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Abstract

Background: Today, sequencing is frequently carried out by Massive Parallel Sequencing (MPS) that cuts drastically
sequencing time and expenses. Nevertheless, Sanger sequencing remains the main validation method to confirm
the presence of variants. The analysis of MPS data involves the development of several bioinformatic tools,
academic or commercial. We present here a statistical method to compare MPS pipelines and test it in a comparison
between an academic (BWA-GATK) and a commercial pipeline (TMAP-NextGENe®), with and without reference to
a gold standard (here, Sanger sequencing), on a panel of 41 genes in 43 epileptic patients. This method used the
number of variants to fit log-linear models for pairwise agreements between pipelines. To assess the heterogeneity of
the margins and the odds ratios of agreement, four log-linear models were used: a full model, a homogeneous-margin
model, a model with single odds ratio for all patients, and a model with single intercept. Then a log-linear
mixed model was fitted considering the biological variability as a random effect.

Results: Among the 390,339 base-pairs sequenced, TMAP-NextGENe® and BWA-GATK found, on average, 2253.49 and
1857.14 variants (single nucleotide variants and indels), respectively. Against the gold standard, the pipelines had similar
sensitivities (63.47% vs. 63.42%) and close but significantly different specificities (99.57% vs. 99.65%; p < 0.001).
Same-trend results were obtained when only single nucleotide variants were considered (99.98% specificity
and 76.81% sensitivity for both pipelines).

Conclusions: The method allows thus pipeline comparison and selection. It is generalizable to all types of
MPS data and all pipelines.

Keywords: Statistical methods, Massive parallel sequencing, Next-generation sequencing, Pipeline comparison,
Sensitivity, Specificity
Background
Today, various sequencing methods are available for
routine sequencing. The first method was that of Sanger
[1]; it was used in many “historically significant” large-
scale sequencing projects. Until recently, for diagnostic
purposes, only a few number of genes could be sequenced
by Sanger method. Actually, this method is costly,
time-consuming, and less practical than more recent
methods for sequencing all genes potentially associ-
ated with a given disease.
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By 2000, less expensive and more automated se-
quencers were designed: Massive Parallel Sequencing
(MPS) –also called Next Generation Sequencing (NGS)–
came to reality [2, 3]. MPS platforms decreased drastic-
ally the time and costs associated with comprehensive
genome analyses. These platforms allow sequencing
specific genomic regions or whole genomes to investi-
gate associations between diseases and genomic variants
(single nucleotide variants –SNVs–, insertions, deletions,
or balanced and unbalanced structural variations). The
possibility of sequencing a high number of genes or a
whole genome for a limited cost led to the use of MPS
technology for screening mutations in routine diagnosis
or research [4].
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Different MPS technologies based on different DNA
properties are now available (Illumina, Ion Torrent,
Roche, etc.). These technologies were compared by
several authors [3, 5–7]. In the present study, we focused
on Ion Torrent PGM™ (Life Technologies, CA, USA;
now became Thermo Fisher Scientific, Waltham, MA), a
semi-conductor sequencer that detects the proton(s)
released when nucleotides are incorporated during DNA
synthesis. This sequencer does not require fluorescence
or scan camera; it is thus faster, smaller, and less expen-
sive than others, such as Illumina MiSeq (IlluminaR, San
Diego, CA, USA) or 454 GS Roche Junior (Roche
Applied Science, Indianapolis, IN, USA).
The advent of MPS entailed the development of a

great number of bioinformatic tools to analyse the high-
dimensional data generated [8]. Academic and commer-
cial tools have been proposed, the latter being often
academic software programs with pleasant interfaces
and parameters adapted to specific sequencing technolo-
gies. These bioinformatic tools, called pipelines, deter-
mine the positions of mutations in a patient’s sequence
upon comparison with a reference sequence. The two
main steps in the majority of pipelines are: read align-
ment on a reference sequence (e.g., Bowtie [9], MAQ,
[10], BWA [11], or SOAP [12]) and variant calling (e.g.,
GATK [13], SAMtools [14], or FreeBayes [15]). Any
pipeline may be used to analyse MPS data; however,
choosing between pipelines is very difficult and requires
objective comparisons.
Several recent papers compared the results of vari-

ous pipelines and most considered Sanger sequencing
as the gold standard and reference for NGS pipeline
validation [16–21]. Nevertheless, because Sanger
sequencing is not a “perfect” gold standard, several
studies have used instead simulated or artificial data
[22, 23]. All these studies determined the number of
false positives (FPs) and calculated sensitivity. To our
knowledge, no statistical modelling was yet specific-
ally developed to compare pipelines.
The aim of the present study was the development

of a statistical method to evaluate the quality of the
results given by various MPS pipelines. In a first
part, this statistical method compares two pipelines
without using a gold standard. In a second part, two
pipelines are compared with Sanger sequencing as
gold standard.

Methods
Source of data
The analysis concerned a panel of 41 genes involved
in epilepsy and 43 epileptic patients. Among these,
30 patients were also sequenced by the Sanger tech-
nique for 1 to 3 genes selected according to the
clinical symptoms.
All sequencing reactions were carried out in a single
laboratory (Department of Genetics, Hospices Civils de
Lyon, France).

Gene sequencing
The molecular genetic analyses were performed after
obtaining informed consent from the patients or legal
guardians. DNA was extracted from EDTA-preserved
whole blood using Nucleon BACC3 kit (GE healthcare
Life Sciences, Buckinghamshire, UK).

Massive parallel sequencing
The library for each patient was prepared with a Haloplex®
custom kit (Agilent Technologies, Inc, Santa Clara, CA)
according to the manufacturer’s instructions. Probes were
designed to target 41 candidate genes involved in epileptic
disorders. The sequencing was carried out using an Ion
318™ Chip on the Ion Torrent PGM™ (Life Technologies)
and the PGM™ Sequencing 200 Kit. Enriched template-
positive Ion PGM™ spheres were prepared by emulsion
PCR with the Ion OneTouch™ 2 System (Life Technolo-
gies). One unmapped bam file per patient was obtained; it
contained all non-aligned patient fragment sequences
(reads). These unmapped bam files were transformed into
Fastq files with the plugin fastqcreator.

Sanger sequencing
Sanger sequencing was carried out by conventional
dideoxy sequencing with amplification of exons and
exon/intron junctions followed by direct sequencing
using Big-Dye Terminators (Life Technologies). Se-
quences were loaded on an ABI3730XL sequencer and
analysed with SeqScape software, v2.5.

Bioinformatic analysis
Two pipelines were used: an academic pipeline (BWA-
GATK) and a commercial pipeline (TMAP-NextGENe®).
The BWA-GATK pipeline was designed according to

recommendations from Broad Institute [24] and using
default parameters. The fastq files used at the beginning
were constructed from unmapped BAM files given by
Ion Torrent Suite. Briefly, its main steps are: (i) align-
ment of reads to the reference genome (Human genetic
sequence reference, Hg19) using BWA-MEM algorithm,
v0.7.6a; (ii) realignment around indels using GATK; and
(iii) variant calling using GATK HaplotypeCaller.
Variants with at least 10× sequencing depth and
located within the sequenced region (defined in the
bed file) were retained in the final VCF file. No
other filter was applied.
The TMAP-NextGENe® pipeline includes two main

steps. First, the reads are aligned to the same reference
genome (Hg19) using TMAP (Torrent Mapping Align-
ment Program, the aligner provided by Life Technologies
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in the Torrent Suite). The TMAP includes several algo-
rithms: BWA-short [11], BWA-long [25], SSAHA [26],
and Super-maximal Exact Matching [27]. It uses a two-
step approach: reads that do not align during the first
step are passed to the second step with a new set of
algorithms and/or parameters. Then, alignment files
(bam files) are loaded into NextGENe® to carry out vari-
ant calling. Default parameters were used with both pro-
grams (TMAP and NextGENe®). Variants with at least
10× sequencing depth and located within the sequenced
region were retained in the final VCF file.

MPS vs. Sanger
For a relevant comparison, when Sanger sequencing was
used, in each patient, only bases located in regions
sequenced by both MPS and Sanger sequencing were
considered in the analysis.

Statistical analysis
Contingency table definition
Each chromosomal position on the reference genome
(Hg19) was considered as the statistical unit.
For a given patient, a given pipeline z∈{A, B}, and a

given chromosomal position k = 1,…,K, let Xzk be a
random variable taking value 1 when a variant is de-
tected at position k and 0 otherwise. A 2 by 2 table for
agreement on variant identification can then be built
using the following Eq. (1) (Fig. 1a):
Fig. 1 Four-cell contingency tables for pipeline agreement on chromosomal
Panel b Pipeline comparison of gold standard variants. Panel c Pipeline comp
considered. Vs: number of gold standard variants
nab ¼
XK

k¼1

I XAk ¼ að Þ � I XBk ¼ bð Þð Þ where a and b∈ 0; 1f g

ð1Þ

n
ab being the occurrence of the following pipeline result

combination: result a from pipeline A and result b from
pipeline B, I being an indicator function that returns
value 1 if the condition into brackets is met, 0 otherwise.
A 2 by 2 contingency table can be fitted to a log-linear

model with as much parameters as cells (“saturated
model”) [28]:

log nabð Þ ¼ μþ aλA þ bλB þ abθ ð2Þ

On the basis of this equation, n̂ab is the expected occur-
rence of classification (a,b). Let μ̂ be the log of the number
of chromosomal positions identified as non-variants by

both pipelines: μ̂ ¼ log n00ð Þ. Let λ̂A and λ̂
B
be the logs of

the ratios of the number of positions identified as variants
by pipelines A and B, respectively, divided by the number
of positions identified as non-variants by both pipelines:

λ̂
A ¼ log n10

n00

� �
and λ̂

B ¼ log n01
n00

� �
. The estimated odds ra-

tio (OR) for agreement is given by OR̂ ¼ n11n00
n10n01

¼ exp θ̂
� �

.

To be able to use proportions instead of numbers
of variants and non-variants, an offset was added to
most models; it corresponds to the log of the total
positions. Panel a Pipeline comparison (A vs. B) without gold standard.
arison of gold standard non-variants. K: number of chromosomal position
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number of bases (n.. = K on Fig. 1a). This is especially
important in the comparisons with Sanger sequencing
because the patients did not have the same number
of bases sequenced.

Pipeline comparison without gold standard
Pipeline comparison was performed considering the
pipelines as raters and applying methods developed to
analyse inter-rater agreements [29]. The aim was to
determine whether two pipelines agree on the number
of variants identified (marginal homogeneity), on the
identification of variants at the same chromosomal
positions (agreement on position), and on the identifi-
cation of exactly the same variant (with the same
alternative proposition in the VCF file) at a specific
chromosomal position.
Each patient was considered as a separate study; this

led to analyse the results from all patients as a meta-
analysis. Thus, 43 independent 2 by 2 tables for agree-
ment (one for each patient) were simultaneously used to
analyse the agreement on the presence of variants at the
same chromosomal positions. The agreement between
two raters (pipelines) was analysed using a two-category
classification (variants vs. non-variants). The number of
nucleotides sequenced theoretically by the MPS sequen-
cer is n.. = K (Fig. 1a). This led to calculate the number
of non-variants n00 as the difference between n.. and the
total number of variants identified by each pipeline (n11
+ n01 + n10). Log-linear models were used to analyse
separately marginal and conditional agreements. Com-
parisons between the nested models using a likelihood
ratio test (LRT) led to the choice of the final model.
Let p = 1,…,P be the number of patients. For the meta-

analysis, the data were structured in 2 × 2 × P tables. In
this case, the saturated model (Eq. 2) becomes:

log npab
� � ¼ μp þ aλAp þ bλBp þ abθp ð3Þ

First, a perfect agreement between pipelines implies
having the same margins. The general expression of the
“homogeneous-margin model” in which λp

A and λp
B in

Eq. 3 are equal is:

log npab
� � ¼ μp þ a 1−bð Þ þ b 1−að Þf gδp þ abθp ð4Þ

where δp is the parameter that corresponds to the shared
margins.
Second, we defined a model where all patients (or

studies) shared a common OR for agreement:

log npab
� � ¼ μp þ aλAp þ bλBp þ abθ ð5Þ

Third, we defined a model where all patients shared a
common intercept:
log npab
� � ¼ μþ aλAp þ bλBp þ abθp ð6Þ

The previous three models were compared with the
saturated model (Eq. 3) using the LRT. In all tests (2-
tailed), the test statistic was compared to a chi-square
with the corresponding degrees of freedom (df). A p
value <5% was considered for statistical significance.
The finally retained model that resulted from the

above comparisons was developed into a mixed-effect
model with one fixed effect for each parameter and one
random effect for the parameters that vary between
patients. The mixed-effect model was applied to all 2 ×
2× tables to obtain an estimate of the mean of each par-
ameter and an estimate of the variance of each random
effect. To obtain easily the number of variants identified
by each pipeline (and its confidence interval, CI), we built
a re-parameterized mixed model that estimated the
parameters of the margins of the 2 × 2 × P tables (See
Additional files 1 and 2). The mean marginal probabilities,
the mean OR, and the corresponding confidence intervals
(CI) were calculated from the estimated parameters and
standard errors using a normal approximation. Similarly,
biological variability intervals (BVIs) were calculated from
the estimated parameters and the random-effect standard
deviations using a normal approximation.
Knowing that two pipelines have identified a given

variant at a given position, we tested this variant “iden-
tity”; i.e., whether the variant is really the same (i.e.,
same reference and alternative proposition in VCF files).
A 5-cell contingency table –that identifies the number of
identical variants in n11 cell (Fig. 2) was built and
modelled using:

log npab
� � ¼ μp þ aλAp þ bλBp þ ab θp þ Iθps

� � ð7Þ

where I is an indicator taking value 1 when the variants
are the same at a given chromosomal position, 0 other-
wise and exp(θps) the conditional probability associated
with the variant “identity”; i.e., knowing that the variants
have the same position, this conditional probability is
the probability that the variants are identical. To
complete the information given by the comparisons be-
tween Model 3 (described by Eq. 3) and Models 4 to 6
(described by Eqs. 4 to 6), a log-linear model with a sin-
gle parameter θs for all patients was fitted (Eq. 8 below)
and compared with Eq. 7:

log npab
� � ¼ μp þ aλAp þ bλBp þ ab θp þ Iθs

� � ð8Þ

Finally, the model resulting from the latter comparison
was developed into a mixed-effect model and applied to
the 2 × 2 × P tables to estimate the mean conditional
probability exp(θs) with its confidence interval and bio-
logical variability interval.



Fig. 2 Five-cell contingency table for pipeline agreement on K chromosomal positions and on variant “identity”, without the reference to
a gold standard
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Pipeline comparison with Sanger sequencing as gold
standard
The comparison with the gold standard allows obtaining
the sensitivity and specificity of each pipeline. Within
this context, sensitivity is the probability of detecting a
variant at a given position with a given pipeline knowing
that the gold standard has detected a variant at this pos-
ition (later referred to as “Sanger variant”) whereas spe-
cificity is the probability of not detecting a variant at a
given position with a given pipeline knowing that the
gold standard has not detected a variant at this position
(later referred to as “Sanger non-variant”). Thus, com-
parison of sensitivities and specificities were performed
working on Sanger variants and Sanger non-variants,
respectively. The contingency table that contains the
results of the two pipelines (Fig. 1a) was split up in two
contingency tables: the first containing Sanger variants
(Fig. 1b) and the second Sanger non-variants (Fig. 1c).
To estimate the sensitivity and specificity of each

pipeline, the same analysis described in section “Pipe-
line comparison without gold standard” was run again:
a “homogeneous-margin” model, a model with single
parameter for OR of agreement, and a model with
single intercept were fitted and compared with a satu-
rated model. The model that resulted from the above
comparisons was developed into a mixed-effect model
applied to the 2 × 2× P tables. However, to estimate
directly the sensitivities and specificities with their
corresponding confidence intervals, the latter model
was re-parameterized as described above. The confi-
dence intervals were computed using a normal
approximation. The BVIs were calculated from the
estimated parameters and random-effect standard devia-
tions using a normal approximation. When an estimation
of a given parameter was close to one, the normal
approximation was not adequate; the confidence intervals
were then estimated using a bootstrap percentile method
with non-parametric resampling (1000 samples) [30].
Comparisons of the sensitivities and specificities of the

two pipelines were carried out by comparing the mar-
gins of their 2 × 2 contingency tables. This is equivalent
to a classical study of discordant pairs (McNemar test
for 2 by 2 tables).

Data preparation and model specification
For each patient p, the results of the two pipelines (VCF
files) were summarized into a response variable that
contains the number of variants identified by both pipe-
lines A and B (np11, common variants), the number of
variants identified by pipeline A only (np10), the number
of variants identified by pipeline B only (np01), and the
number of non-variants (np00) (Fig. 1a). The number of
non-variants was the difference between the number of
bases sequenced and the total number of variants identi-
fied: np00 = np.. - (np11 + np10 + np01). To build the log-
linear models, we created several dummy variables that
correspond to the model parameters. A first dummy
variable that takes value 1 when the response variable
corresponds to common variants to both pipelines (0
otherwise) was used to estimate parameters θ or θp. A
second dummy variable that takes value 1 when the
response variable corresponds to variants found by pipe-
line A (0 otherwise) was used to estimate parameter λp

A.
A third dummy variable that takes value 1 when the re-
sponse variable corresponds to variants found by pipe-
line B (0 otherwise) was used to estimate parameter λp

B.
To build the homogeneous-margin model, a fourth
dummy variable that takes value 1 when the response
variable corresponds to variants identified by pipeline A
or B (0 otherwise) was used to estimate parameter δp.
For the 5-cell contingency tables, when we wanted

to estimate the number of “identity” variants, we
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added to the response variable the number of variants
common to the two pipelines (i.e., same reference
and alternative proposition in VCF files). To estimate
parameter θs, we created a dummy variable that takes
value 1 when the response variable corresponds to
“identity” variants (0 otherwise).
The same data structuring was used to analyse the

results of the pipelines knowing the gold standard re-
sults but, here, only the positions sequenced by Sanger
method and identified as variants were considered to es-
timate the sensitivity and, similarly, only the positions
sequenced by Sanger and identified as non-variants were
considered to estimate the specificity.
All analyses were carried out with R software. Log-linear

models were fitted with glm function using a Poisson dis-
tribution; these models included the adequate dummy
variables. The mixed models that correspond to the finally
retained models were fitted with glmer function of lme4
package with Poisson distribution. The LRT was applied
with lrtest function of lmtest package. The same statistical
analyses were carried out first on all variants identified by
each pipeline then only on SNVs.
Further details and code examples are available as

Additional files 1 and 2.

Results
Data description
The MPS sequencing covered 41 genes over 390339
base-pairs per patient. For each patient, the MPS se-
quencing provided a list of variants obtained by BWA-
Table 1 Number of variants identified by the pipelines and by the g

Variants and pipelines N Mean ± SD

All types of variantsa

Regions sequenced by MPS onlyb

BWA-GATK 43 1871 ± 225

TMAP-NextGENe 43 2280 ± 339

Regions sequenced by MPS + gold standardb

Sanger 30 2.67 ± 2.88

BWA-GATK 30 27.40 ± 20

TMAP-NextGENe 30 22.77 ± 18

SNVs only

Regions sequenced by MPS onlya

BWA-GATK 43 267 ± 22.0

TMAP-NextGENe 43 315.10 ± 2

Regions sequenced by MPS + gold standardb

Sanger 30 2.30 ± 2.79

BWA-GATK 30 2.77 ± 2.81

TMAP-NextGENe 30 2.77 ± 2.81
aSingle Nucleotide Variants (SNVs), insertions, and deletions
b390,339 base-pairs per patient
c1,085 to 16,570 base-pairs per patient
GATK and another list obtained by TMAP-NextGENe®.
Each list included nearly 2000 variants of which 300
SNVs (Table 1).
In our comparisons with Sanger sequencing, we con-

sidered only the genes sequenced by both Sanger and
MPS; i.e., 1 to 3 genes (1085 to 16570 base-pairs) per pa-
tient. In this case, the number of variants decreased to
an average of 25, of which an average of three SNVs per
patient. Depending on the number of sequenced genes,
the Sanger sequencing list included 0 to 9 variants.

Analysis of all types of variants (SNVs, deletions, and
insertions)
BWA-GATK vs. TMAP-NextGENe® comparison without gold
standard
We investigated first whether BWA-GATK and TMAP-
NextGENe® could identify variants at the same chromo-
somal positions. Comparing the saturated vs. the
homogeneous-margin model, the pipelines had distinct
margins within each table (LRT with 43 df, p value
<0.001). Comparing the saturated vs. the common-OR
model, the ORs for agreement were different between pa-
tients (LRT with 42 df, p value <0.001). Using the re-
parameterized model implied using the same intercept for
all patients because the same number of bases were se-
quenced; this led to a common-intercept model. When,
the mixed-effect model that corresponds to the latter
model was fitted, BWA-GATK identified, on average,
1857.14 variants (95% CI: [1789.27; 1927.58] and 95% BVI:
[1461.16; 2360.43]) whereas TMAP-NextGENe® identified
old standard in N patients

Min. Q1 Median Q3 Max.

.08 1198 1696 1867 2056 2360

.72 1214 2014 2256 2504 3094

0 1 1 3.75 10

.54 3 10.50 25 36 92

.71 3 9.25 17 28 75

4 204 251.50 267 280 318

8.32 215 302.50 317 334 384

0 0 1 3 9

0 1 2 4 10

0 1 2 4 10
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2253.49 variants (95% CI: [2149.96; 2361.99] and 95% BVI:
[1660.16; 3058.86]). The mean OR for agreement was esti-
mated at 497.08 (95% CI: [464.55; 531.89]), with between-
patient 95% BVI: [323.36; 764.13] (see Table 2).
We then investigated whether BWA-GATK and TMAP-

NextGENe® could identify exactly the same variants at the
same positions. Comparing the saturated identity-model
(Eq. 7) vs. the common-identity model (Eq. 8), the parame-
ters of variant “identity” were different between patients
(LRT with 42 df, p value <0.001); this led to retain the
model with common intercept but different parameters of
variant “identity” between patients. Providing that the two
pipelines identified one variant at a given chromosomal
position, the estimated probability that this variant would
be exactly the same was 0.24 (95% CI: [0.23; 0.25] and its
95% BVI: [0.20; 0.28]).

BWA-GATK vs. TMAP-NextGENe® comparison with gold
standard
Regarding the analysis of Sanger non-variants, the margins
were significantly different (LRT with 30 df, p value
<0.001); consequently, the specificities of the two pipelines
Table 2 Results of pipeline comparisons

Parame

Variants, pipelines, and parameters Value

All types of variants

Regions sequenced by MPS onlya

Number of variants for BWA-GATK 1857.14

Number of variants for TMAP-NextGENe 2253.49

OR for agreement 497.08

Conditional probability of identity 0.24

Regions sequenced by MPS and gold standardb

Sensitivity of BWA-GATK (%) 63.47

Sensitivity of TMAP-NextGENe (%) 63.42

FP rate for 10,000 Sanger NV for BWA-GATK 43.03

FP rate for 10,000 Sanger NV for TMAP-NextGENe 35.25

Only SNVs

Regions sequenced by MPS onlya

Number of SNVs for BWA-GATK 266.41

Number of SNVs for TMAP-NextGENe 314.24

OR for agreement 23289.8

Conditional probability of identity 0.9986

Regions sequenced by MPS and gold standardb

Sensitivity of BWA-GATK (%) 76.81

Sensitivity of TMAP-NextGENe (%) 76.81

FP rate for 10,000 Sanger NS for BWA-GATK 2.01

FP rate for 10,000 Sanger NS for TMAP-NextGENe 2.01

CI Confidence Interval, BVI Biological Variability Interval, OR Odds Ratio, FP False Pos
a390,339 base-pairs per patient
b1,085 to 16,570 base-pairs per patient
were statistically significantly different despite very close
values. The ORs for agreement were significantly different
between patients (LRT with 29 df, p value = 0.044)
whereas the intercepts were not significantly different
(LRT with 29 df, p value = 1); this led to retain the model
with a single intercept. When, the common-intercept
mixed-effect model was used, the BWA-GATK specificity
was 99.57% (95% CI: [99.55%; 99.59%]) and the TMAP-
NextGENe® specificity 99.65% (95% CI: [99.63%; 99.66%]).
A very small between-patient variability was found with
each pipeline; i.e., no biological variability could be
estimated. The specificities being very high due to the
tremendous number of non-variants, the corresponding
FP rates was deemed to be a more interesting parameter
than specificity. For 10,000 positions identified as non-
variant with Sanger sequencing, the estimated number of
FPs was 43.03 (95% CI: [41.22; 45.20]) with BWA-GATK
and 35.25 (95% CI: [33.59; 36.80]) with TMAP-
NextGENe® (see Table 2).
When Sanger variants were considered, their number

being low, comparison tests using nested models were
not pertinent because of their low power. We chose then
ter estimation

[95% CI] [95% BVI]

[1789.27; 1927.58] [1461.16; 2360.43]

[2149.96; 2361.99] [1660.16; 3058.86]

[464.55; 531.89] [323.36; 764.13]

[0.23; 0.25] [0.20; 0.28]

[46.01; 87.55] [44.91; 89.69]

[45.95; 87.53] [44.68; 90.02]

[41.22; 45.20] NA

[33.59; 36.80] NA

[259.17; 273.84] [232.84; 304.81]

[305.52; 323.21] [271.11; 364.24]

5 [20226.42; 26817.25] [10099.35; 53708.09]

[0.9984;0.9989] NA

[63.50; 92.92] NA

[63.50; 92.92] NA

[1.82; 2.24] NA

[1.82; 2.24] NA

itive, NV Non-variants, NS Non-SNVs
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to use the same mixed model we used with Sanger non-
variants. The sensitivities of the two pipelines were very
close: 63.47% (95% CI: [46.01%; 87.55%] and 95% BVI
[44.91%; 89.69%]) for BWA-GATK vs. 63.42% (95% CI:
[45.95%; 87.53%] and 95% BVI [44.68%; 90.02%]) for
TMAP-NextGENe® (see Table 2).

Analysis of SNVs only
BWA-GATK vs. TMAP-NextGENe®: comparison without gold
standard
We investigated first whether BWA-GATK and TMAP-
NextGENe® could identify SNVs at the same chromo-
somal positions. Model comparisons showed that the
margins were different between pipelines (LRT with 43
df, p value <0.001), the ORs for agreement were signifi-
cantly different between patients (LRT with 42 df, p
value <0.001), and the intercepts were not significantly
different (LRT with 42 df, p value = 1); this led to retain
the model with a single intercept. When, the corre-
sponding mixed-effect model was fitted, BWA-GATK
and TMAP-NextGENe® identified, on average, 266.41
and 314.24 SNVs, respectively (95% CIs: [259.17;
273.84] and [305.52; 323.21] and 95% BVIs: [232.84;
304.81] and [271.11; 364.24], respectively). The estimated
mean OR for agreement was 23289.85 (95% CI: [20226.42;
26817.25] and 95% BVI: [10099.35; 53708.09]) (see
Table 2).
We then investigated whether BWA-GATK and TMAP-

NextGENe® could identify exactly the same SNVs at the
same positions. We found that the parameter for variant
“identity” was not significantly different between patients
(LRT with 42 df, p value = 1), which led to retain a model
with a common intercept and a common parameter for
variant “identity”. Providing that the two pipelines identified
one SNV at a given chromosomal position, the estimated
probability that this SNV would be exactly the same was
0.9986 (95% CI: [0.9984; 0.9989]) (see Table 2).

BWA-GATK vs. TMAP-NextGENe®: comparison with gold
standard
Regarding the analysis of non-SNVs identified by Sanger,
i) the margins were not significantly different (LRT with
30 df, p value = 0.07); ii) the ORs for agreement and the
intercepts were common between patients (LRT with 29
df, p value = 0.894 and LRT with 29 df, p value = 1, re-
spectively). This led to retain the “homogeneous-margin”
model with common intercept and OR. BWA-GATK
and TMAP-NextGENe® had the same specificity: 99.98%
(95% CI: [99.9776%; 99.9819%]). Over 10,000 non-
variant positions identified with Sanger sequencing, the
estimated number of FPs was 2.01 (95% CI: [1.82; 2.24])
for BWA-GATK and TMAP-NextGENe® (see Table 2).
When we analysed the SNVs identified by Sanger

sequencing, the same above-mentioned reasons (very
few SNVs and low power) led us to use the same mixed
model as with Sanger non-variants. The estimated sensi-
tivity was then 76.81% (95% CI: [63.50%; 92.92%]) for
BWA-GATK and TMAP-NextGENe® (see Table 2).

Discussion
Currently, a large number of pipelines are being devel-
oped to analyze MPS data. Choosing a pipeline is often
very difficult; it is thus important to develop statistical
methods to compare the results given by various pipe-
lines. In addition, for diagnostic purposes, the sensitivity
and specificity of the diagnostic test should be assessed.
We thus developed a statistical method to compare MPS
pipelines and assess the quality of their results.
Taking advantage of available data on epileptic pa-

tients, we designed a strategy to compare two MPS data
analysis pipelines. We considered the genomic position
as the statistical unit, each patient as a separate study,
and the analysis of all patients as a meta-analysis. The
method was applied first to all variants then to SNVs
only. Furthermore, we compared two pipelines without
considering a gold standard then compared the same
two pipelines versus Sanger sequencing as a gold
standard. Finally, to put the precision of the estimates
within the context of patient heterogeneity, we gave a
biological variability interval between patients.
Overall, the results demonstrated that the performance

of BWA-GATK was very close to that of TMAP-
NextGENe® but that the performance of each changed
according to the type of variants considered (indels and/
or SNVs). When all types of variants were considered,
the estimate of the OR for agreement was very high,
which means a strong agreement between the two pipe-
lines. The sensitivities were estimated around 63% and
the specificities around 99%. The estimated specificities
being close to 1, the corresponding FP rates seemed
more useful for the comparison: BWA-GATK identified
a slightly higher number of FPs than TMAP-NextGENe®
(43 vs. 35 for 10,000 non-variant positions with Sanger
sequencing). The confidence intervals of the estimated
sensitivities were similar between the two pipelines but
both very wide because of the small number of patients
and the small number of variants. Also, both biological
variability intervals were very wide, which means that
the performances of the two pipelines are very dependent
on the biological variability; i.e., on the patient mix.
When only SNVs were analysed, the number of SNVs

per patient being small, the performances of the two
pipelines could not be statistically different. In addition,
with the two pipelines, the number of FPs decreased
strongly, the sensitivities increased and the OR for
agreement increased. The latter result (a stronger agree-
ment with SNVs only than with all variants combined)
was expected because it is well known that pipelines are
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better at detecting SNVs than other variants. This can
be partly explained by the facts that: (i) MPS technolo-
gies, particularly Ion Torrent PGM™, have difficulties in
sequencing DNA regions containing homopolymers,
which leads to the creation of “false” indels; and (ii)
alignment on Hg19 is more complex in regions with ho-
mopolymers than in other regions, which leads the two
pipelines to find more FPs in these regions than in
others [19]. The number of FPs, though smaller with
SNVs only than with all variants combined, remained
nevertheless high with regard to the number of positions
in the whole genome.
When not only the positions but also the variant

“identities” were considered, the results confirmed the
difficulties of MPS technologies in identifying indels. In-
deed, most SNVs found by the two pipelines at the same
positions were identical. On the contrary, investigating
all types of variants, most variant “identities” found by
the two pipelines at the same positions were different;
e.g., there were either SNVs instead of insertions or in-
sertions of three bases instead of four.
Overall, TMAP-NextGENe® gave slightly better results

than BWA-GATK because, with the same sensitivity, the
former generated less FPs. This may be explained by the
TMAP alignment which was adapted by Life technology
to correct the main weaknesses of the Ion Torrent
technology.
In this paper, we studied the intrinsic performance of

each pipeline; i.e., its sensitivity and specificity. By defin-
ition, these indicators do not depend on the prevalence
of the variants. When a pipeline is designed to analyse
NGS data in a diagnostic context, its positive and nega-
tive predictive values (PPV and NPV) should also be de-
termined. Within this context, the PPV is the probability
that a detected variant is really a variant and the NPV
the probability that a non-variant is really a non-variant.
The positive and negative predictive values depend on
both the intrinsic performance and the prevalence of the
variants; thus on the disease under study. For example,
with the two studied pipelines, considering a prevalence
of 5 variants for 10,000 positions, the PPV of BWA-
GATK was 88.58%, the PPV of TMAP-NextGENe® was
90.51%, and the NPV was 98.10% for both pipelines.
The statistical method presented here can be used to

compare any two pipelines. The results of the LRT
should not be the only criteria to consider for choosing
the mixed model because these results are very dependent
on the sample size. When the number of variants
identified by the gold standard method is small, the
LRT is not powerful enough to reveal a difference in
sensitivity between two pipelines. In this case, it
seems more relevant to apply either the same model
as the one chosen for specificity or another model
recommended by the literature.
With the increasing use of MPS in diagnostic labora-
tories, the development of statistical methods to com-
pare pipelines is essential. Several tools already exist to
compare pipeline results: VCFtools or the more recent
GCAT Benchmarking tool [31] and RTG Tools [32], for
example. Briefly, RTG tools take into account the “com-
plex call representation” found by variant calling. GCAT
Benchmarking tool offers a pleasant interface to com-
pare alignment results or variant callers and uses its
proper gold standard to calculate sensitivities and speci-
ficities and produce ROC-like curves. These tools are
very useful and important to begin any analysis and may
be used to complete our method. Generally, the validation
of new pipelines or new versions of already existing pipe-
lines requires extensive comparisons with robust statistical
methods. The simple sensitivity and specificity calcula-
tions often used in pipeline validation describe the sample
under study but cannot be valid in future subjects, espe-
cially when small samples are used for pipeline validation.
These calculations are sensitive to outliers and do not
allow estimating the variability between patients, which
may be very high. The statistical method proposed in this
paper allows estimating non-biased performance indi-
cators (sensitivity and specificity) and estimate their
agreement (OR). In addition, this method allows a
valid transposition of pipeline experimental results to
the general population while taking into account the
variability between patients and/or sequenced genes.
Moreover, a statistical model should allow introducing
covariates such as the sequencing depth or the genome
guanine-cytosine content. Here, for simplicity, we did not
use such covariates but, in further works with diagnostic
purposes, introducing covariates to characterize variant
positions seems interesting, if not essential.
Up to now, Sanger sequencing has been the reference

method in medical research. This is why we considered
it here as gold standard though we are aware that its re-
sults do not always reflect the biological truth. Statistical
methods have been developed to estimate sensitivity and
specificity in case of imperfect gold standard [33]. These
methods may be extended to the field of pipeline assess-
ment. We mention here that the statistical method we
present does not depend on the choice of the gold
standard: the same analysis may be performed with any
other gold standard than Sanger sequencing. Another
limit with Sanger sequencing is the small number of
genes sequenced, thus the small number of identifiable
variants; this leads to a low power in comparing pipeline
sensitivities.
In the present paper, we carried out an overall com-

parison of two pipelines using the results of sequen-
cing a panel of genes. However, the method may be
used for the comparison of particular pipeline steps
or options and for analyses of exomes or whole
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genomes. In the future, this method will be extended
to comparisons between more than two pipelines.
Two other important steps in MPS data analysis are

variant calling and filtering. In this study, we discarded
only the variants whose depth of coverage was <10×. We
have chosen not to annotate and filter the variants iden-
tified by the two pipelines before comparing their raw
VCF files. The addition of an annotation and filtering
step would have certainly reduced the number of FPs
but with the risk of eliminating true variants and, thus,
decreasing the estimated sensitivities. The exact impact
of the filtering step may be the object of future studies.

Conclusion
In conclusion, the statistical method we propose in this
paper showed that the commercial pipeline (TMAP-
NextGENe®) gave slightly better results than the aca-
demic pipeline (BWA-GATK) because, with the same
sensitivity, the former generated less FPs. The method
allows choosing the most appropriate pipeline for a
given analysis and is generalizable to all types of pipe-
lines and MPS data (panel, exome, whole genome) that
are becoming increasingly used for diagnosis, prognosis,
and therapeutics in the evolving personalized medicine.

Additional files

Additional file 1: R code example. This R code allows reproducing the
findings presented in the article regarding comparison results between
two pipelines (BWA-GATK and TMAP-NextGen) without taking into account
a Gold Standard (here, Sanger sequencing). When Gold Standard results are
available, some data preparation steps should be added before modelling.
All the details about these steps are given in the R file. (R 16 KB) (R 15 kb)

Additional file 2: Pipeline results. This Rdata, which is loaded in R code
file, contains pipeline results for BWA-GATK (object BWAPat) and TMAP-
NextGen (object NGPat) as well as region sequenced (object BedNGS).
(RData 8 MB) (RDATA 8590 kb)
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