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Abstract

Background: Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility
for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness
in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the
repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred
from the similarity relationships between enzyme’s metabolites and drugs.

Methods: We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs
and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness
measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of
their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators
of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a
receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the
similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the
Youden’s index. We also carried out literature surveys for supporting the drug repositioning results based on the
metabolite-likeness.

Results: In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme
modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11
target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with
other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme
modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of
enzymes for their corresponding metabolites. In addition, we showed that drug repositioning results of 10 enzymes
were concordant with the literature evidence.

Conclusions: This study introduced a method to predict the repositioning of known drugs to possible modulators of
disease associated enzymes using human metabolite-likeness. We demonstrated that this approach works correctly
with known antimetabolite drugs and showed that the proposed method has better performance compared to other
drug target prediction methods in terms of enzyme modulators prediction. This study as a proof-of-concept showed
how to apply metabolite-likeness to drug repositioning as well as potential in further expansion as we acquire more
disease associated metabolite-target protein relations.
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Background
Over the past few decades, due to the high rate of failure
in recent drug development processes [1], drug reposi-
tioning has emerged as a new paradigm in which a new
indication of a drug that is already on the market or of
one that failed to be commercialized in the clinical stages
is demonstrated [2]. To date, various computational
methods have been developed for drug repositioning clas-
sified as target-based [3–5], knowledge-based [6–8],
signature-based [9–11] and network-based [12, 13]
approaches. While these methods have contributed much
to drug discovery, the space of innate human metabolite
has relatively not been considered in those approaches.
The human metabolite space might be a good resource of
drug discovery because the structure of a drug could be
similar to innate ligands if the drug interacts with the
same target or several targets in the same manner as their
endogenous counterparts. An example is the human opi-
oid system. Morphine mimics endogenous opioid endor-
phins, and their pharmacological and physiological effects
have been proven to be similar [14]. Another example is
the well-known drug aspirin. Aspirin inhibits cyclooxy-
genase [15], and the drug may be an innate metabolite of
humans according to a recent report [16]. Likewise, al-
though the metabolite resemblance of a drug is one of the
important features for drug discovery, the search for pos-
sible metabolite-like drugs is limited and biased currently.
The ‘metabolite-likeness’ concept was proposed to

offer a quantitative evaluation of metabolite-like chemi-
cals as a new druggability filter in that a metabolite-like
drug is likely to hitchhike the transporters of endogen-
ous metabolites [17–19]. On the other hand, almost all
endogenous metabolites also have interaction partners in
terms of metabolic enzymes. Therefore, the metabolite-
likeness of a drug would be a good characteristic to pre-
dict new enzyme-drug relationships. However, there is
no systematic approach for applying metabolite-likeness
to predict the drug candidates for enzyme modulators.
In this paper, we applied the ‘metabolite-likeness’ con-

cept to predict enzyme modulators in an existing drug
list which may have similar effects as endogenous
ligands or metabolites. To this end, we generated a
drug-metabolite similarity matrix and checked the global
similarity patterns of the metabolite-likeness of the
drugs. To validate the metabolite-likeness as a new tar-
get prediction method, we carried out a performance
test of the metabolite-likeness on a drug-target predic-
tion of the antimetabolite class. In this step, we assumed
that the list of antimetabolites is a gold standard positive
set because they all resemble innate metabolites by def-
inition. Then, we compared the performance of our
method to known drug-target prediction methods
including SwissTargetPrediction [20], TargetNet [21],
and Libdock algorithm of molecular docking [22]. After

showing that our method outperforms the other drug-
target prediction methods in terms of drug-enzyme rela-
tions, we set the similarity threshold and proposed
promising drug candidates for the target enzymes of 10
antimetabolites. In addition, we showed that drug repo-
sitioning candidates from our method were supported
well by literature evidence. As a result of our research,
we demonstrated that metabolite-likeness can be used
for new drug-target prediction in the case of enzyme
modulator prediction.

Methods
Dataset collection
As a human metabolite set, we used intermediary
metabolites, which are related to reactions within the
cell [23]. We adopted the list of intermediary metabolites
from the paper of Steve O′Hagan et al. (See details in
[19]). Based on the list, we collected the SDF files of
intermediary metabolites from HMDB (Version 3.6)
[24], ChEBI [25], and PubChem [26]. The final list of
metabolites consisted of 1,110 metabolites.
The list of FDA-approved small molecule drugs was

downloaded from DrugBank 5.0 [27] (http://www.drug-
bank.ca/releases/latest) in July 2016 as an SDF file. The
number of approved drugs was increased to 1,861 com-
pared with 1,381 drugs in a previous paper [19].

Drug – metabolite similarity matrix
To compare the structural distances between drugs and
human metabolites, we constructed drug-metabolite
similarity matrix. We used the Python 3.5 programming
language (Python Software Foundation, http://
www.python.org/) with the RDKit module, an open-
source cheminformatics toolkit (www.rdkit.org/) [28].
We converted 2D structures to a molecular descriptor;
Public MDL MACCS keys fingerprints [29]. It consists
of 1,024 bits based on a predefined set of 166 substruc-
tures. After converting the SDF files to the fingerprints,
the similarity between drug-metabolite pairs was calcu-
lated by the Tanimoto similarity (Tc) which is widely
used and easy to calculate. The Tanimoto similarity is
generally calculated with the bits of the binary finger-
print vectors:

Tc A;Bð Þ ¼ C
Aþ B−C

, where A and B are the number of bits present in com-
pounds A and B, respectively, and C is the number of
bits shared by A and B [30, 31].
To see global similarity patterns between human

metabolites and FDA-approved drugs, we plotted a heat
map through hierarchical clustering. For this purpose,
we used the gplots library [32] in the R programming
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language [33]. Hierarchical clustering of row and column
was carried out using the complete linkage algorithm. For
readability, ten discrete colors were chosen from http://
www.colorbrewer2.org/ [34]. Moreover, we highlighted
and investigated the clusters that had the following
criteria: i) more than 50 drugs, ii) more than 100 metabo-
lites, and iii) almost 30% of the total relations in the
cluster had similarity scores of 0.7 or higher.

Selection of gold standard positive set
An antimetabolite list was obtained from DrugBank’s
‘Antimetabolites’ Medical Subject Headings (MeSH) cat-
egory and ‘Antimetabolites, Antineoplastic’ MeSH cat-
egory. Within the list, we considered approved drugs
whose targets are human enzymes only, to make the
drug–target enzyme–substrate relationships clear. To
obtain a filtered drug list, each drug in the antimetabol-
ite list was mapped to their drug targets with the
UniProt accession number [35]. After that, the antime-
tabolites, which have human enzymes as their targets,
were filtered with BRENDA [36] in which mapping the
UniProt accession numbers to their E.C numbers is
available. Finally, using the E.C numbers, we extracted
the substrates of each target enzyme from the reaction
information of Recon2 [37] and the KEGG human
pathway [38]. When we extracted the substrate informa-
tion, the commonly involved substrates in many
reactions, such as water, cofactors, etc. were excluded
from selection.

Performance comparison with other drug-target
prediction methods
To assess the performance of metabolite-likeness, we
used three different known Drug-Target Interaction
(DTI) prediction methods: SwissTargetPrediction (STP)
[20], TargetNet (TN) [21], and Libdock algorithm of
molecular docking [22].
The SwissTargetPrediction (STP) tool is a well-

known target prediction method developed by the
Swiss Institute of Bioinformatics [20]. The STP tool
compares a query molecule to a compound library of
280,000 molecules active on more than 2,000 targets
using a combination of 2D and 3D similarity measures.
The STP provides only 15 predicted targets for a query
molecule with probability scores as a prediction result.
We extracted the SMILES information from the SDF
files of 1,861 FDA-approved drugs and submitted them
as inputs. The prediction results of the STP were rear-
ranged in a table with a descending order of probabil-
ity scores for the performance evaluation.
The TargetNet (TN) tool is a recently published drug-

target prediction method developed by the Computa-
tional Biology and Drug Design Group of Central South
University [21]. The TN tool provides a prediction for

the activity of a submitted molecule across 623 human
proteins on the website by establishing SAR models for
DTI profiling and training the models with the biological
activity data from Binding DB. We extracted the SMILES
information from the SDF files of 1,861 FDA-approved
drugs and submitted them as inputs. Among the 7 finger-
print models of TN, we used the MACCS fingerprints to
obtain the DTI prediction result. The prediction results of
TN, which are the probability scores of the predicted hu-
man proteins for the submitted drugs, were rearranged in
a table with a descending order of probability scores for
the performance evaluation.
The Libdock algorithm [22] in Discovery Studio 3.1

(DS) from Accelrys (San Diego, CA, USA) was used to
perform molecular docking. Docking experiments on
FDA-approved drugs containing hydrogen atoms were
carried out against two proteins, Dihydrofolate reductase
(DHFR) and Thymidylate synthase (TYMS), respectively.
The X-ray crystal structure complex of DHFR with fol-
ate, which was obtained at 2.3 Å, was downloaded from
the protein data bank (PDB ID: 1DHF) [39]. Moreover,
the X-ray crystal structure complex of TYMS with
dUMP and Raltitrexed, one of the active inhibitors,
determined at a resolution of 1.9 Å was downloaded
from the PDB (PDB ID: 1HVY) [40]. Protein preparation
and minimization were carried out in DS. Hydrogen
atoms were added to the protein-ligand complex under
the CHARm force field. All water molecules were
removed and the pH environment was adjusted to neu-
tral. The active sites of each protein were defined with a
10 Å radius around the bound ligands (innate metabolite
or modulator). The libdock scores were obtained by the
libdock algorithm with the default setting except for
calculating the ligand conformations for each drug
within an energy range of 10 kcal mol−1 above the global
energy minimum. In addition, we considered only the
maximum libdock scores among several libdock scores
in one drug.
Using the ordered drug-target enzyme prediction score

lists from each DTI prediction method, we plotted the
receiver operating characteristics (ROC) curve of the
binary classifier based on the prediction scores from
each method. To draw the ROC curve, we used an
ROCR library [41] in the R programming language [33].

Similarity threshold determination for enzyme modulator
predictions
To find the optimal threshold for the prediction of enzyme
modulators, we calculated similarity scores for all drug-
metabolite relations in the finalized list of antimetabolites.
Then, the similarity scores of the drug–target enzyme rela-
tionships obtained from the drug-metabolite relations, in-
cluding the gold standard positive relationships, were
arranged in a table in descending order of score. Using this
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ordered drug-target enzyme relation list, we plotted the
ROC curve of the binary classifier based on the similarity
scores. To draw the ROC curve, we used an ROCR library
[41] in the R programming language [33]. We calculated
the optimal threshold at which Youden’s J statistics [42] is
maximized giving equal weighting for sensitivity and spe-
cificity in the ROC curve.
The formula of Youden’s index, J(x), is as follows:

J xð Þ ¼ Sp xð Þ þ Se xð Þ−1;
where Sp(x) indicates the specificity, and Se(x) denotes
the sensitivity of the classifier when a threshold is
assigned to a value x.

Results and Discussions
Metabolite-likeness of the FDA-approved drugs
We investigated the possibility of using the metabolite-
likeness concept for predicting new candidates for
enzyme modulators from FDA-approved drugs. To see
the global patterns of the metabolite-likeness of a drug
space, we first generated a structural similarity matrix
between FDA-approved drugs and human intermediary
metabolites (Fig. 1). As shown in Fig. 1, we found three
interesting clusters (A-C) which show a high overall

Tanimoto similarity in the cluster. The metabolites set in
cluster A represented purine and pyrimidine containing
derivatives, cluster B represented CoA derivatives, and C
represented sterols and steroids. The results of cluster B
and C are concordant with a previous study [19]. How-
ever, the result of cluster A has not been explored. As a
result of further investigation, we recognized that almost
30% of drugs in cluster A are antimetabolite class drugs.
An antimetabolite is a class of drug that contains struc-
turally similar substances to naturally occurring mole-
cules (i.e., metabolites). Therefore, they interfere with
physiological reactions involving their similar metabo-
lites [43]. By definition of an antimetabolite, we decided
to use antimetabolite class drugs as a gold standard posi-
tive (GSP) set for enzyme modulator prediction.

Evaluation of the metabolite-likeness on antimetabolite
class drug set
To collect a complete set of the antimetabolites, we
manually curated a list of antimetabolites from Drug-
Bank [27]. Because an antimetabolite can be mapped to
multiple metabolites, we chose a substrate with the high-
est similarity to the drug from the substrates set of each
enzyme only. Moreover, if the antimetabolites have a low

Fig. 1 Heat map of 2D structural similarities between the FDA-approved drugs and human intermediary metabolites. The Tanimoto similarity
matrix between the 1,861 drugs and 1,110 metabolites encoded by the MACCS key fingerprints. Red boxes with the A, B, and C labels indicate the
highlighted clusters: > 50 drugs, > 100 metabolites, Tc ≥ 0.7 (up to 30%)
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similarity to the substrates of their corresponding target
enzyme, they might have different mechanisms of
actions which are different from the actions of endogen-
ous metabolites. Therefore, we chose the GSP set only if
the similarity value was over 0.5. As a result of the GSP
selection procedures, the final GSP list consists of 17
antimetabolite drugs, 11 target enzymes, and 15 sub-
strates, exclusively (Table 1).
To see if the metabolite-likeness can predict the

antimetabolite-target enzyme relation well, we estab-
lished a subset similarity matrix that contains 15 anti-
metabolite related substrates (i.e., metabolites) and 1,861
approved drugs using the finalized GSP relationships.
Then, we plotted the z-distributions of the similarity
scores between each substrate metabolites and the total
drugs. As shown in Table 1, all the antimetabolite-
substrate similarity relations have a p-value lower than
0.05 in the corresponding z-distribution of the substrate
metabolites. (Additional file 1: Figure S1). This result

indicates that the metabolite-likeness could predict all
the GSP relationships with statistically significant simi-
larity values.

Performance comparison to other DTI prediction methods
To assess the performance of metabolite-likeness for
DTI prediction, we compared the performance of
metabolite-likeness to known DTI prediction methods:
SwissTargetPrediction (STP) [20], TargetNet (TN)
[21], and Libdock algorithm of molecular docking
[22]. The performance of each method was assessed
based on the ROC curve for the GSP relationships
(i.e., antimetabolites-target enzymes).
First, in order to compare the performance between

metabolite-likeness and STP fairly, we applied the
metabolite-likeness to the DTI prediction in the same
way, because we could only get 15 possible targets for
each drug from the STP. Comparing the results of the
two DTI prediction methods, we obtained 17 GSP rela-
tionships from the metabolite-likeness and only 13 GSP
relationships from the STP prediction. This result indi-
cates that the metabolite-likeness provided more
antimetabolite-target enzyme relations than that of the
STP when metabolite-likeness is applied in the same
manner as the STP prediction. Figure 2(a) shows the
ROC curves calculated with the metabolite-likeness and
STP for the GSP relationships. As shown in Fig. 2(a), the
area under the ROC curve (AUC) values of the
metabolite-likeness and the STP were 0.914 and 0.658,
respectively.
Then, we compared the performance between the

metabolite-likeness and TN. To this end, we gathered
all the probability scores of the predicted targets for all
1,861 of FDA approved drugs. Unlike the STP method,
we can obtain the predicted scores for all drugs we
used for each target. In the TN method, however, DTI
relationships can be predicted only for 620 human pro-
teins. The 4 enzymes of the GSP target, TYMS, DHFR,
IMPDH2, and DNMT1, were only overlapped with the
620 human proteins available in the TN. Therefore, we
also applied the metabolite-likeness to only the 4
enzymes of the GSP targets for a fair comparison.
Figure 2(b) shows that the ROC curves calculated by
the metabolite-likeness and TN for the GSP relation-
ships. As shown in Fig. 2(b), the AUC values of the
metabolite-likeness and TN were 0.991 and 0.862,
respectively.
Lastly, we compared the performance between the

metabolite-likeness and molecular docking simulation.
Because the structures of some of the target enzymes
have not been reported or only parts of the structures
were given in a DNA polymerase form, we could not
get all of the structures of the target enzymes for the
analysis. Thus, among the 11 target enzymes, we only

Table 1 Similarity between Antimetabolites and their
corresponding human metabolites

Target Enzyme Substrate Antimetabolite Similarity P-value

TYMS dUMP Trifluridine 0.82 1.97E-03

Floxuridine 0.79 6.38E-12

Gemcitabine 0.69 2.26E-02

Capecitabine 0.66 9.54E-03

5,10-Methylene-
tetrahydrofolate

Pemetrexed 0.75 3.85E-04

Raltitrexed 0.75 8.57E-10

Pralatrexate 0.69 1.40E-09

POLA1,POLB dATP Cladribine 0.77 1.76E-08

Clofarabine 0.72 6.50E-07

Fludarabine 0.71 1.94E-06

dGTP Nelarabine 0.76 3.38E-09

dCTP Cytarabine 0.75 7.13E-52

DHFR 7,8-Dihydrofolate Pemetrexed 0.86 7.40E-05

(6S)-5,6,7,8-tetra-
hydrofolate(2-)

Pralatrexate 0.82 6.48E-22

Methotrexate 0.78 1.88E-05

RRM1 ADP Fludarabine 0.8 2.28E-08

Clofarabine 0.73 5.95E-05

Cladribine 0.71 1.59E-02

CDP Gemcitabine 0.77 6.06E-03

DNMT1 Cytidine Azacitidine 0.97 6.01E-17

Decitabine 0.88 8.06E-12

IMPDH1/2 IMP Ribavirin 0.69 2.66E-05

ENPP1 Deamino-NAD+ Ribavirin 0.69 1.02E-06

ATIC 10-Formyl-
tetrahydrofolate

Pemetrexed 0.79 7.73E-06

GART Pemetrexed 0.79 7.73E-06

NME1/2 dCDP Gemcitabine 0.76 1.37E-10

XDH Hypoxanthine Allopurinol 0.69 7.90E-12
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performed the molecular docking simulations, espe-
cially using the Libdock algorithm, with DHFR and
TYMS to compare the results to our method. The
1,861 FDA-approved drugs were docked into the
active sites of DHFR and TYMS. For a fair comparison
with the docking results, the metabolite-likeness was
applied only to TYMS and DHFR, and the perform-
ance was evaluated. Figure 2(c) shows the ROC curves
calculated by the metabolite-likeness and molecular
docking for the GSP relationships. As shown in
Fig. 2(c), the AUC values of the metabolite-likeness
and molecular docking simulation were 0.989 and
0.721, respectively. Based on the results of the
performance comparison with the other DTI predic-
tion methods, metabolite-likeness showed better
performance than all the other methods for the GSP
relationships.

Prediction of drug repositioning candidates for
antimetabolite class drugs
To determine the optimal similarity threshold for en-
zyme modulator predictions, we plotted a ROC curve of
the metabolite-likeness for all the antimetabolite-target
enzyme relationships. As seen in Fig. 3(a), the AUC
value is 0.993. Then, the Youden’s index was calculated
based on the ROC curve. Figure 3(b) shows that the
maximum Youden’s index is 0.979 at a similarity thresh-
old of 0.654. This threshold showed significant classifica-
tion with a high true positive rate of 1 and a low false
positive rate of 0.021. Using this similarity threshold, we
obtained new enzyme modulator candidates for the 11
target enzymes of the antimetabolites. Anywhere from
27 to 108 new drug candidates were predicted for each
target enzyme of the antimetabolites. In the case of
XDH, there was no predicted candidate because only the

Fig. 2 Performance comparison between metabolite-likeness and the other target prediction methods. The receiver operating characteristic
(ROC) curves of metabolite-likeness and the other three different methods, (a) SwissTargetPrediction, (b) TargetNet, and (c) Libdock, for the gold
standard positive set (antimetabolite-target enzyme)

Fig. 3 Determination of the optimal similarity threshold for enzyme modulator predictions. The (a) ROC curve and (b) Profiles of the Youden’s
index according to the similarity threshold. Red points with the Y label indicates the maximum Youden’s index
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GSP relation was predicted with the similarity threshold.
As shown in Table 2, we summarized only one promis-
ing drug candidate as a corresponding enzyme modula-
tor in terms of the highest similarity except for the
endogenous ligand and original antimetabolite.
To support our prediction results, we investigated the

relationships between the proposed targets and the cor-
responding drugs with a literature survey. Among the 10
predicted enzyme-drug relations, 7 (70%) are directly
supported by literature evidence. We also found that in-
hibitors of the predicted target enzymes are a similar
class of drug as our prediction. Leucovorin is mainly
used for chemotherapy of osteosarcoma. It is not a cyto-
toxic drug itself but when used with 5-FU, it enhances
cancer cell sensitivity to 5-FU. A recent study [44]
showed that knockdown of the predicted targets such as
TYMS, DHFR, and GART resulted in decreased cytotox-
icity of the drug combination in the cancer cell. The
relationship between ATIC and Leucovorin is not expli-
citly described in the literature; however, they might be
relevant because one of its inhibitor, methotrexate, co-
targets TYMS, DHFR, and GART. Decitabine is known
to act on DNA polymerase I (POLA1) [45, 46], and
recently, the relationship between the drug and one of
its predicted targets, NME 1/2, was reported [47].
Cytarabine is known as a ribonucleotide reductase

inhibitor which is a gene product of the predicted target
RRM1 [48]. A recent study [49] also showed that Gemci-
tabine, one of the predicted drugs for DNA methyltrans-
ferase 1, does inhibit DNMT1 in HEK293T cells. There
are no reports on the effect of Nelarabine for the inhib-
ition of IMPDH1/2. However, because the one class of
known IMPDH1/2 inhibitors all resemble its innate me-
tabolite [50], Nelarabine could be another inhibitor of
IMPDH1/2. The relationship between ENPP1 and Vidar-
abine is also unreported; however, it may possible be-
cause most investigated NPP inhibitors are adenosine
analogs and their derivatives [51]. All these evidences
support that metabolite-likeness can predict new drug
candidates for the target enzymes of antimetabolites.

Prediction of drug repositioning candidates for Gaucher
disease
To investigate whether metabolite-likeness is applicable
to other enzyme groups than just antimetabolites, we ap-
plied metabolite-likeness to all drug candidates. Among
the drug list within the similarity threshold, we were fo-
cused on enzymatic disease-related drugs because an en-
zyme in an enzymatic disease has a direct disease
association. Considering both the metabolite-likeness
similarity and enzymatic disease associations, we were
able to find miglustat used in Gaucher disease and

Table 2 Selected drug repositioning candidates

Target Enzyme
(Disease)a

Substrate Candidate drug
(Indicated Disease)

Similarity Reference

TYMS
(Cancer)

5,10-Methylene-
tetrahydrofolate

(Levo)leucovorin
(Osteosarcoma)

0.889 [44]

POLA1,POLB
(Leukemia)

dCTP Decitabine
(Myelodysplastic
Syndromes)

0.806 [45, 46]

DHFR
(Cancer)

(6S)-5,6,7,8-tetra-
hydrofolate(2-)

(Levo)leucovorin
(Osteosarcoma)

0.923 [44]

RRM1
(Leukemia)

CDP Cytarabine
(Leukemia)

0.841 [48]

DNMT1
(Leukemia)

Cytidine Gemcitabine
(Cancer)

0.875 [49]

IMPDH1/2
(Chronic Hepatitis C)

IMP Nelarabine
(Leukemia)

0.770 [50]

ENPP1
(Chronic Hepatitis C)

Deamino-NAD+ Vidarabine
(Herpes virus
infection)

0.781 [51]

ATIC
(Mesothlioma)

10-Formyl-
tetrahydrofolate

(Levo)leucovorin
(Osteosarcoma)

0.969 [44]

GART
(Mesothlioma)

10-Formyl-
tetrahydrofolate

(Levo)leucovorin
(Osteosarcoma)

0.969 [44]

NME1/2
(Cancer)

dCDP Decitabine
(Myelodysplastic
Syndromes)

0.806 [47]

XDH
(Hyperuricemia)

- - - -

aDisease names are designated from the antimetabolite drug’s indicated disease
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decided to investigate further. Gaucher disease is a rare
autosomal recessive genetic disorder, which is classified
as a lysosomal storage disorder [52]. The disease is
caused by the accumulation of glucosylceramide due to
a deficiency in glucocerebrosidase. Currently, only two
drugs, miglustat, and eliglustat have been approved for
Substrate Reduction Therapy [53] of Gaucher disease.
First, we hypothesized that we could repurpose effective

drugs with metabolite-likeness that can reduce the sub-
strate by modulating enzymes nearby glucosylceramide.
As shown in Fig. 4, only 3 metabolites were identified as
similar metabolites with the known drug miglustat. The
three metabolites are all located near ceramide (In Fig. 4,
Galactosylceramide, Glucosylceramide, and Lactosylcera-
mide). This result implies that miglustat reduces glucosyl-
ceramide by modulating glucocerebrosidase.
Next, we examined the new drug candidates list within

our threshold. A total of 36 drugs were on the list
excluding miglustat. We looked up the indications of all
36 drugs and found that 50% of the drugs (18) were anti-
biotics and other 50% of the drugs were used for antihy-
pertensive, immunosuppressant, and anti-diabetic
indications. These seem like intriguing results supported
by the literature. About half of the antibiotics we found
were related to aminoglycoside which is also known as
aminocyclitol antibiotics (Table 3). In a recent report,

aminocyclitol derivatives were reported as efficacious in
Gaucher disease [54], and therefore, these antibiotics
might be efficacious in Gaucher disease because miglu-
stat, also known as N-butyl-deoxynojirimycin, was first
discovered from the nojirimycin class of antibiotics [55].
Another interesting class of drug in our list was alpha-

glucosidase inhibitors (Table 3). The association between
alpha-glucosidase and Gaucher disease is not evident;
however, we found that this class of drug could be a
chemical chaperone for misfolded alpha-glucosidase
according to the recent report [56]. Moreover, because a
recent repositioning study showed that anti-hypertensive
and immunosuppressant class drugs might be efficacious
in Gaucher disease [57–59] as well, we expect that the
non-antibiotic drugs on our list may be effective in the
disease (Table 3).
This evidence supported that our finding is not a ficti-

tious result that metabolite-likeness could be applied to
investigate and prioritize drugs that can act similar to
innate human metabolites.

Conclusions
In this study, we addressed the potential of metabolite-
likeness for drug repositioning to enzyme related
diseases. The novel point of this paper is that new drug
target interactions can be predicted with the metabolite-
enzyme relationships which could be obtained from
metabolic reactions even though there is no drug or
chemical interaction information for a particular target.
Although several structure-based target prediction
methods such as STP [20], TN [21] and the Libdock

Fig. 4 Sphingolipid metabolism pathway in Gaucher disease.
Gaucher disease is caused by a deficiency in the glucocerebrosidase
enzyme. Miglustat inhibits the ceramide glucosyltransferase enzyme
to reduce the glucocerebroside which accumulates in Gaucher
disease. Glc, glucose; Gal, galactose

Table 3 Predicted drug repositioning candidates for Gaucher
disease

Drug Name Original Indication References

Framycetin Aminoglycosides (Aminocyclitols) [54]

Amikacin Aminoglycosides (Aminocyclitols)

Tobramycin Aminoglycosides (Aminocyclitols)

Gentamicin Aminoglycosides (Aminocyclitols)

Netilmicin Aminoglycosides (Aminocyclitols)

Neomycin Aminoglycosides (Aminocyclitols)

Kanamycin Aminoglycosides (Aminocyclitols)

Ribostamycin Aminoglycosides (Aminocyclitols)

Arbekacin Aminoglycosides (Aminocyclitols)

Acarbose Alpha-glucosidase inhibitors [56]

Miglitol Alpha-glucosidase inhibitors

Bimatoprost Anti-hypertension [57–59]

Aliskiren Anti-hypertension

Tacrolimus Immunosuppressant

Sirolimus Immunosuppressant

Everolimus Immunosuppressant
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algorithm of molecular docking [22] are more compre-
hensive approaches than our method, they do not con-
sider the metabolite-enzyme relationships that could be
obtained by the metabolite reactions. Therefore,
although metabolite-likeness is a simple method using a
similarity measure with metabolite, it has shown better
performance than the other methods for an antimetabol-
ite set, which is a drug class with high similarity to a
metabolite. To the best of our knowledge, there are no
publications that have applied the metabolite-likeness
concept to examine possible drug candidates which have
a similar mechanism of action as innate metabolites.
Furthermore, we believe that we can predict better drug-
target interactions if we combine the proposed
metabolite-likeness method with the existing compre-
hensive DTI prediction tool.
Although we explored the metabolite-likeness concept

in the existing drug space only, this analysis can be
extended to other enzyme associated disease spaces and
other chemical spaces. Moreover, the new drug-enzyme
interaction prediction method through metabolite-
likeness may have more possibilities in predicting drugs
that have a good ADMET property because it can pre-
dict more metabolite-like drugs. In another aspect of
metabolite-likeness, the drug target space could be
expanded by a similarity search to innate metabolites of
unexplored enzymes. In addition, by applying this ana-
lysis on a larger scale, we expect that we could identify
potential enzyme modulators in a systematic way. This
work would provide new insight into metabolite-likeness
for drug-target prediction and drug repositioning.

Additional file

Additional file 1: Figure S1. Statistical evaluations of metabolite-likeness
similarities of the gold standard positive relationships for the corresponding
distributions of metabolites (DOCX 125 kb)
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