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Abstract

Background: Global scale brain research collaborations such as the ENIGMA (Enhancing Neuro Imaging Genetics
through Meta Analysis) consortium are beginning to collect data in large quantity and to conduct meta-analyses
using uniformed protocols. It becomes strategically important that the results can be communicated among brain
scientists effectively. Traditional graphs and charts failed to convey the complex shapes of brain structures which are
essential to the understanding of the result statistics from the analyses. These problems could be addressed using
interactive visualization strategies that can link those statistics with brain structures in order to provide a better
interface to understand brain research results.

Results: We present ENIGMA-Viewer, an interactive web-based visualization tool for brain scientists to compare
statistics such as effect sizes from meta-analysis results on standardized ROIs (regions-of-interest) across multiple
studies. The tool incorporates visualization design principles such as focus+context and visual data fusion to enable
users to better understand the statistics on brain structures. To demonstrate the usability of the tool, three examples
using recent research data are discussed via case studies.

Conclusions: ENIGMA-Viewer supports presentations and communications of brain research results through
effective visualization designs. By linking visualizations of both statistics and structures, users can gain more insights
into the presented data that are otherwise difficult to obtain. ENIGMA-Viewer is an open-source tool, the source code
and sample data are publicly accessible through the NITRC website (http://www.nitrc.org/projects/
enigmaviewer_20). The tool can also be directly accessed online (http://enigma-viewer.org).
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Background
Large scale harmonization of image processing protocols
across different studies around the world and the extrac-
tion of effect sizes across reliably extracted regions of
interest, allows for a common framework though which
results can be compared, and combined through unbiased
meta-analyses as performed in the ENIGMA (Enhancing
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Neuro Imaging Genetics through Meta-Analysis) consor-
tium [1]. These advancements offer essential opportu-
nities for brain scientists to produce credible findings
through meta-analysis, a method that combines data
cohorts collected worldwide to obtain the statistical
power otherwise unavailable from a single cohort, in order
to find cross-modality data associations that influence
brain structures [2]. Cohort studies boost power to detect
associations. Seminal accomplishments with promising
results in imaging-genomics associations have acceler-
ated scientific discoveries in areas such as schizophrenia
[3], bipolar disorders [4], and other neurodegenerative
diseases [5].
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In meta-analysis, one important task is to interpret
effect size, a statistical measure that can be broadly
defined as any statistic that quantifies the degree to which
sample results diverge from the expectations in the null
hypothesis. Computing effect size is important because
if effect sizes are stable across studies or even gener-
alizable over some variations in design or analysis, the
results are replicable. That is, effect size is a statisti-
cal tool for meta-analysis that quantitatively synthesizes
effects across different studies. Ranking brain measures in
order of their effect sizes for case-control differences can
unearth brain measures on the basis of both the stability of
the brain volume measures (so-called heritability [6]) and
their relevance in the disease being studied [7].

Comparing effect sizes is, however, a multi-variant
issue, not only because scientists must choose stud-
ies carefully to ensure consistency of protocol use, but
also because the variety of cohorts has made it possi-
ble to dig more deeply into and disentangle the sources
(medication-related geographical or demographics and
genetic factors, e.g. [8]) of variations that could explain
why brain differences vary across studies and different
phenotypes.

As new analytical results are produced and lead to
increased data dimensionality and size, the bottleneck to
human understanding is not only limited to data mining
and computational approaches, but also to human lim-
ited memory capacity. Presenting and interpreting effect
sizes and locating regions across studies can be obscured
due to the complexity of interpreting the multivariate
information space and the problems inherent in present-
ing rich datasets on a two-dimensional (2D) computer
screen. Synthesizing new information for new discoveries
and comparison with past results is cognitively demand-
ing. The bandwidth of discovery will be bounded by the
characteristics of human perception, and hence the quest
for visualization has commenced in the brain sciences,
as evidenced by recent reviews and by research on the
vital role of visualization in the analysis of multimodal
neuroimaging data [9–11].

Our long-term goals include making analytics results
derived from the ENIGMA pipeline accessible to the neu-
roscience community at large and assisting brain scientists
in seeing patterns in massive multimodal computational
solutions, as well as encouraging effective communica-
tion and collaborative activities through visual means to
convey our results to the general public. Here we present
ENIGMA-Viewer (Fig. 1), an interactive visualization tool
to let users explore multimodality brain data to compare
effect sizes and associated brain anatomical structures and
genomics factors. This work makes several contributions:

• A series of design strategies for spatial and
non-spatial data integration in the context of
meta-analysis of brain imaging and genetics.

• Consideration of the brain science domain and tools
to aid multivariate comparison studies.

• Priority in integrating different imaging modalities to
compare results and locate important information.

Related work
Both neuroscience and visualization scientists have
worked extensively on visualizing brain datasets. This
section reviews related work in visualization, related data
analysis, and multi-modality data visualization.

Brain data visualization
Many brain data visualization tools have addressed impor-
tant issues in conveying single modality imaging tech-
niques. In diffusion tensor magnetic resonance imaging
(DTI) data visualization, Laidlaw et al. designed multivari-
ate tensor field visualization at every voxel using creative
artistic rendering [12]. Other powerful techniques have
used tensor glyphs to convey tensor shapes [13], or non-
photorealistic rendering to resolve complex spatial depth
perception [14] as well as validating studies in the large
display uses [15] and rendering solutions [16, 17]. Func-
tional brain network (fMRI) visualizations have showed
bundling 3D trajectories can support functional network
understanding in both 3D [18] or 2D connectivity studies
in matrix views [19].

Despite these creative solutions and technical advances,
none of the work to our knowledge has exploited fea-
tures and interpreting results across multiple modalities
and multiple datasets, except our own work by Novak
et al. [10] and Zhang et al. [20]. A main difference
between single and cohort analyses is that single images
become unimportant and statistical results comparing
cohorts can lead to valuable understanding of associ-
ations between brain regions and diseases. Kehrer et
al. have laid out important design challenges in multi-
modality multi-faceted data visualization in the broad
medical imaging areas related to comparative studies
as well as possible solutions in the use of multiview
visualization to represent multidimensional data [21].
Our current work follows the multiview solutions to
let scientists visually synthesize results from different
views.

Other work most closely related to ours is Novak et al.’s
EnigmaVis. That work lets scientists make quick compar-
isons among new and existing DTI-GWAS (genome-wide
association study) queries through a powerful web inter-
face [10]. This pioneering study is significant because
it supports quick hypothesis confirmation through com-
parisons and lets brain scientists explore studies and
examines results before their own study is conducted.
However, that tool generates fixed images and only sup-
ports limited interactivity. Our design advances visual
exploration by supporting interactive data exploration
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Fig. 1 ENIGMA-Viewer Interface. Data are taken from a comparison of normal control and a diseased brain in [33]. (1) Region-centric view. Brain
white matter regions of interest from the ENIGMA-DTI protocols are shown inside a glass brain. The colors encode the effect sizes using the same
color scale as that used in the bar chart. The in-place bar charts (2) are also drawn to facility comparison of regions across multiple studies. (3)
Study-centric view. Both the bar height and bar color represent effect sizes and the bars are sorted from largest to smallest within each study. This
example shows the patient-control comparison statistics: effect sizes for fractional anisotropy (FA). Distributions of per-subject FA values for patient
(red) and control (blue) group are illustrated as curves beneath the bars of each of these brain regions

especially not only for presenting and combining differ-
ent imaging and measurements results but also for com-
parative visualization between modalities. Our design is
very different from that of EnigmaVis in that no prior
hypotheses or knowledge of prior studies is required to
explore the prior studies in an interactive environment.
Brain scientists can load and compare their data. We
believe our solution can have great potential to sup-
port opportunistic discovery and may enable scientists to
more easily and interactively investigate broader scientific
questions.

Integrating spatial and non-spatial data
Our solution to comparative effect sizes is related to
spatial and non-spatial data integration to assist data
analysis. Our choices of visualization is mostly driven
by data types, which is similar to the design ratio-
nale in Keefe et al. [22], where they visualize quantita-
tive parameters using non-spatial data visualization to
avoid inaccurate judgment of three-dimensional mea-
surement. Wang and Tao also defines the integration of
spatial and non-spatial data visualization [23], as well as
Chen, Pyla, and Bowman in three-dimensional interface
design [24].

Scientific background and data source
This section describes the background that motivates our
visualization design, followed by description of the data
used in the visualization.

Introduction to the goals in ENIGMA DTI-GWAS data
analysis
The ENIGMA consortium aims to enable image-genetics
discoveries by examining reproducibility, heritability, and
association with diseases through analyzing brain imag-
ing measures and genotypes [1]. The goal is to address
the most fundamental questions in neuroscience by link-
ing brain brain measures to human well being. Some
of the most intriguing questions include: what are the
effects of aging, degenerative disease and psychiatric ill-
ness on the living brain? How do brain measures relate
to cognition and behavior? Do brain measures predict
our risk for disease, or give prognoses for those who are
ill? [1]

The method is meta-analysis, a quantitative statistical
analysis of several separate but similar experiments or
studies using pre-agreed covariates in order to test the
pooled data and examine the effectiveness of the results
[1]. Subsequently, the p-values and regression coefficients
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are combined by weighting the results based on the sam-
ple size of each contributing cohort. Meta-analysis is not
only important for brain white-matter analysis, but it
has been the only way to find credible genetic traits of
brain disorders with sufficient statistical power to achieve
significant effects greater than p < 10−8.

Great advancements in related fields have laid founda-
tions for making cohort-comparison possible by address-
ing challenging technical problems in multiple areas.
These include creating common ENIGMA template
[2], harmonization of protocols to synthesize data cap-
tured with different protocols [25], generating tract-
based spatial statistics skeletonization [26], regions of
interests (ROI) extraction [27], and SOLAR statis-
tics [28]. Meta-analyses have also identified the sta-
bilities of brain volume measures (or heritability) in
sub-cortical (containing regions associated with human
function) and cortical regions across twins, genders, and
geolocations [29].

A common workflow in performing meta-analysis is
first to follow pre-determined protocols to obtain desir-
able imaging modalities (here DTI) and genomics in
the population under investigation. Tract or voxel-based
analyses and associated metrics measures (e.g., frac-
tional anisotropy (FA) or water diffusion and cortical
thickness) sensitive to the neuro-degenerations are then
derived. Effect sizes in DTI studies are quantitatively
compared.

Data
Brain imaging data The 3D brain imaging dataset
labeled total 48 white matter structures in the JHU
white matter atlas [30]. The brain volume in this atlas
has 182 × 218 × 182 voxels measured at the resolu-
tion of 1 × 1 × 1 millimeters. We extract the sur-
face mesh for each white matter region from the atlas
using marching-cubes [31]. For cortical regions, we use
cortical meshes from FreeSurfer. Since the FreeSurfer
and the JHU atlases are different, the 70 FreeSurfer
cortical regions are transformed to by matching the
atlases using the linear transformation function in
FSL [32].

Statistical analysis data The statistical data used in the
program are from recent studies from ENIGMA group.
For these analyses, effect sizes are reported as overall
Cohen’s d values for case/control effects and some stud-
ies also report Z-scores for quantitative effects (such as
FA values for white matter studies) from linear regressions
of individual subjects. An example data is from the study
on the heterochronicity of white matter development and
effect of aging in schizophrenia [33]. That study computes
effect size values for 12 affected brain white matter regions
contained in the JHU atalas.

Task analysis
The first goal of this study is to characterize the problems
being addressed by the brain scientists as visualization
tasks.

Procedure
The task analysis was achieved by working closely with
brain scientists, as well as by literature review. Each sci-
entist was interviewed to gather sufficient information
on their workflow tasks and goals. Each participant also
used our prototype tool of ENIGMA-Viewer and sug-
gested action steps and desirable outcomes. To collect
the resulting feedback, we have asked them to answer
the following questions: What kinds of questions do you
anticipate exploring using the visualization tool? What
would you like to achieve using visualization in general,
communication or seeing patterns? Why do the state-of-
the-art tools, such as AFNI [34], FSL [35], DtiStudio [36],
not address your needs? How would you like the data to
be depicted and represented? Should the data be visual-
ized in 2D or 3D? How would you like to interact with and
explore the datasets?

Task list
Neuroscientists are interested in detecting trends and
viewing overall data distribution as well as individual
regions of interest. The most important tasks are related
to (1) comparing similarities and differences in different
disorders or in disease and control conditions; (2) compar-
ing effect sizes in meta-analysis to find the truly significant
brain regions and associated genetics factors; (3) studying
the most important genetics association with these brain
regions to establish the DTI-GWAS association; (4) iden-
tifying brain regions with high and low heritability. Each
of these domain tasks can be abstracted to the fundamen-
tal analytic tasks presented by Amar, Eagan, and Stasko
[37] and Schulz et al. [38], as listed in Table 1.

Methods
This section presents our main contribution, i.e., the
design decisions made in the ENIGMA-Viewer to address
all those users’ tasks.

Overview of the design considerations
The possibilities for encoding and interacting with the
data mentioned in Related work section are vast. Our
encodings and layout draw upon existing idioms, and our
task framework suggests that more novelty is required.
We investigate visual design options through our expe-
rience of working on interface layout, discussion among
the team of co-authors and following good design princi-
ples. We have also designed interaction techniques so that
results from one data type and modality can guide com-
parative analysis of another in a unified interface level.
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Table 1 DTI-GWAS Task List. Our ENIGMA-Viewer is designed for these analytical tasks

Index Task Example questions

1 Viewing distribution, What is the most affected brain region under a certain disorder?

consistency, or What is the overall data distribution of the effect size in all studies?

inconsistency Are the results consistent or very different?

2 Detect trends What is the distribution of cortical thicknesses and FA values?

How does effect size vary among studies?

3 Find association What are the disorder (brain regions) and genetics correlates to risk?

How does brain structural change associated with

behavioral risks and changes and vulnerability?

How do geographical factors affect disease expression in the brain?

4 Locate extremes What are the significant brain regions mostly affected by diseases?

5 Find local relationships What are the differences between studies in terms of their effect size?

6 Compare different disorders What are the common and different effects in the brain networks

between or among multiple disorders?

7 Compare disorders by regions What are the regions affected or unique to a certain disorder?

Data belonging to different types can be visually linked
through interaction.

We use juxtaposition, which places effect sizes, 3D
anatomical regions, and artificial GWAS side-by-side in
small-multiples displays similar to that of Chen et al.
[39]. We also use superposition which the effect sizes and
3D anatomical regions are overlaid in the same frame of
reference, following the comparative visualization classifi-
cation by Gleicher et al. [40] and Karnick et al. [41].

Visual data fusion
Visual data fusion intermixes different facets of scientific
data in a single view using a common frame of reference.
In our program, effect sizes in different study cohorts
and 3D anatomical regions can be grouped and presented
in the space of the 3D glass brain. This visualization
addresses scenarios of use in which a brain scientist wants
to focus on finding associations of effect sizes in one or
more regions of interests. For example, a brain scientist
can load new and existing studies and then inspect trends
and differences among studies visually. Another example
use is to study multiple closely proximate brain regions
of cortical and sub-cortical regions. Data from these spa-
tial locations and multiple effect sizes can be discussed
together. When the brain scientists’ task is to search for
associative relationships between different studies in a
common region of interest, this visual fusion would be
appropriate to let the user focus simply on one view to
obtain all information.

Focus+context
Focus+context visualization supports both focused and
detailed views as well as context for navigation purpose.

Effect sizes of each cohort are displayed in small multiples
using bar charts ordered by effect size magnitudes. Since
the effect sizes vary across studies, using uniform-scale
bar charts would render smaller effect sizes too small to be
distinguishable visually. Our solution is to color the mag-
nitudes of the effect sizes. This strategy introduces dual
encoding to encode the magnitudes of effect sizes: the
bars use length with the most precise magnitude discrim-
ination, while colors encourage pattern finding to locate
extreme effect size magnitudes in different cohorts. The
diverging color map is perceptually linear and the zero
mark appears where the two colors intersect at 0 to rep-
resent the least significant effect size. Positive effect sizes
are mapped to red and negative effect sizes are mapped to
blue. In this way, users can obtain at a glance the most sig-
nificant brain regions by searching for the most saturated
red or blue regions. We plot the FA distributions between
the patient and control cohorts in order to show the FA
differences. Here we can observe that the control cohort
has higher average FA values then the diseased ones in all
regions.

Reduce context switching cost
The cost of context switching in visualization [42, 43]
is one drawback of the small-multiples display in which
bar charts are placed side- by-side. For searching for
association between studies, the viewer must con-
stantly switch the viewpoint between studies to look
for relevant information in other views. To reduce the
cost, our current method is to use “information scent”
[44, 45], nuances added to the display to help the user
construct visual associations. The edges are “scented”
using the color representing the effect size magnitude
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in the neighboring view so that the user need not visu-
ally trace the edge to learn the magnitude in the other
view (Fig. 2).

The second way to reduce the context switching cost
and to facilitate comparison of common regions is to use
the stacked bar chart (Fig. 3). Effect sizes in the same brain
region belonging to different cohorts are stacked together
and horizontally, the cohorts are ordered by the effect
size magnitudes in the bottom cohort. This view facili-
tates both between and within effect sizes of the same and
different brain regions and saves space. It is also easy to
find region choice discrepancies between or among stud-
ies because some studies many include more regions than
others.

Our design follows importance-driven interactions. If
the screen space is not enough to show all bars for all
regions, we keep the important ones, e.g. those with
large effect size, unchanged and make less important ones
smaller and in context. This scaling mechanism makes
the larger effect size regions visually salient. The user
can directly interact with the views to rescale the size
of the bar charts. Figure 4 shows an example where
the bars with the effect sizes lower than 0.4 are toggled
to have one fifth of normal bar width and their labels
hidden.

View reconfiguration
Our tool supports a set of interaction techniques: link-
ing and brushing, zooming, panning, and view recon-

figuration. The viewer can manually select interesting
brain regions under study in the effect size bar charts and
examine the spatial location in the 3D view via brush-
ing [46]. Multiple regions of interest can be selected and
visualized and also linked to the artificial Manhattan plot
(Fig. 5).

Our tools also support drag-and-drop operations to
facilitate inter- and intra-study comparison. The bar
charts can be dragged and dropped next to other bar
chart or to the spatial view. Dragging-and-droping a
bar chart next to other bar charts can be used to
rearranged the layout of multiple bar charts, which
could make comparison between different studies eas-
ier. The user can also drag the bars from the right-side
bar chart to the 3D glass brain regions. This action
results in the display of a region-centric comparison
chart. Brain regions currently being selected will be
shown. This design provides a region-specific comparison
mechanism.

Multimodality visualization
Our visualization supports multimodality visualization in
that multiple attributes of brain regions can be visualized
together. As can be seen from Fig. 6, the Manhattan and
QQ plots are linked to the 3D brain regions. Figure 7 also
shows that the plot modality and the chart modality are
both linked to the 3D view. This makes it convenient to
visualize multiple attributes of brain regions in the 3D
view.

Fig. 2 Scented edges to reduce the context switching cost. Here curved lines connect the corresponding regions between two studies (top and
bottom ones). The color on each curve varies gradually in the way that the color in the top bar uses the color in the bottom one and vice versa. In
this way, a viewer does not need to trace the link to compare study differences
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Fig. 3 Effect sizes are stacked together to support comparisons among cohorts in different brain regions. Horizontally, the cohorts are ordered by
the effect size magnitudes in the bottom cohort. A viewer can easily finds differences between studies

Implementation
ENIGMA-Viewer is implemented in Google WebGL and
JavaScript and can be executed on major web-browsers
such as Safari, Firefox, and Internet Explorer, without
requiring any third-party software or add-ons. No account
or authorization is required to use ENIGMA-Viewer and
users are encouraged to email the developers with all
comments and suggestions.

The sub-cortical geometry data is extracted from sub-
cortical white matter atlas using marching cubes algo-
rithm [31]. To ensure a fast loading, the mesh is only
extracted when a region is selected in the 3D view. We
only stored the atlas volume to reduce the data to be
loaded to the browser.

Results
In this section we show three examples [33, 47, 48] of real
world applications of this tool. The following work uses

real data which are from ENIGMA group and includes
both white matter and cortical gray matter comparisons.

White matter comparisons
In Fig. 1, values from two result tables from a recent work
[33] are displayed. In this study, DTI images of cohorts of
schizophrenia patients (n=177) and controls (n=249) are
compared to test if differences in the trajectories of white
matter tract development influenced patient–control dif-
ferences in FA and if specific tracts showed exacerbated
decline with aging.

The top chart, named Table-3, shows the effect sizes
of impact of diagnosis on white matter FA values. The
bottom chart, named Table-4, shows the effect sizes of
patient-control FA value decline (unit/year).

The scented lines reduce the mental cost of con-
text switching when viewing the two bar charts from
different tables. The two charts contain the same set

Fig. 4 Bars can be re-scaled to make whole dataset visible in one view while leaving regions with large effect size enough screen space. In this
example, bars with effect size smaller than 0.4 have their width narrowed to one fifth of normal width
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Fig. 5 Querying Manhattan plot will highlight 3D regions. The center view displays seven sub-cortical regions and the Manhattan and QQ plots
from GWAS analysis. Those regions are colored using the same colors as those in the Manhattan plots

of white matter regions but each region has different
effect sizes in two charts. It can be seen from the lines
connecting two charts that the rankings of effect sizes
are different but BCC (Body of corpus callosum) and
GCC (Genu of corpus callosum) are the two regions

that show the highest patient-control difference in both
charts.

The visual fusion of statistics data and 3D structure
data enable users to further exam the spatial distribu-
tions of these statistics. The user can drag the tables onto

Fig. 6 Cortical and sub-cortical regions are highlighted in the glass brain. The regions in 3D view have the same color as those used in Manhattan
plots or bar charts
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Fig. 7 One cortical region is highlighted in the glass brain. Cortical regions can be visualized and interacted with sub-cortical regions together using
the same method. The TLE_vs_CONS dataset is from a study on 68 cortical regions on temporal lobe epilepsy and contains 339 normal controls and
415 patients [48]

the spatial view, which shows the color encoded brain
white matter structures. This, alone with the in place
charts, immediately reveals that the regions showing the
highest effect sizes are in the middle-frontal areas, espe-
cially for data depicted in Table-4. Compare to those in
Table-3, the middle-frontal areas still show the highest
effect sizes, but they are not as outstanding as they are
in Table-4.

Figure 8 shows a meta analysis on brain white mat-
ter in order to identify brain regions with FA differences
between schizophrenia patients and controls. The dataset
comprises 30 cohorts from 14 countries totalling 2391
healthy controls and 1984 individuals with schizophre-
nia [47]. In the visualization, to make sure regions with
more importance, i.e. higher effect sizes, are visible in the
bar chart, we use focus+context method to make enough
space for bars representing these regions as well as their
labels. For regions with less importance, the bars can
be made narrow but still in context. The focus+context
design allow the brain scientists to focus on a few brain
regions while keeping other regions easily accessible when
needed.

Cortical thickness comparisons
The example in Fig. 9 shows part of the results from
a study [48] which contains multiple comparisons. The
study pools data from 24 research centres worldwide

to identify reliable neuroimaging biomarkers in epilepsy.
Here the four charts from top to bottom show compari-
son of gray matter (cortical thickness) between a matched
healthy group (n=1727) and four epilepsy groups: all
types of epilepsy in aggregate (ALLEPI, n=2149), genetic
generalised epilepsies (GGE, n=367), mesial temporal
lobe epilepsies left (MTLE-L, n=415) and mesial tem-
poral lobe epilepsies left right (MTLE-R, n=339). These
four charts contain the same 70 cortical regions but
they have different effect sizes in different comparisons.
From the scented lines we can see that the rankings
of regional effect sizes are different among different
comparisons.

The linking of statistics data and spatial structure data
via highlighting enables users to see information which is
otherwise difficult to notice. In Fig. 9, the color encod-
ings of brain cortical meshes show the results from the
GGE comparison (the second topmost chart). We can
see from the mesh that the result shows seemingly left-
right symmetrical pattern, which is difficult to observe
with bar chart only representation. On the other hand,
if we look at only the brain mesh visualization we may
assume that the left and right poster central regions
are the two most abnormal regions since they are the
most reddish color compared to other regions. How-
ever when mouse hovering those two regions’ meshes,
the linked bars are highlighted (with red boarder) in the
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Fig. 8 White matter comparison results from [47] are shown. Only bars with high effect sizes are left with original width and with labels shown. Bars
with low effect sizes are made smaller and their labels are hidden, but they are still in the chart to provide context information

bar charts and we can see that our previous assump-
tion is not true since they are not the ones with highest
positive effect sizes in this group but the right banksst
(banks of the superior temporal sulcus) regions are. This
is hard to observe in the 3D brain mesh visualization

alone because the banksst regions are occluded by other
cortical regions and even rotating the brain mesh can-
not make this readily obvious. It is thus important to
link both statistics data and spatial structure data in one
visualization.

Fig. 9 Results from [48] are shown. The four charts shows comparison results of matched healthy control group against four different groups of
epilepsy in terms of cortical thickness. The symmetrical pattern can be seen in the left 3D visualization but the regions with actual highest effect
sizes should be found from the chart visualization since those regions are occluded by other regions in the 3D visualization
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Discussion
This section discusses alternative designs and the logical
next steps to improve the usefulness and usability of the
visualization design.

The interpretation of effect size
Visualizing effect sizes only is not enough; neuroscien-
tists must interpret and evaluate effect size for its practical
significance and interpret other factors that cause the dif-
ferences in different studies. Thus, how to interpret effect
size is also a crucial question. The common practice here
is to use the benchmarks for “small”, “medium”, and “large”
effects. However, often this categorization depends on the
domain of use and applying existing guidelines directly
can be inappropriate.

Because such interpretation often depends on prior
effect sizes in the related literature, both the size and
nature of the effect should be included in the interpreta-
tion to increase the practical significance. Effect size also
depends on multiple factors such as the context of the
study, the importance of the outcomes, etc. Thus, visualiz-
ing the effect sizes and automatic searching and showing
related context information to assist effect size interpreta-
tion within and between studies is the logical next step in
truly helping neuroscientists’ decision-making.

Limitations of the current study
Though we have attempted to use good visual design prin-
ciples to guide our study, validation is the next step in
creating truly meaningful tools for neuroscientists. One
cannot assume that understanding has been gained from
data represented graphically merely from the fact that
the visualization has been presented; still less can one
assume that a specific visual analysis can integrate all
the capabilities required for multifaceted, spatially com-
plex data analysis. Perception and cognition are complex
and evaluation of visualization approaches for informa-
tion presentation and interpretation is much needed to
validate our design.

Our next step is also to improve data processing, han-
dling, sharing, and collaborations using common infras-
tructure and data format standards. We plan to follow
the data-format protocols defined by the ENIGMA con-
sortium. We also plan to design dynamic and interactive
queries among variables to support dynamic data analysis
and to maximize flexibility to cross-link or brush-and-
link across displays to find data relationships and compare
and filter to remove redundancy. We will integrate the
computational solutions and construct the entire work-
flow so that analysis and visualization can be integrated
in a single framework, thus easing computing, data explo-
ration, and human understanding of the massive datasets.
The linked multiview visualization also provides a solu-
tion for brain scientists to understand how the statistics

data provenance [49] in that the factors, such as cohort
distributions, that are used to produce the results can be
visualized in addition to the final statistics displayed on
the 3D brain.

Conclusions
Meta-analytic thinking would considerably facilitate
knowledge accumulation in brain science. In principle,
meta-analysis does not overemphasize the outcomes of
statistical tests in individual studies; instead, it stresses
the need to explicitly design and place studies in the con-
text of prior research. The visualization, reporting, and
interpreting of effect sizes are ways to make more explicit
comparisons across cohorts in a meta-study. It is partic-
ularly beneficial to incorporate prior effect sizes to guide
the findings even before a study is conducted. Visualiza-
tion tools improve accessibility and facilitate quick pattern
finding. Our present tool has been used by several teams
and has demonstrated the power of visualization to assist
reporting and interpreting effect size measures.
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