
Bao and Lan BMC Bioinformatics (2017) 18:204
DOI 10.1186/s12859-017-1610-3

SOFTWARE Open Access

HALC: High throughput algorithm for
long read error correction
Ergude Bao1,2* and Lingxiao Lan1

Abstract

Background: The third generation PacBio SMRT long reads can effectively address the read length issue of the
second generation sequencing technology, but contain approximately 15% sequencing errors. Several error
correction algorithms have been designed to efficiently reduce the error rate to 1%, but they discard large amounts of
uncorrected bases and thus lead to low throughput. This loss of bases could limit the completeness of downstream
assemblies and the accuracy of analysis.

Results: Here, we introduce HALC, a high throughput algorithm for long read error correction. HALC aligns the long
reads to short read contigs from the same species with a relatively low identity requirement so that a long read region
can be aligned to at least one contig region, including its true genome region’s repeats in the contigs sufficiently
similar to it (similar repeat based alignment approach). It then constructs a contig graph and, for each long read,
references the other long reads’ alignments to find the most accurate alignment and correct it with the aligned contig
regions (long read support based validation approach). Even though some long read regions without the true
genome regions in the contigs are corrected with their repeats, this approach makes it possible to further refine these
long read regions with the initial insufficient short reads and correct the uncorrected regions in between. In our
performance tests on E. coli, A. thaliana andMaylandia zebra data sets, HALC was able to obtain 6.7-41.1% higher
throughput than the existing algorithms while maintaining comparable accuracy. The HALC corrected long reads can
thus result in 11.4-60.7% longer assembled contigs than the existing algorithms.

Conclusions: The HALC software can be downloaded for free from this site: https://github.com/lanl001/halc.

Keywords: PacBio long reads, Error correction, Throughput

Background
The Illumina sequencing technology, as a representative
of second generation sequencing technology, can produce
reads of several hundred bases long (called short reads)
with an error rate < 1% (dominated by base substitu-
tions) and a cost of approximately $0.03–0.04 per million
bases [1]. The low cost of short reads has greatly facilitated
the process of sequencing and analyzing new species;
however, the limited read length can prohibit sequenc-
ing completeness and analysis accuracy. For example, a
tremendous number of species have been assembled from
short reads, but most of the assemblies are incomplete

*Correspondence: baoe@bjtu.edu.cn
Ergude Bao and Lingxiao Lan are joint first authors.
1School of Software Engineering, Beijing Jiaotong University, 3 Shangyuan
Residence, Haidian District, 100044 Beijing, China
2Department of Botany and Plant Sciences, University of California, Riverside,
900 University Ave., 92521 Riverside, CA, USA

and fragmented into several thousands of contigs [2, 3].
To address this issue, the PacBio SMRT sequencing tech-
nology, as a representative of third generation sequencing
technology, has been attracting more and more attention
since its commercial release in 2010 [4]. This technology
can currently produce reads of 5-15K bases and some of
100K bases (called long reads) with a cost of approximately
$0.4-0.8 per million bases [1, 5]. With this technology,
it becomes easier to assemble more complete sequences
and perform more accurate analyses [6–8]. Depending on
how the long reads are used, sequencing projects can be
grouped into two classes.

• Short and long read hybrid sequencing projects
obtain short reads of sufficient coverage as well as
long reads of low or moderate coverage from the
same species and assemble them together. When the
coverage is low, long reads can fill gaps or form

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1610-3&domain=pdf
https://github.com/lanl001/halc
mailto: baoe@bjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 2 of 12

scaffolds for the corresponding short read assemblies
[9]; when the coverage is moderate, long reads can
assemble together with the corresponding short reads
[3, 10–12].

• Long read alone sequencing projects obtain long
reads of high coverage and assemble them alone
[7, 13]. These sequencing projects are not as common
as the short and long read hybrid sequencing projects
because they are more expensive, as the long reads
have higher cost than short reads.

Nevertheless, the generated long reads contain 10-15%
errors (dominated by insertions and deletions in uniform
distribution) [6], so it is important to design efficient
algorithms to correct them.
Several error correction algorithms for long reads have

been proposed, including PacBioToCA ([6]; the algorithm
from the Celera assembler [13]), LSC [8], Proovread [14],
CoLoRMap [15], the algorithm from the Cerulean assem-
bler [11], ECTools [16], LoRDEC [17], Jabba [18], DAG-
Con ([7]; from HGAP assembler), LoRMA [19] and the
algorithms from the FALCON and Sprai assemblers (not
published). The long read error correction algorithms can
be grouped into three classes.

• Short read based algorithms PacBioToCA, LSC,
Proovread and CoLoRMap align the short reads from
the same species to the long reads and use the aligned
short reads with low error rate to perform error
correction. These algorithms are usually used in short
and long read hybrid sequencing projects.

• Short read assembly based algorithms the algorithm
from Cerulean, ECTools, LoRDEC and Jabba all align
the long reads to the de Bruijn graph constructed or
contigs assembled from the short reads from the
same species to perform error correction. Because of
the continuity of the de Bruijn graph or contigs, more
error rich regions in the long reads can be aligned
and corrected with the de Bruijn graph or contigs.
Another benefit of using the de Bruijn graph or
contigs is that the alignment of long reads to de
Bruijn graph or contigs is much faster than the
alignment of short reads to long reads. These
algorithms are also usually used in short and long
read hybrid sequencing projects.

• Long read alone algorithms DAGCon, PacBioToCA
in its self-correction mode and the algorithms from
FALCON and Sprai find multiple sequence
alignments among the long reads, while LoRMA
aligns the long reads to the de Bruijn graphs
constructed from themselves to perform error
correction. These algorithms usually require long
read coverage as high as 60–100× and are thus used
in the long read alone sequencing projects.

It is worthwhile to note that there are also many short
read error correction algorithms for the second genera-
tion sequencing technology [20], but they do not work
for long reads due to the different error model. The exist-
ing long read error correction algorithms could achieve
error rates of approximately 1%, but they must discard a
large amount of uncorrected bases and thus lead to low
throughput. For example, as listed in [7], PacBioToCA and
LSC must discard 42.6-87.1% bases in a human brain long
read library to achieve the 1% error rate in the corrected
and outputted bases. For another example, in [16] and
[17], ECTools and LoRDEC also discard 18.2-70.0% bases
in E. Coli read libraries for error correction. Such a loss
of bases is not economical considering the higher cost
of long reads compared to short reads, and it may also
reduce the completeness of downstream assemblies and
the accuracy of analysis. This point was discussed in [14]:
“a decrease in throughput could have a strong impact on
the further steps of the projects, especially the assembly”.
Also, as reported in [16], with 4.7-24.2% bases discarded,
the lengths of assemblies decrease by 14.3-89.0% for the S.
cerevisiae, A. thaliana and O. sativa read libraries.
The low throughput discussed above is because of the

following two problems.

• Error richness problem: some long read regions are
error rich, and it is difficult to align them with
sufficient identity to the reference data (short reads
for short read based algorithms, short read assembly
for short read assembly based algorithms or the other
long reads for long read alone algorithms) for
correction, or it is difficult to validate and distinguish
the true alignments from many false ones aligning
them with lower identity.

• Lack of reference data problem: some long read
regions do not have sufficient reference data for
correction, due to low read coverage and/or
sequencing gaps.

The short read assembly based algorithms could address
the error richness problem to some extent by aligning an
error rich long read region with relatively low identity
requirements, and then validating the candidate align-
ments and accepting the one that forms a continuous
alignment with its adjacent regions’ alignments in the
de Bruijn graph or contigs. For example, the algorithm
from Cerulean validates long read regions’ alignments to
contigs of small lengths by first aligning their adjacent
regions to contigs of large lengths and then accepting the
former alignments adjacent to the latter in the contigs;
LoRDEC and Jabba validate long read regions’ alignments
of low identity to the de Bruijn graph by referencing their
adjacent regions’ alignments of high identity and then
accepting the former alignments adjacent to the latter

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 3 of 12

in the de Bruijn graph. This validation approach is thus
called the adjacent alignment based validation approach.
Some of the remaining algorithms can also address the
error richness problem to an extent by making alignments
of several passes with different parameter settings [14, 19]
or by aligning one pair of paired-end short reads by ref-
erencing the alignments of the other pair [15]. However,
none of the existing algorithms could address the lack of
reference data problem.
To further address the error richness problem and also

the lack of reference data problem, in this paper, we pro-
pose a novel short read assembly based algorithm called
HALC: High throughput Algorithm for Long read error
Correction. HALC uses the contigs assembled from the
corresponding short reads to correct the long reads. It
aligns the long reads to the contigs with a relatively low
identity requirement, so that a long read region could be
aligned not only to its true genome region but also to
the genome region’s repeats in the contigs for correction.
This novel alignment approach can address the lack of
reference data problem and is called the similar repeat
based alignment approach. It then validates each long read
region’s alignments with the adjacent alignment based val-
idation approach and also by referencing other long read
regions’ alignments. This novel validation approach can
further address the error richness problem and is called
the long read support based validation approach.

Implementation
Underlining approaches
Below are the details of HALC’s two novel approaches,
the similar repeat based alignment approach and the long
read support based validation approach, as well as the
adjacent alignment based validation approach.

• Similar repeat based alignment approach (novel): a
long read region could be aligned to its similar repeats
in the contigs to guarantee that one long read region
is aligned to at least one contig region for correction.
Here, a long read region’s similar repeats are the
genome regions of <15% difference to the long read
region’s true genome region [21]. The similar repeats
can be located in the contigs by alignment algorithms
with dedicated parameter tunings. By this approach,
a long read region of approximately 15% error rate
compared to its true genome region can be aligned
and converted to its similar repeat of <15%
difference from the true genome region. The reduced
error rate makes it possible to further refine the long
read region with the initial short reads and thus
reduce the error rate to <1%. It is worth noting that
although the existing error correction algorithms for
both second and third generation sequencing
technologies try to avoid alignments to repeat regions

[6, 22], our observation and experimental results, in
contrast, demonstrate the possibility to make use of
some of the alignments (see the “Discussion” section
for details).

• Long read support based validation approach (novel):
the alignments of a long read region and its adjacent
regions in the same long read are validated together,
and the ones supported by a sufficient number of
adjacent regions from the other long reads are
accepted. Here, the alignments of two adjacent long
read regions are supported by another two adjacent
long read regions if the latter are aligned to the same
contig regions as the former. With this approach,
among several aligned contig regions of a long read
region, the one corresponding to its true genome
region (if exists) is accepted after validation. The
prerequisite of this approach is that different long
reads should be aligned to a unified set of contig
regions, and one alignment of a long read region is to
one contig region in the set; otherwise, it is difficult
to check if two adjacent long read regions are aligned
to the same contig regions as another two.

• Adjacent alignment based validation approach
(existing): the alignments of a long read region and its
adjacent regions in the same long read are validated
together, and the ones aligned adjacent to each other
in the contigs are accepted. With this approach,
among several candidate alignments of a long read
region, the one forming the alignment of the highest
continuity is accepted after validation.

Figure 1 illustrates these approaches. Combining these
approaches, if a long read region has its true genome
region in the contigs, several alignments to the true
genome region and its similar repeats are obtained
through the similar repeat based alignment approach, and
the alignment to the true genome region is accepted using
the long read support based validation approach as well
as the adjacent alignment based validation approach. The
long read region can thus be corrected using the true
genome region. Otherwise, if a long read region does not
have its true genome region in the contigs, the alignment
to a similar repeat is obtained and accepted. The long read
region can thus be converted to the similar repeat and
then refined using the initial short reads.

Algorithm overview
The HALC algorithm consists of the following five major
steps, with the long reads, the short reads from the same
species and the contigs assembled from the short reads as
input.

1. Align the long reads to the contigs with a relatively
low identity requirement so that a long read region

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 4 of 12

Fig. 1 Illustrations of the approaches discussed in the “Background”
section. The similar repeat based alignment approach, the long read
support based validation approach and the adjacent alignment based
validation approach are illustrated in (1), (2) and (3), respectively. (1)
Long read region A in r1 does not have its true genome region in
contig c1, but it could be aligned to its similar repeat B (shaded),
which is the true genome region of long read region B in contig c1. (2)
Adjacent long read regions A and B in r1 are aligned to contig region
A in c1 and contig region B in c2, respectively. These alignments are
accepted after validation with a sufficient number of long reads r1, r2,
r3 and r4 supporting them. (3) Adjacent long read regions A and B in
r1 are aligned to the adjacent contig regions A and B in c1, respectively,
and are thus accepted after validation

can be aligned to its true genome region or to similar
repeats in the contigs.

2. Split the aligned contig regions and the long read
regions so that different long reads are aligned to a
unified set of contig regions, and one alignment of a
long read region is to one contig region in the set.

3. Construct a contig graph from the long read region
alignments so that one long read’s alternative
alignments can be represented by different paths, and
the alignment with the highest long read support and
continuity has the minimum total edge weight.

2.1 Construct a graph representing one aligned
contig region as a vertex and representing
adjacent long read regions’ alignments to two
contig regions as an edge between their
vertices.

2.2 Assign a small weight to the graph edge
between two vertices if the long read regions’
alignments are supported by a large number
of long read regions, or if the aligned contig
regions are adjacent.

4. For each long read, find the paths representing its
alternative alignments in the contig graph, and use
the one with the minimum total edge weight to
correct it.

5. Refine the similar repeat corrected long read regions
with the short reads.

Steps 1 and 5 are based on the similar repeat based
alignment approach, step 2 guarantees the prerequisite
of the long read support based validation approach, and
steps 3-4 are based on the long read support based valida-
tion approach and the adjacent alignment based validation
approach. It is worth noting that the HALC algorithm
does not try to maximize the total identity between a long
read and the aligned contig regions because considering
the high error rate of the long reads, the long read align-
ment of the maximum total identity may not be the one
to the true genome regions. Step 1 is sufficient to guaran-
tee the identity between a long read region and the aligned
contig region. Table 1 shows the correspondence between
the steps of the algorithm, the approaches the steps are
based on, and the problems addressed by the approaches.
Figure 2 illustrates the HALC algorithm.

Long read alignment to contigs
In this step, we align the long reads to the contigs with
BLASR [23] because (1) it is specifically designed for long
read alignment tolerating large numbers of insertions and
deletions, and (2) in our experience, the HALC algorithm
showed better performance with BLASR than with sev-
eral other aligners such as BLAST [24], BLAT [25] and
MUMMER [26]. The parameter settings of BLASR are -
bestn 20 -minMatch 8 -nCandidates 30 -maxScore 2000
-minAlnLength 15, with a trade-off between alignment
sensitivity and accuracy so that the long read regions are
aligned either to their true genome regions or to similar
repeats in the contigs. To further improve the alignment
sensitivity, we use scaffolds rather than contigs as input
because scaffolds contain additional information about
contig orientations and orders, and this information could
help guide BLASR alignment. For simplicity, we con-
tinue using the term contigs rather than scaffolds in the
following discussion.

Splitting of contig and long read regions
We split the aligned contig regions and the long read
regions following the two rules below. In these two rules,
an aligned contig region or long read region is denoted
by its starting and ending positions in the underlining

Table 1 Correspondence of algorithm steps, approaches and
problems addressed

Steps Approaches Problems

1 Similar repeat based alignment Lack of reference data

3-4 Long read support and adjacent
alignment based validation

Error richness

5 Similar repeat based alignment Lack of reference data

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 5 of 12

Fig. 2 Illustration of the HALC algorithm. Long reads r1 to r3 are aligned to contigs c1 to c3 with a relatively low identity requirement based on the
similar repeat based alignment approach in (1), and a contig graph is constructed to validate the alignments and correct the long reads based on the
long read support based validation approach and the adjacent alignment based validation approach in (2). (1) The long read region r1(B) (region B of
r1; below follows) is error rich, so it is aligned either to its true genome region in the contigs c1(B) or its similar repeat c3(E) (shaded). The reads r1(C),
r2(C) and r3(C) do not have their true genome regions in the contigs and thus are aligned to their similar repeat c3(G) (shaded). The aligned contig
region c1(AB) is split into c1(A) and c1(B), and the long read regions are split accordingly. (2) A contig graph is constructed, with vertices A, B, D, E and
G representing the aligned contig regions connected by weighted edges. Edge (A, B) (edge between vertices A and B; below follows) is weighted 0,
since the contig regions A and B are adjacent. (B,G) and (G,D) are weighted 0, since sufficient adjacent long read regions are aligned to contig
regions B and G and G and D, respectively. As a result, a path of the minimum total edge weight to correct all the long reads is found containing
vertices A, B, G and D. The reads r1(C), r2(C) and r3(C) are corrected using their similar repeats and can be refined with the initial short reads

genome. For example, an aligned contig region c starting
at genome position x and ending at y is denoted as c(x, y).

• Two aligned contig regions c(x, y) and c(x′, y′) of the
same contig are split into three contig regions c(x, x′),
c(x′, y) and c(y, y′), if x < x′ < y < y′.

• Two long read regions r(x, y) and r(x′, y′) are split
into three long read regions r(x, x′), r(x′, y) and
r(y, y′), if r(x, y) is aligned to contig regions c(x, x′)
and c(x′, y), and r(x′, y′) is aligned to contig regions
c(x′, y) and c(y, y′).

These rules are for the general case that two aligned
contig regions intersect, while small adjustment can be
made to accommodate the case in which one contig region
is contained in the other. In practice, long read regions
from the same genome region usually contain many dif-
ferences, so the boundaries of their alignments may be
close but different. Therefore, we consider two aligned
contig regions c(x, y) and c(x′, y′) (or two long read regions
r(x, y) and r(x′, y′)) as the same contig region (or long read
region) without further splitting them if |x − x′| < δ and
|y− y′| < δ, where δ is a small deviation value. The HALC
software provides an option -boundary to set this value (4
bp by default).

Graph construction
We construct a contig graph with each vertex per aligned
contig region and each edge between two vertices if there
is at least one pair of adjacent long read regions aligned
to the two contig regions. In most of the cases, different
pairs of adjacent long read regions can be aligned to the
same two contig regions in the same orientation. More

accurately, however, different pairs of adjacent long read
regions can be aligned to the same two contig regions
in four orientations: forward-forward, forward-reverse,
reverse-forward, and reverse-reverse. The contig graph
should thus have two vertices for one aligned contig
region to represent both the forward and reverse align-
ments and four edges between the vertices for two aligned
contig regions. Therefore, the HALC software provides
an option –accurate to enable considering the different
orientations (yes by default).

Graph weighting
We weight each edge between two vertices in the graph
following the two rules below. The first rule guarantees
0 weight for the edges corresponding to the long read
regions’ alignments to adjacent contig regions, and the
second rule guarantees small weights for the edges corre-
sponding to the long read regions’ alignments supported
by a large number of long read regions.

• If the aligned contig regions of the vertices are
adjacent to each other in the initial contig, assign a
weight of 0 to the edge.

• If the aligned contig regions are far from each other,
assign a weight ofmax{C0 − C, 0} to the edge, where
C0 is the expected long read coverage on the contigs,
and C is the number of adjacent long read regions
aligned to the two contig regions.

The expected long read coverage C0 on the contigs
can be calculated automatically by checking the average
number of long reads covering a contig base, but the

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 6 of 12

HALC software also provides an option -coverage for
manual input.

Long read correction
For each long read, we find the paths representing its alter-
native alignments in the contig graph and use the one with
the minimum total edge weight to correct it. To calculate
and compare the total edge weight from one vertex repre-
senting the first long read region’s aligned contig region to
one vertex representing the last long read region’s aligned
contig region, dynamic programming is used with the
following function:

T(i + 1, k) = minj{T(i, j) + Wjk} (1)

Here, T(i, j) is the minimum total edge weight from
one vertex representing the first long read region’s aligned
contig region to the vertex representing the ith long read
region’s jth aligned contig region; T(i + 1, k) is the mini-
mum total edge weight from one vertex representing the
first long read region’s aligned contig region to the vertex
representing the ith long read region’s jth aligned contig
region, and then to the vertex representing the (i + 1)th
long read region’s kth aligned contig region; Wjk is the
edge weight between the vertex representing the ith long
read region’s jth aligned contig region and the vertex rep-
resenting the (i+1)th long read region’s kth aligned contig
region. After the path is found, the long read is compared
to the list of aligned contig regions in the path and cor-
rected. Adjacent long read regions corrected with distant
contig regions are likely to be the ones corrected with sim-
ilar repeats, so they are recorded for refinement in the
next step. There are two things to note in this step. (1) The
shortest path algorithms (e.g. Dijkstra’s algorithm) can-
not be used to find the path with the minimum total edge
weight for a long read because the minimum total edge
weight requirement is restricted to the paths representing
the long read’s alternative alignments. (2) If there is more
than one path with the same minimum total edge weight,
the alignment identity is used to break the tie.

Refinement
We further correct the similar repeat corrected long read
regions recorded in the previous step by calling an existing
error correction algorithm, LoRDEC. The k-mer size of
LoRDEC is set to 25, for a trade-off between error correc-
tion sensitivity and accuracy. We use LoRDEC rather than
implementing the function ourselves because LoRDEC is
efficient and accurate in achieving the function [17]. This
step can be skipped if very few similar repeats are used to
perform error correction. Therefore, HALC provides two
modes: an ordinary mode and a repeat-free mode (ordi-
nary mode by default). In the repeat-free mode, HALC
skips this step by filtering very small alignments (< 300

bp) in the graph construction step above and avoiding the
use of similar repeats for error correction.

Software implementation
HALC is implemented in C++ for Linux operating sys-
tems. Its input includes the long reads, the short read
contigs and the initial short reads, and it outputs the error
corrected (1) full long reads, (2) trimmed long reads that
do not contain the uncorrected regions in read heads
and tails, and (3) split long reads that do not contain
the uncorrected regions and very short corrected regions
(<100 bp; [17]).

Results
Experimental design
To evaluate the performance of HALC, we ran HALC
on three data sets from the species, E. coli, A. thaliana
andMaylandia zebra, of small, medium and large genome
sizes, respectively (see the “Data sets and computing
environment” section and Additional file 1: Table S1 for
details). The coverage of the long read sets was 11-39x,
while the coverage of the short read sets was 35-51x, as
HALC is suitable for short and long read hybrid projects,
and these levels are the common coverage requirements
for this class of projects. SOAPdenovo2 [2] was used to
assemble the short reads into contigs. This choice was
based on the GAGE evaluation of different assemblers on
variable data sets [27]: SOAPdenovo2 and ALLPATHS-
LG [3] are among the fastest and most accurate short
read assemblers on variable data sets, but the latter’s
hard requirement for the mate pair library is usually too
stringent for sequencing projects with long reads. For
comparison, we also ran PacBioToCA, LSC, Proovread,
CoLoRMap, ECTools, LoRDEC and Jabba on the three
data sets. The same set of contigs generated by SOAPden-
ovo2 was used for ECTools. Cerulean was not run because
it does not directly output the error corrected long reads.
DAGCon, PacBioToCA in self-correction mode and the
algorithms from FALCON and Sprai were not com-
pared because they are all for long read alone sequencing
projects. We measured the correction completeness and
accuracy of the compared algorithms by aligning the error
corrected and initial long reads to their corresponding
genomes (see the “Performance measurements” section
for details).
Furthermore, to see the effect of error correction upon

the final assemblies with both short and long reads, we
assembled the short read contigs and the long reads with
or without error correction together using the SPAdes
assembler, which is fast and accurate for long sequence
assemblies [10]. We also measured the completeness and
accuracy of the obtained contigs by aligning them to the
corresponding genomes (see the “Performance measure-
ments” section for details). It is worth noting that themain

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 7 of 12

purpose of this paper is not to compare assembly perfor-
mance downstream of error correction algorithms, so this
test is greatly simplified.
In addition, to see HALC’s performance on transcrip-

tomic data, we also compared HALC with the existing
algorithms on a transcriptomic data set from S. cerevisiae
and made measurements by aligning the error corrected
and initial long reads to the corresponding transcriptome
(see the “Data sets and computing environment” section
and the “Performance measurements” section for details).
Trinity was used to assemble the transcriptomic short
reads, also because of its good performance [28].
Finally, we tested HALC by varying the short read

assemblers on the E. coli data set and the S. cerevisiae
data set. For the former data set, we also assembled the
short reads using other typical assemblers, Velvet [29] and
ABySS [30], and for the latter, we also assembled the short
reads by other typical transcriptome assemblers, Oases
[31] and Trans-ABySS [32]. We then ran HALC with
the assemblies and performed the same measurements as
above.
All of the software or algorithms above were used with

the default settings. Only the corrected split long reads
were compared and assembled in these tests, so the results
could not be affected by the uncorrected bases. The split
long reads for LSC were obtained by filtering bases with
short read coverage ≤2.

Data sets and computing environment
The long reads of E. coli, A. thaliana, Maylandia zebra
and S. cerevisiae were from the PacBio DevNet site, NCBI
accession SRX533608, NCBI accession SRX985423, and
NCBI accessions SRR2102571 and SRR2102572, respec-
tively. The corresponding short reads were from NCBI
accession ERR022075, NCBI accession ERR469286, NCBI
accession SRX033046, and NCBI accession SRR059177,
respectively. The genomes of E. coli and A. thaliana were
from NCBI accession NC_000913 and the TAIR FTP
site, respectively. The genome of Maylandia zebra was
not available, so the recently improved scaffolds were
downloaded from NCBI accession GCF_000238955.2 to
approximate the genome [33]. The transcriptome of S.
cerevisiae was from the Ensembl FTP site. Details of the
data sets are listed in Additional file 1: Table S1. All experi-
ments were performed in a computing node of a computer
cluster with 16 cores of 2.3 GHz and 512 GB memory, and
the numbers of processes and threads allocated for the
algorithms are listed in Additional file 1: Table S2.

Performance measurements
We aligned the genomic long reads to the correspond-
ing genomes to evaluate their quality. The BWA-MEM
aligner was used for these alignments because it is a typi-
cal aligner for genomic sequences with fast speed and high

sensitivity [34]. We made the following measurements:
(1) throughput (TH) is the number of corrected and out-
putted bases over the total number of initial long read
bases (throughput is 100% for the initial long reads); (2)
alignment ratio is the number of aligned bases over the
total number of outputted bases; (3) alignment identity is
the identity of the aligned bases; (4) genome fraction is the
number of genome bases covered by the long reads over
the total number of genome bases; (5) number of reads; (6)
average read length.
Referencing the Error Correction Evaluation Toolkit for

short reads [20] and for full long reads [17], we also imple-
mented a version for the split long reads and obtained, in
the outputted bases, the number of corrected errors (true
positive or TP), the number of falsely converted correct
bases (false positive or FP), the number of uncorrected
errors (false negative or FN), and the number of uncon-
verted correct bases (true negative or TN). With these
numbers, due to the errors’ uniform distribution in the
long reads, we can estimate the total number of errors in
the initial long reads as the number of errors in the out-
putted bases over the throughput, i.e. EI = TP+FN

TH . We
can also estimate the total number of correct bases in the
initial long reads as the number of correct bases in the out-
putted bases over the throughput, i.e. CI = TN+FP

TH , and
thus the number of correct bases in the discarded bases as
the total number of correct bases in the initial long reads
minus the number of correct bases in the outputted bases,
i.e. CD = CI− (TN+FP). Therefore, we made the follow-
ing measurements: (7) sensitivity is calculated as TP

EI ; (8)
specificity is calculated as TN+CD

CI ; (9) gain is the number of
errors effectively corrected without introducing new ones
over the total number of errors in the initial long reads,
calculated as TP−FP

EI . It is worth noting that our Error Cor-
rection Evaluation Toolkit requires the correspondence
information between a split long read and its initial long
read, so it does not work for PacBioToCA, which does not
provide this information in the output.
In addition, we aligned the contigs assembled with the

long reads to the corresponding genomes to evaluate the
impact of error correction on the final assemblies. Fol-
lowing [27] and using the QUAST toolkit [35], we split a
contig into two subcontigs if the subcontigs were aligned
at least 1K bp apart indicating a misassembly, and then we
made the following measurements: (10) number of contigs
is the number of initial contigs without splitting; (11) N50
is the split contig size at 50% of the total number of con-
tig bases; (12) largest contig length is the largest length of
split contigs; (13) number of covered bases is the number
of genome bases covered by the split contigs; (14) EPKB is
the number of errors (including misassemblies and indels)
per 100K bp in the initial contigs.
In the transcriptomic data set, we aligned long reads to

the corresponding transcriptome to evaluate their quality.

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 8 of 12

The BLAT aligner was used to make these alignments
because it is a typical aligner for transcriptomic sequences
with high sensitivity [25]. We obtained the measurements
(1)-(3) above as well as the following measurement: (15)
transcriptome fraction is the number of transcriptome
bases covered by the long reads over the total number of
transcriptome bases.

Results on error correction performance
The performance test results on the E. coli data set
are listed in Table 2(a). A total of 50.4% bases of the
initial long reads can be aligned to the corresponding
genome with 95.2% identity, indicating a high error rate
in the uncorrected long reads. The existing error correc-
tion algorithms PacBioToCA, LSC, Proovread, ECTools
and LoRDEC can correct and output 23.5-60.8% of the
bases. HALC can obtain 7.2–41.1% higher throughput
than PacBioToCA, LSC, Proovread and ECTools and is

comparable (<5% difference) to LoRDEC. The alignment
ratio, alignment identity and genome fraction of all the
algorithms are almost 100% and thus comparable. Except
for PacBioToCA and LSC, the average read length of all
the algorithms is inversely proportional to the through-
put because more but shorter reads can be obtained with
higher throughput. The sensitivity and gain of all the
algorithms are proportional to the throughput, while the
specificity remains comparable.
The performance test results for the A. thaliana data

set are listed in Table 2(b). HALC can obtain 6.7-24.0%
higher throughput than all the existing algorithms. The
performance test results on the Maylandia zebra data set
are listed in Table 2(c). HALC can obtain 7.6% higher
throughput than LoRDEC. In both tests, the alignment
ratio, alignment identity, genome fraction, sensitivity, gain
and specificity of HALC are comparable to or higher
than the existing algorithms, and the average read length

Table 2 Evaluation of error correction performance

Method Throughput Alignment ratio Alignment identity Genome fraction N reads Average read length Sensitivity Gain Specificity

(a) Long reads of E. coli

Initial 100.0% 50.4% 95.2% 100.0% 75152 2381 - - -

PacBioToCAa 24.2% 100.0% 100.0% 99.5% 53447 810 - - -

LSC 53.5% 98.7% 99.9% 99.7% 115960 825 52.6% 51.7% 99.9%

Proovread 57.4% 100.0% 99.9% 99.7% 44986 2284 57.4% 56.8% 99.9%

CoLoRMap 42.8% 99.7% 100.0% 99.9% 70582 1084 42.7% 42.2% 99.9%

ECTools 23.5% 99.9% 99.2% 99.4% 8095 5211 23.4% 21.8% 99.8%

LoRDEC 60.8% 97.8% 100.0% 99.8% 70164 1549 60.7% 60.5% 100.0%

Jabba 52.8% 99.6% 100.0% 98.6% 26459 3568 52.8% 52.7% 100.0%

HALC 64.6% 98.6% 99.9% 99.8% 78731 1467 64.4% 64.0% 99.9%

(b) Long reads of A. thaliana

Initial 100.0% 32.4% 92.4% 82.4% 490418 2645 - - -

PacBioToCAa 10.7% 99.2% 99.7% 63.9% 260834 535 - - -

LSC 25.9% 100.0% 99.5% 71.4% 659123 509 24.2% 22.3% 99.7%

Proovread 27.8% 99.8% 99.7% 79.8% 125786 2864 26.5% 24.9% 99.7%

CoLoRMap 21.4% 99.4% 99.7% 69.3% 230933 1203 20.5% 19.2% 99.8%

ECTools 11.3% 99.8% 99.5% 63.1% 21354 6886 10.8% 9.8% 99.8%

LoRDEC 28.0% 86.4% 99.5% 74.4% 847963 428 25.9% 22.8% 99.6%

Jabba 10.8% 99.6% 99.7% 56.1% 51353 2726 10.5% 9.9% 99.9%

HALC 34.7% 96.5% 99.5% 85.8% 548872 819 33.2% 29.7% 99.3%

(c) Long reads of Maylandia zebra

Initial 100.0% 46.9% 91.3% 91.9% 1307812 10082 - - -

LoRDEC 33.6% 97.9% 99.7% 89.5% 7372455 601 32.4% 29.8% 99.6%

HALC 41.2% 98.7% 99.6% 90.7% 4833536 1123 40.2% 37.5% 99.4%

The long reads of tests (a)-(c) are from E.coli, A. thaliana andMaylandia zebra, respectively. The initial and error corrected long reads by PacBioToCA, LSC, Proovread,
CoLoRMap, ECTools, LoRDEC, Jabba and HALC are compared in the tests. The performance measurements are listed in the “Performance measurements” section.
aSome measurements are not available without the correspondence information between a split long read and its initial long read

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 9 of 12

of HALC is moderate. The results of PaBioToCA, LSC,
Proovread, CoLoRMap, ECTools and Jabba are not shown
in Table 2(c) because of their very long running time.
The test results in this section indicate that HALC

is efficient in correcting and outputting more bases in
the initial long reads than the existing algorithms while
maintaining sufficient accuracy.

Results on long read assemblies
The assembly results for the error corrected A. thaliana
long reads are listed in Table 3(a). The number of assem-
bled contigs with HALC corrected long reads is 5.8-29.6%
smaller than with most of the existing algorithms, and the
N50 value, the largest contig length and the number of
covered bases with HALC corrected long reads are 11.4-
60.7, 26.6-238.5 and 6.1-141.7% larger than with most
of the existing algorithms, respectively. The EPKB value
with HALC corrected long reads is 6.8-17.4% smaller
than with most of the existing algorithms. Generally, the
assembly quality is proportional to the throughput of the
algorithms, except for ECTools, with much larger read
lengths, and LSC and LoRDEC, with relatively smaller
read lengths. The assembly results for the error corrected
Maylandia zebra long reads are listed in Table 3(b). Even
though the number of assembled contigs with HALC cor-
rected long reads is 10.6% larger than with LoRDEC, the
N50 value, the largest contig length and the number of
covered bases with HALC are 35.9, 33.7 and 58.6% larger
than with LoRDEC, respectively. The EPKB value with
HALC corrected long reads is 23.6% smaller than with
LoRDEC. The results with the initial uncorrected long

Table 3 Evaluation of long read assemblies

Method N Contigs N50 Largest contig
length

N Covered
bases

EPKB

(a) Contigs of A. thaliana

PacBioToCA 1629 27806 110971 51672726 119.4

LSC 1284 29305 105354 40390383 128.6

Proovread 1193 37828 233854 50379300 123.9

CoLoRMap 1324 35477 150127 52913748 113.1

ECTools 1218 40122 182238 56377176 143.5

LoRDEC 1331 28133 104370 40034274 145.1

Jabba 618 29548 87500 22681404 102.1

HALC 1147 44684 296154 54821730 119.9

(b) Contigs of Maylandia zebra

LoRDEC 37460 8878 115008 204752772 121.6

HALC 41434 12062 153787 324763656 92.9

The contigs of tests (a)-(b) are for A. thaliana andMaylandia zebra, respectively. The
contigs assembled from the error corrected long reads by PacBioToCA, LSC,
Proovread, CoLoRMap, ECTools, LoRDEC, Jabba and HALC are compared in the tests.
The performance measurements are listed in the “Performance
measurements” section

reads are not shown because of the limited assembly qual-
ity. The assembly results with the E. coli long reads are not
shown because almost perfect contigs were obtained with
the variable long reads, and there is not much difference.
These results indicate that HALC corrected long reads
can result in more complete assemblies than the existing
algorithms with sufficient accuracy.

Results on transcriptome data
For the transcriptome data, the performance test results
on the S. cerevisiae data set are listed in Table 4. A total of
7.0% bases of the initial long reads can be aligned to the
corresponding transcriptome with 99.5% identity, indicat-
ing a high error rate in the uncorrected long reads. The
existing error correction algorithms LSC, CoLoRMap,
LoRDEC and Jabba can obtain 26.0-33.7% throughput,
14.9-29.8% alignment ratio, 99.8-100.0% alignment iden-
tity and 15.5-20.6% transcriptome fraction. HALC can
obtain 16.1-23.8% higher throughput, 0.7-15.6% higher
alignment ratio, and 0.8-5.9% higher transcriptome frac-
tion than all the existing algorithms with compara-
ble alignment identity. The results of the PacBioToCA,
Proovread and ECTools are not shown in Table 4 because
of their limited performance. It is worth noting that even
though some algorithms, such as Proovread, can achieve
much better performance by using tailor-made parame-
ters [14], we did not use this procedure to allow a fair
comparison. The test results in this section indicate that
HALC is also efficient in correcting transcriptome data.

Results with various short read assemblers
With various short read assemblers, HALC exhibits stable
results on the E. coli and the S. cerevisiae data sets, and
the difference for all the measurements is below 5% (data
not shown). This result indicates that HALC is not very
dependent on the upstream short read assemblers and can
be used together with various assemblers and for different
data types.

Table 4 Evaluation of error correction performance on the
transcriptomic data set of S. cerevisiae

Method Throughput Alignment
ratio

Alignment
identity

Transcriptome
fraction

Initial 100.0% 7.0% 99.5% 17.0%

LSC 31.2% 20.2% 99.8% 16.5%

CoLoRMap 26.0% 29.8% 99.8% 20.6%

LoRDEC 33.2% 18.8% 99.9% 16.6%

Jabba 33.7% 14.9% 100.0% 15.5%

HALC 49.8% 30.5% 99.4% 21.4%

The initial and the error corrected long reads by LSC, CoLoRMap, LoRDEC, Jabba
and HALC are compared. The performance measurements are listed in the
“Performance measurements” section

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 10 of 12

Running time andmemory usage
The running time of HALC on the E. coli, A. thaliana,
Maylandia zebra and S. cerevisiae data sets is 0.7h, 7.0h,
53.1h and 0.5h, respectively. Thememory usage is 12.3GB,
41.2GB, 33.7GB and 25.9GB, respectively, including the
running time and memory usage for short read assem-
blies by SOAPdenovo2. Compared to the existing algo-
rithms, HALC’s running time is much shorter than for
PacBioToCA, LSC, Proovread and ECTools and is com-
parable to or greater than the running time for LoRDEC.
Jabba’s running time is dependent on the genome sizes.
Comparatively, HALC’s running time is much smaller on
the Maylandia zebra data set of large genome size and is
larger on the other data sets of small and medium genome
sizes. Details of the running time and memory usage are
listed in Additional file 1: Table S2. These results indicate
that although the main purpose of HALC is to guarantee
sufficiently high throughput, it is efficient in running time
with acceptable memory usage and can thus scale well for
variable project sizes.

Discussion
The most important concern regarding the HALC algo-
rithm is whether the similar repeat based alignment
approach introduces false corrections. In theory, false
corrections are possible because after a long region is cor-
rected with its similar repeat, it might be refined with the
short reads from the similar repeat instead of the ones
from the true genome region. However, this problem is
not frequent because the refinement algorithm LoRDEC
aligns short reads to a long read region by considering not
only the long read region’s identity but also its adjacent
regions in the same long read.
Experimentally, if a similar repeat corrected long read

region is a false correction not further refined with the
short reads from the true genome region, it will be aligned
to its similar repeat in the corresponding genome instead
of its true genome region. In other words, it will be aligned
to a genome region included in the short read contigs
instead of the genome region not included in the contigs.
Therefore, we refer to the short read contigs to check for
false corrections. We aligned both the HALC corrected
long reads and the short read contigs to the genomes on
the E. coli,A. thaliana andMaylandia zebra data sets used
above and calculated the percentage of genome bases not
covered by the contigs and the percentage of long read
bases aligned to these genome bases. A much larger value
of the former than the latter would indicate thatmany long
read regions are aligned to their similar repeats instead
of the true genome regions and are thus false corrections.
For the E. coli data set, the two values are 4.4 and 3.9%;
for the A. thaliana data set, the two values are 21.5 and
23.6%; for the Maylandia zebra data set, the two values
are 42.8 and 39.3%, all comparable. This result indicates

limited false corrections by HALC. Furthermore, since
many similar repeat corrected long read regions are not
false corrections and are aligned to the genome regions
not included in the contigs, we calculated the identity
between the genome bases not covered by the contigs and
the long read bases aligned to these bases to see the accu-
racy of the similar repeat corrected long read regions. The
identity values are 99.9, 99.3 and 99.6% for the three data
sets, respectively. This result indicates high accuracy of
the similar repeat corrected long read regions.
In addition, we also refer to the error corrected long

reads produced by the existing algorithms to check for
false corrections. We aligned the error corrected long
reads by various algorithms to the genomes on all three
data sets and calculated the percentage of genome bases
above the various long read coverages. A much smaller
percentage of genome bases above the small long read
coverages for HALC than the existing algorithms, or a
much larger percentage of genome bases above the large
long read coverages for HALC, would indicate that many
long read regions are aligned to their similar repeats
instead of the true genome regions and are thus false cor-
rections. The plot for the E. coli data set is shown in
Fig. 3, and the curve of HALC exhibits a similar switch
to the existing algorithms from high coverage to low at
25×. The plots of the A. thaliana and the Maylandia
zebra data sets are also available in Additional file 1:
Figures S1 and S2, respectively, and similar results can be
observed. This result also indicates limited false correc-
tions by HALC. Indeed, the amount of errors contained

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage

P
er

ce
nt

ag
e

of
 g

en
om

e
>

=
 c

ov
er

ag
e

PacBioToCA
LSC
Proovread
CoLoRMap
ECTools
LoRDEC
Jabba
HALC

1 5 10 15 20 25 30 35 40 45 50

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Fig. 3 Percentage of genome covered above various long read
coverages on the E. coli data. The percentage of genome bases
(y-axis) is plotted with long read coverage from 1× to 50× (x-axis),
corresponding to the error correction results of different algorithms in
Table 2(a)

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 11 of 12

in the long read assemblies with HALC is another reflec-
tion of the false corrections. Table 3 shows that the EPKB
values with HALC are smaller or comparable to the ones
with most of the existing algorithms, also indicating lim-
ited false corrections by HALC (see the “Results on long
read assemblies” section).

Conclusions
This study introduces HALC, a high throughput algo-
rithm for PacBio long read error correction. With the
similar repeat based alignment approach, the long read
regions without true genome regions in the contigs can
be aligned; with the long read support based approach,
the long read regions’ alignments with the highest long
read support and continuity can get accepted. Hence,
more long read bases can be corrected with accuracy. The
experimental results indicate that HALC can correct more
bases in the long reads than the existing error correction
algorithms while achieving comparable or higher accu-
racy. As a result, HALC can help to obtain more complete
assemblies by providing the error corrected long reads.

Availability and requirements
Project name: HALC
Project home page: https://github.com/lanl001/halc
Operating system(s): Linux
Programming language: C++
Other requirements: BLASR and LoRDEC
License: Artistic License 2.0
PacBio DevNet site: https://github.com/PacificBio
sciences/DevNet/wiki/E.-coli-Bacterial-Assembly

Additional file

Additional file 1: Figure S1. Percentage of genome above various long
read coverages on the A. thaliana data. Figure S2. Percentage of genome
above various long read coverages on theMaylandia zebra data. Table S1.
Data sets used in the evaluation. Table S2. Running time and memory
usage in the evaluation of error correction performance. (PDF 85.9 kb)

Abbreviations
CI: Number of correct bases in the initial long reads; CD: Number of correct
bases in the discarded bases; EI: Number of errors in the initial long reads;
EPKB: Number of errors per 100K bp in the initial contigs; FN: False negative;
FP: False positive; TH: Throughput; TN: True negative; TP: True positive

Acknowledgements
We thank Thomas Girke and Tao Jiang from the University of California,
Riverside for their very helpful suggestions during the improvement of this
work. We also thank Leena Salmela and Eric Rivals, the authors of LoRDEC, for
providing us with the Error Correction Evaluation Toolkit for full long reads. We
acknowledge the support of the core facilities at the Institute for Integrative
Genome Biology (IIGB) at the University of California, Riverside.

Funding
This work was supported by grants from the National Science Foundation of
China [61502027 to EB] and the Fundamental Research Funds for the Central
Universities [2015RC045 to EB]. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data andmaterials
The HALC software in C++ for Linux operating systems can be downloaded for
free under the Artistic License 2.0 from this site: https://github.com/lanl001/
halc. The PacBio DevNet site for E. coli long reads is: https://github.com/
PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly.

Authors’ contributions
EB designed the algorithm and wrote the manuscript. LL implemented and
tested the algorithm. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

Received: 27 October 2016 Accepted: 24 March 2017

References
1. Rhoads A, Au KF. Pacbio sequencing and its applications. Genomics,

proteomics & bioinformatics. 2015;13(5):278–89.
2. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y,

et al. Soapdenovo2: an empirically improved memory-efficient short-read
de novo assembler. GigaScience. 2012;1(1):18.

3. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, et al. High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proc Natl
Acade Sci. 2011;108(4):1513–1518.

4. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D,
Baybayan P, Bettman B, et al. Real-time dna sequencing from single
polymerase molecules. Science. 2009;323(5910):133–8.

5. Lee H, Gurtowski J, Yoo S, Nattestad M, Marcus S, Goodwin S,
McCombie WR, Schatz M. Third-generation sequencing and the future of
genomics. bioRxiv. 2016. https://doi.org/10.1101/048603.

6. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G,
Wang Z, Rasko DA, McCombie WR, Jarvis ED, et al. Hybrid error
correction and de novo assembly of single-molecule sequencing reads.
Nature Biotechnol. 2012;30(7):693–700.

7. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum
A, Copeland A, Huddleston J, Eichler EE, et al. Nonhybrid, finished
microbial genome assemblies from long-read smrt sequencing data.
Nature methods. 2013;10(6):563–9.

8. Au KF, Sebastiano V, Afshar PT, Durruthy JD, Lee L, Williams BA,
van Bakel H, Schadt EE, Reijo-Pera RA, Underwood JG, et al.
Characterization of the human esc transcriptome by hybrid sequencing.
Proc Natl Acad Sci. 2013;110(50):4821–830.

9. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM,
Reid JG, Worley KC, et al. Mind the gap: upgrading genomes with pacific
biosciences rs long-read sequencing technology. PloS ONE. 2012;7(11):
47768.

10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. Spades: a new
genome assembly algorithm and its applications to single-cell
sequencing. J Comput Biol. 2012;19(5):455–77.

11. Deshpande V, Fung ED, Pham S, Bafna V. Cerulean: a hybrid assembly
using high throughput short and long reads. In: Algorithms in
Bioinformatics. Berlin Heidelberg: Springer-Verlag; 2013. p. 349–63.

12. Ye C, Hill C, Ruan J, et al. Dbg2olc: Efficient assembly of large genomes
using the compressed overlap graph. 2014. https://arxiv.org/abs/1410.2801.

13. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ,
Kravitz SA, Mobarry CM, Reinert KH, Remington KA, et al. A
whole-genome assembly of drosophila. Science. 2000;287(5461):
2196–204.

https://github.com/lanl001/halc
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
http://dx.doi.org/10.1186/s12859-017-1610-3
http://dx.doi.org/10.1186/s12859-017-1610-3
https://github.com/lanl001/halc
https://github.com/lanl001/halc
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://doi.org/10.1101/048603
https://arxiv.org/abs/1410.2801

Bao and Lan BMC Bioinformatics (2017) 18:204 Page 12 of 12

14. Hackl T, Hedrich R, Schultz J, Förster F. proovread: large-scale
high-accuracy pacbio correction through iterative short read consensus.
Bioinformatics. 2014;30(21):3004–11.

15. Haghshenas E, Hach F, Sahinalp SC, Chauve C. Colormap: Correcting
long reads by mapping short reads. Bioinformatics. 2016;32(17):545–51.

16. Lee H, Gurtowski J, Yoo S, Marcus S, McCombie WR, Schatz M. Error
correction and assembly complexity of single molecule sequencing
reads. BioRxiv. 2014. https://doi.org/10.1101/006395.

17. Salmela L, Rivals E. Lordec: accurate and efficient long read error
correction. Bioinformatics. 2014;30(24):3506–14.

18. Miclotte G, Heydari M, Demeester P, Rombauts S, Van de Peer Y,
Audenaert P, Fostier J. Jabba: hybrid error correction for long sequencing
reads. Algoritm Mol Biol. 2016;11(1):1.

19. Salmela L, Walve R, Rivals E, Ukkonen E. Accurate selfcorrection of errors
in long reads using de bruijn graphs. Bioinformatics. 2016;33(6):799–806.

20. Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods
for next-generation sequencing. Brief Bioinform. 2013;14(1):56–66.

21. Smit AF. The origin of interspersed repeats in the human genome. Curr
Opin Genet Dev. 1996;6(6):743–8.

22. Yang X, Dorman KS, Aluru S. Reptile: representative tiling for short read
error correction. Bioinformatics. 2010;26(20):2526–533.

23. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (blasr): application and
theory. BMC bioinforma. 2012;13(1):238.

24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215(3):403–10.

25. Kent WJ. Blat–the blast-like alignment tool. Genome research. 2002;12(4):
656–64.

26. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL.
Alignment of whole genomes. Nucleic Acids Res. 1999;27(11):2369–376.

27. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen
TJ, Schatz MC, Delcher AL, Roberts M, et al. Gage: A critical evaluation of
genome assemblies and assembly algorithms. Genome Res. 2012;22(3):
557–67.

28. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I,
Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length
transcriptome assembly from rna-seq data without a reference genome.
Nature Biotechnol. 2011;29(7):644–52.

29. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de bruijn graphs. Genome Res. 2008;18(5):821–9.

30. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. Abyss: a
parallel assembler for short read sequence data. Genome Res. 2009;19(6):
1117–1123.

31. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: Robust de novo
rna-seq assembly across the dynamic range of expression levels.
Bioinformatics. 2012;28(8):1086-92.

32. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K,
Lee S, Okada HM, Qian JQ, et al. De novo assembly and analysis of
rna-seq data. Nature methods. 2010;7(11):909–12.

33. Conte MA, Kocher TD. An improved genome reference for the african
cichlid, metriaclima zebra. BMC genomics. 2015;16(1):1.

34. Li H, Durbin R. Fast and accurate long-read alignment with
burrows–wheeler transform. Bioinformatics. 2010;26(5):589–95.

35. Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29(8):1072–75.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://doi.org/10.1101/006395

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Underlining approaches
	Algorithm overview
	Long read alignment to contigs
	Splitting of contig and long read regions
	Graph construction
	Graph weighting
	Long read correction
	Refinement
	Software implementation

	Results
	Experimental design
	Data sets and computing environment
	Performance measurements
	Results on error correction performance
	Results on long read assemblies
	Results on transcriptome data
	Results with various short read assemblers
	Running time and memory usage
	Discussion

	Conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	Author details
	References

