasets have realistic error
rates, contain up to a hundred species, and have different
fractions of low-abundance species. The datasets are cre-
ated by feeding the reference genomes from NCBI to the
Metasim software by [40]. Third, we pick two real sam-
ples: a sample from the human gut catalogue described in
[41] containing 1.4 billion base pairs, and a sample from a
study on the mouse gut described in [42] containing 830
million base pairs 3.
In simulated datasets, we assess the quality of both the

k-RC connected components and of the clusters produced
by k-means, using the measures described in [15]. Specif-
ically, suppose there are N species in the dataset, and that

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 57 of 175

an algorithm outputsM clusters. Let Rij be the number of
reads in cluster i that are from species j. We call precision
the ratio between

∑M
i=1 maxj Rij and the number of reads

in all clusters, and we call sensitivity the ratio between
∑N

j=1 maxi Rij and the total number of reads in dataset.
For brevity we call preclusters the k-RC connected com-
ponents in what follows. We combine the preclusters and
the final clusters produced by both rounds of MetaCluster
in order to compute precision and sensitivity. We do not
measure clustering quality in real samples, since the truth
is not known.
We tried to make our tool as close as possible to

MetaCluster by implementing many heuristics found in
the MetaCluster papers and even by looking at the
source code of MetaCluster, and implementing details not
present in the Metacluster papers. Specifically, we do not
merge a pair of connected components if either of the
components has at least 1000 reads, unless one of the
components has size less than 100, and before running k-
means we filter all connected components containing less
than 200 reads.We set the parameters as recommended in
[15], namely we set k = 16 and τ = 4 for filtering, we set
k = 36 for clustering, and we use k-mers of length 5 in the
composition vectors clustered by k-means. Other Meta-
Cluster heuristics that are not yet implemented in our tool
include issuing union queries in increasing order of k-mer
frequency, merging two reads if they contain two k-mers
at edit distance one from each other, and a few additional
heuristics for growing the sizes of the k-RC connected
components. UnlikeMetaCluster, our tool runs only a sin-
gle clustering round, but since the number of filtered reads
is small, the effect of this is negligible in final the precision
and sensitivity.
We ran the four tools for a maximum of 24 hours on

each dataset. The results are shown in Table 1.4 The
tools bwtCluster and BiMeta cannot estimate the num-
ber of species in a sample, so we gave the true number of
species as parameters to all tools, and we set the number
of species to 100 for the real samples. MBBC takes in input
an initial guess on the number of species. For the species,
genus and family level datasets, when MBBC was given
the true number of species as the initial guess, it failed
and predicted just one species. With the initial guess of 10
the tool predicted the correct number of species for those
datasets, and the numbers reported in Table 1 for such
datasets are with the initial guess of 10. For the datasets A,
B and C, we gave MBBC the true number of species.
Our tool was the only one which was able to process

each dataset within 24 hours without returning an error.
The peak memory of our tool was between 3.5 to 14.2
smaller then the competing tools. On the species, genus
and family-level datasets, as well as on both real datasets,
MetaCluster halted with an error, before even running k-
means, saying that the number of clusters was too low, due

to low coverage. The same error persisted when we tried
to run just the second phase, which is designed to cluster
low-frequency species. The peak memory usage of bwt-
Cluster was less than 4 bytes per character (Table 1) and
it occurred during the construction of the index (Fig. 1),
thus it might be further reduced by replacing the BWT
construction library. We could also be more careful in
keeping inmemory just the data structures that are strictly
necessary to each step of the pipeline.
On datasets A, B and C, bwtCluster had approximately

94% of the precision of MetaCluster, both in the final clus-
ters and in the preclusters, suggesting that our clusters are
approximately as clean as MetaCluster’s. The precluster
sensitivity of bwtCluster, however, was just approximately
20% of the precluster sensitivity of MetaCluster, suggest-
ing that bwtCluster fragments species into more preclus-
ters than MetaCluster: this could be caused e.g. by the
absence of approximate matching and of other advanced
merging heuristics implemented in MetaCluster. Both
MBBC and BiMeta generally had smaller precision and
sensitivity compared to bwtCluster.
In conclusion, every competing tool we considered is

either unstable, or it is significantly slower than our imple-
mentation, or it uses significantly more memory, and no
competitor with a stable implementation achieves higher
precision or sensitivity than bwtCluster on a substantial
number of datasets. Finally we note that the implementa-
tion of MetaCluster requires that all reads in a sample are
of equal length, and have length at most 128 base pairs,
whereas our tool has no such restriction.

Discussion and conclusions
We described an algorithmic framework for unsupervised
read clustering in small space, based on the bidirectional
Burrows-Wheeler index of a metagenomic sample. Specif-
ically, we identified a set of core combinatorial primitives
and we implemented them in O(n(t + log σ)) time using
2n + o(n) + O(max{�σ log n,K logm}) bits of space in
addition to the index and to a union-find data structure
on the set of reads, where n is the total number of char-
acters in the sample, m is the number of reads, σ is the
total size of the alphabet, t is the query time of the union-
find data structure, and K is a measure of the redundancy
of the sample, like the number of distinct right-maximal
substrings of fixed length k, or the number of distinct sub-
maximal repeats of length at least k. In practice both σ and
t are constant, since t can be for example O(x), where x is
the value such that the Ackermann function A(x, x) equals
m [31]. Our algorithms are practical, and they can exploit
multiple cores by a parallel traversal of the suffix-link tree
of the sample.
Since our algorithms use a string index as their sub-

strate, one can build such index just once, and run the
algorithms multiple times with different settings of the

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 58 of 175

Table 1 Precision, sensitivity, peak memory usage and wall clock time of the following clustering algorithms: bwtCluster (BWT),
MetaCluster (MC), MBBC, and BiMeta (BM)

Dataset Size Tool Precluster Cluster Mem. Time
prec. sens. prec. sens. (GB)

Species level 0.1 BWT 0.84 0.18 0.83 0.8 0.3 3.7 m

MC × × × × × ×
MBBC 0.7 0.7 3.8 7.3 m

BM 0.52 0.76 2.6 9.1 m

Genus level 0.1 BWT 0.87 0.09 0.87 0.84 0.3 3.7 m

MC × × × × × ×
MBBC 0.79 0.79 3.9 8.7 m

BM 0.59 0.59 2.5 9.1 m

Family level 0.1 BWT 0.94 0.12 0.94 0.91 0.3 3.9 m

MC × × × × × ×
MBBC 0.78 0.78 3.8 4.6 m

BM 0.65 0.65 2.6 9 m

A 1.7 BWT 0.84 0.01 0.71 0.34 6.4 1 h

MC 0.90 0.05 0.76 0.71 22.4 41 m

MBBC ≥64 ≥24 h

BiMeta ≥69 ≥24 h

B 0.6 BWT 0.92 0.01 0.76 0.72 1.9 27 m

MC 0.97 0.05 0.82 0.37 10.5 11 m

MBBC ≥27 ≥24 h

BM 0.30 0.52 22 4.6 h

C 1.7 BWT 0.84 0.01 0.69 0.40 5.7 1 h

MC 0.90 0.05 0.71 0.70 22.3 43 m

MBBC ≥65 ≥24 h

BM ≥59 ≥24 h

Human gut 1.4 BWT 4.1 53 m

MC × ×
MBBC ≥35 ≥24 h

BM ≥17 ≥24 h

Mouse gut 0.8 BWT 2.2 25 m

MC × ×
MBBC ≥22 ≥24 h

BM ≥35 ≥24 h

The size of each dataset is given in billion base pairs (Gbp). Algorithms that return an error are marked with symbol ×

parameters. Approximately half of the time taken by our
implementation is spent in building the index (Fig. 1),
thus building the index just once is likely to speed up this
frequent use case in explorative data analysis. Since the
index is based on the ubiquitous Burrows-Wheeler trans-
form, such transform might have already been computed

for supporting other queries, making such algorithms
immediately applicable to existing datasets.
Compressed representations of the BWT could reduce

peak space even further. Specifically, the BWT of the
union of similar metagenomic samples is likely to be very
compressible, and since the space used by our algorithms

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 59 of 175

Fig. 1 Running bwtCluster on dataset A: time (horizontal axis, minutes)
versus memory (vertical axis, gigabytes). BWT index constructions are
highlighted in gray

in addition to the BWT is dominated by a measure of the
redundancy of the input, such space is not likely to grow
significantly when multiple similar samples are clustered
at the same time.
Finally, one could experiment with dropping the k-RC-

relation altogether, and with merging reads using just
the k-relation: a connected component would then corre-
spond to a substring of a genome in a specific orientation,
and two connected components that originate from read-
ing the same substring in different orientations would
likely be merged during the final k-means step, since
their composition vectors are similar. This would remove
the need for storing BWTS in all steps after the initial
filtering of reads from low-frequency taxa, since the cor-
responding algorithms can be implemented on top of the
unidirectional traversal described in [43].

Endnotes
1More precisely if the interval of α is [i, j] then the inter-

val of cα will be [i′, j′], where i′ = C[c]+rankBWT(i −
1, c) + 1 and j′ = C[c]+rankBWT(j, c).

2 The first dataset contains species Vibrio cholerae and
Vibrio vulnificus, the second Vibrio cholerae and Pho-
tobacterium gaetbulicola, the third Vibrio cholerae and
Escherichia coli

3 EBI identifier SAMEA728599, MG-RAST identifier
4517724.3

4We run the species, genus, and family level datasets on
a machine with a quad core Intel Core i7-6700K 4 GHz
processor and 16GB of DDR4 RAM clocked at 2666MHz.
We run all other datasets on a machine with 1.5 TB of
RAM and four Intel Xeon CPU E7-4830 v3 processors (48
total cores, 2.10 GHz each).

Acknowledgements
We thank the anonymous reviewers of a previous submission for helping us
improve the presentation, and for pointing us to references [2, 3].

Declarations
This article has been published as part of BMC Bioinformatics Volume 18
Supplement 3, 2017. Selected articles from the 15th Asia Pacific Bioinformatics
Conference (APBC 2017): bioinformatics. The full contents of the supplement
are available online https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-18-supplement-3.

Funding
This work was supported in part by the Academy of Finland, grant 284598.

Availability of data andmaterials
Our implementation of the read clustering pipeline is available at [44], and our
implementation of the bidirectional BWT index is available at [45]. All source
code is available under the GPLv3 license. The real datasets analyzed in this
study are described in [41, 42]. The artificial datasets generated in this study
are available from the corresponding author on request.

Authors’ contributions
All authors designed the algorithms, read and approved the final manuscript.
JA implemented the algorithms and performed the experiments. JA and FC
drafted the manuscript and carried out the literature study.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science, University of Helsinki, Gustaf Hällströmin
katu 2b, 00560 Helsinki, Finland. 2Max Planck Institute for Molecular Cell
Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany. 3DTISI,
CERIST (Research Centre for Scientific and Technical Information), Rue des 3
Fréres Aissou, 16306 Algiers, Algeria.

Published: 14 March 2017

References
1. Peng Y, Leung HC, Yiu S-M, Chin FY. Meta-IDBA: a de novo assembler for

metagenomic data. Bioinformatics. 2011;27(13):94–101.
2. Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT. Scaling

metagenome sequence assembly with probabilistic de Bruijn graphs.
Proc Natl Acad Sci. 2012;109(33):13272–13277.

3. Howe AC, Jansson JK, Malfatti SA, Tringe SG, Tiedje JM, Brown CT.
Tackling soil diversity with the assembly of large, complex metagenomes.
Proc Natl Acad Sci. 2014;111(13):4904–909.

4. Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M, Paczian T,
Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards R. The
metagenomics RAST server – a public resource for the automatic
phylogenetic and functional analysis of metagenomes. BMC Bioinforma.
2008;9(1):1–8.

5. Leinonen R, Sugawara H, Shumway M. The sequence read archive.
Nucleic Acids Res. 2010;39(supplement 1):D19–D21. http://nar.
oxfordjournals.org/content/39/suppl_1/D19.

6. Su C-H, Wang T-Y, Hsu M-T, Weng FC-H, Kao C-Y, Wang D, Tsai H-K. The
impact of normalization and phylogenetic information on estimating the
distance for metagenomes. IEEE/ACM Trans Comput Biology Bioinforma.
2012;9(2):619–28.

7. Jiang B, Song K, Ren J, Deng M, Sun F, Zhang X. Comparison of
metagenomic samples using sequence signatures. BMC Genomics.
2012;13(1):1.

8. Wang Y, Liu L, Chen L, Chen T, Sun F. Comparison of metatranscriptomic
samples based on k-tuple frequencies. PloS ONE. 2014;9(1):84348.

9. Maillet N, Lemaitre C, Chikhi R, Lavenier D, Peterlongo P. Compareads:
comparing huge metagenomic experiments. BMC Bioinformatics.
2012;13(19):1.

10. Kelley DR, Salzberg SL. Clustering metagenomic sequences with
interpolated Markov models. BMC Bioinformatics. 2010;11(1):544.

11. Wang Y, Hu H, Li X. MBBC: an efficient approach for metagenomic
binning based on clustering. BMC Bioinformatics. 2015;16(1):36.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-3
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-3
http://nar.oxfordjournals.org/content/39/suppl_1/D19
http://nar.oxfordjournals.org/content/39/suppl_1/D19

The Author(s) BMC Bioinformatics 2017, 18(Suppl 3):59 Page 60 of 175

12. Kislyuk A, Bhatnagar S, Dushoff J, Weitz JS. Unsupervised statistical
clustering of environmental shotgun sequences. BMC Bioinformatics.
2009;10(1):316.

13. Wu Y-W, Ye Y. A novel abundance-based algorithm for binning
metagenomic sequences using �-tuples. J Comput Biol. 2011;18(3):
523–34.

14. Van Lang T, Van Hoai T, et al. A two-phase binning algorithm using �-mer
frequency on groups of non-overlapping reads. Algorithm Mol Biol.
2015;10(1):1.

15. Wang Y, Leung HC, Yiu S-M, Chin FY. MetaCluster 5.0: a two-round
binning approach for metagenomic data for low-abundance species in a
noisy sample. Bioinformatics. 2012;28(18):356–62.

16. Siegel K, Altenburger K, Hon Y-S, Lin J, Yu C. Puzzlecluster: A novel
unsupervised clustering algorithm for binning dna fragments in
metagenomics. Current Bioinformatics. 2015;10(2):231–52.

17. Baran Y, Halperin E. Joint analysis of multiple metagenomic samples.
PLoS Comput Biol. 2012;8(2):1–11.

18. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti
L, Loman NJ, Andersson AF, Quince C. Binning metagenomic contigs by
coverage and composition. Nature methods. 2014;11(11):1144–1146.

19. Tanaseichuk O, Borneman J, Jiang T. Separating metagenomic short
reads into genomes via clustering. Algorithms Mol Biol. 2012;7(1):1.

20. Weiner P. Linear pattern matching algorithms. In: Proc. 14th Annual IEEE
Symposium on Switching and Automata Theory. Washington, DC, USA:
IEEE; 1973. p. 1–11.

21. Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-Scale
Algorithm Design. Cambridge: Cambridge University Press; 2015. ISBN-13:
9781107078536.

22. Grossi R, Gupta A, Vitter JS. High-order entropy-compressed text indexes.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. Baltimore: Society for Industrial and Applied
Mathematics Address of symposium; 2003. p. 841–50.

23. Clark D. Compact pat trees. Canada: PhD thesis, University of Waterloo;
1996.

24. Munro I. Tables. In: Proc. 16th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS). LNCS v. 1180.
Hyderabad: Springer; 1996. p. 37–42.

25. Belazzougui D, Cunial F, Kärkkäinen J, Mäkinen V. Versatile succinct
representations of the bidirectional burrows-wheeler transform. In:
European Symposium on Algorithms. Sophia Antipolis: Springer; 2013. p.
133–44.

26. Lam TW, Li R, Tam A, Wong S, Wu E, Yiu S-M. High throughput short
read alignment via bi-directional BWT. In: IEEE International Conference
on Bioinformatics and Biomedicine, 2009. Washington D.C: IEEE; 2009. p.
31–6.

27. Li R, Yu C, Li Y, Lam TW, Yiu S-M, Kristiansen K, Wang J. Soap2: An
improved ultrafast tool for short read alignment. Bioinformatics.
2009;25(15):1966–1967.

28. Schnattinger T, Ohlebusch E, Gog S. Bidirectional search in a string with
wavelet trees. In: 21st Annual Symposium on Combinatorial Pattern
Matching (CPM 2010). Lecture Notes in Computer Science. New York:
Springer; 2010. p. 40–50.

29. Schnattinger T, Ohlebusch E, Gog S. Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Inform Comput.
2012;213:13–22.

30. Navarro G. Wavelet trees for all. J Discret Algorithms. 2014;25:2–20.
31. Cormen TH. Introduction to Algorithms. Cambridge, MA, USA: MIT press;

2009.
32. Beller T, Ohlebusch E. Efficient construction of a compressed de Bruijn

graph for pan-genome analysis. In: Combinatorial Pattern Matching,
Proceedings. Ischia Island: Springer; 2015. p. 40–51.

33. Belazzougui D, Cunial F. A framework for space-efficient string kernels. In:
Combinatorial Pattern Matching, Proceedings. Ischia Island: Springer;
2015. p. 13–25.

34. Gog S, Beller T, Moffat A, Petri M. From theory to practice: Plug and play
with succinct data structures. In: 13th International Symposium on
Experimental Algorithms. Copenhagen; 2014. p. 326–37.

35. Li H. Fast construction of FM-index for long sequence reads.
Bioinformatics. 2014;30(22):3274–5.

36. Yang B, Peng Y, Leung HC, Yiu S-M, Chen J-C, Chin FY. Unsupervised
binning of environmental genomic fragments based on an error robust
selection of �-mers. BMC Bioinformatics. 2010;11(Suppl 2):5.

37. Yang B, Peng Y, Leung H, Yiu S-M, Qin J, Li R, Chin FY. MetaCluster:
unsupervised binning of environmental genomic fragments and
taxonomic annotation. In: Proceedings of the First ACM International
Conference on Bioinformatics and Computational Biology; 2010. p. 170–9.

38. Leung HC, Yiu S-M, Yang B, Peng Y, Wang Y, Liu Z, Chen J, Qin J, Li R,
Chin FY. A robust and accurate binning algorithm for metagenomic
sequences with arbitrary species abundance ratio. Bioinformatics.
2011;27(11):1489–1495.

39. Wang Y, Leung HC, Yiu S-M, Chin FY. MetaCluster 4.0: a novel binning
algorithm for NGS reads and huge number of species. J Comput Biol.
2012;19(2):241–9.

40. Richter DC, Ott F, Auch AF, Schmid R, Huson DH. MetaSim – a
sequencing simulator for genomics and metagenomics. PloS ONE.
2008;3(10):3373.

41. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,
Pons N, Levenez F, Yamada T, et al. A human gut microbial gene
catalogue established by metagenomic sequencing. Nature.
2010;464(7285):59–65.

42. Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE,
Beiko RG. Microbial shifts in the agingmouse gut. Microbiome. 2014;2(1):1.

43. Belazzougui D. Linear time construction of compressed text indices in
compact space. In: Proceedings of the 46th Annual ACM Symposium on
Theory of Computing. New York: ACM; 2014. p. 148–93.

44. Alanko J. bwtCluster: Space-efficient clustering of metagenomic reads
using the bidirectional Burrows-Wheeler transform. 2016. https://github.
com/jnalanko/bwtCluster. Accessed 06 Oct 2016.

45. Alanko J. BD_BWT_index: Bidirectional BWT text index for byte alphabets.
2016. https://github.com/jnalanko/BD_BWT_index. Accessed 06 Oct
2016.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://github.com/jnalanko/bwtCluster
https://github.com/jnalanko/bwtCluster
https://github.com/jnalanko/BD_BWT_index

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Read clustering
	Strings and string indexes

	Methods
	Results
	Discussion and conclusions
	Acknowledgements
	Declarations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Author details
	References

