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Abstract

Background: Literature based discovery (LBD) automatically infers missed connections between concepts in
literature. It is often assumed that LBD generates more information than can be reasonably examined.

Methods: We present a detailed analysis of the quantity of hidden knowledge produced by an LBD system and the
effect of various filtering approaches upon this. The investigation of filtering combined with single or multi-step
linking term chains is carried out on all articles in PubMed.

Results: The evaluation is carried out using both replication of existing discoveries, which provides justification for
multi-step linking chain knowledge in specific cases, and using timeslicing, which gives a large scale measure of
performance.

Conclusions: While the quantity of hidden knowledge generated by LBD can be vast, we demonstrate that (a)
intelligent filtering can greatly reduce the number of hidden knowledge pairs generated, (b) for a specific term, the
number of single step connections can be manageable, and (c) in the absence of single step hidden links, considering
multiple steps can provide valid links.
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Background
Between 2,000 and 4,000 articles are added to PubMed,
the National Library of Medicine’s (NLM) database of
publications in biomedicine, every day [1]. This forces
researchers to specialize in narrower aspects of their field
and they may miss inferable connections, for example
ones that reveal new treatments for diseases (e.g. Swanson
[2] automatically discovered a previously unnoticed con-
nection between fish oil and Raynaud disease, via a num-
ber of terms such as blood viscosity, platelet aggregation,
vascular reactivity, a connection which was later veri-
fied [3]). Literature based discovery (LBD) automates the
process of finding new connections (hidden connections)
between existing knowledge, and thus can be used for
disease candidate gene discovery, to find other uses of
existing drugs, or for drug side effect prediction [4].
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In the frequently usedA-B-C model [2], LBD proposes a
hidden connection between two previously unconnected
terms, A and C, if there is a document linking A to some
term B and the same B is linked to C elsewhere. Clearly, in
open discovery where onlyA is specified (shown at the top
of Fig. 1), the quantity of hidden connections suggested
rises with input and so LBD systems frequently grossly
restrict scale. When system execution and evaluation is
not restricted to a toy example, numerous output reduc-
tions are put in place, including filtering of terms (whether
by discarding uninformative terms or restricting terms to,
say, diseases and treatments only), restricting either the
time period from which hidden knowledge is generated or
the segment of the abstract that knowledge is drawn from
(e.g. titles only) and re-ranking of the subsequently pro-
duced hidden knowledge, often targeted to the search for
a specific discovery or type of discoveries.
Without filtering, large scale LBD becomes computa-

tionally difficult and the resulting hidden knowledge can
be practically unusable. To give an idea of the scale,
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Fig. 1 Top: open discovery (only A specified), bottom: closed discovery (both A and C specified)

consider the frequently used approach using title word co-
occurrence as an indication of relatedness (i.e. requiring
one title to contain Raynaud disease and blood viscosity
and another to contain blood viscosity and fish oil to pro-
pose a connection between Raynaud disease and fish oil):
there are over 92,000 distinct words in titles of PubMed
articles between 1700 and 2005, giving rise to over 561,000
co-occurring pairs. Clearly, this will give rise to a large
amount of hidden knowledge if these co-occurrences are
all followed, making it impossible for all hidden knowl-
edge to be explored. Therefore some filtering is required,
however, it is crucial that important links or terms are not
removed. Previously explored filtering options include:

1. Time period. Much of earlier LBD work restricted
the knowledge base to a reduced time segment – for
example, Gordon and Lindsay [5] restricted
publications to the years 1983–1985 when they
sought to replicate Swanson’s [2] fish oil – Raynaud
disease connection.

2. Relation. Preiss et al. [6] show that employing more
sophisticated definitions of links between terms
(relations) greatly reduces the number of hidden
knowledge pairs generated without detrimental effect
on performance.

3. Stoplist. For example, Swanson et al. [7] start by
removing non-content words and add,
semi-automatically, other terms to a growing stoplist
(in 2006, this contained 9,500 terms).

4. Literature reduction. Swanson et al. also carry out
term reduction at an earlier stage: they pre-filter the
literature on a per sought term basis by subject
heading. If the user is seeking term X, hidden
knowledge is only generated from abstracts which
contain X in their MeSH subject heading and where
X is present in the title. (Note that this clearly
requires prior knowledge of search terms.)

5. Term type. Yetisgen-Yildiz and Pratt [8] limit the
types of linking and target terms permitted (to
categories such as chemicals & drugs or genes &

molecular sequence) on the basis that this is the type
of link they wish to find.

6. CUIs vs terms. The Unified Medical Language
System Metathesaurus (UMLS) [9] is a large
thesaurus which lists millions of biomedical and
health related concepts using Concept Unique
Identifiers (CUIs). Weeber et al. [10] filter out
non-content words by switching from terms to
UMLS CUIs. Aside from removing non-content
words, switching to CUIs also avoids spurious
connections due to term ambiguity. To identify the
correct CUIs, they use MetaMap [11], a publicly
available tool which assigns UMLS CUIs to terms, as
well as mapping words to multi-word units where
appropriate.

7. Synonymmerging. While not carrying out explicit
synonym merging, Cameron et al. [12] manually add
close terms to the source (A) and target (C) term in
closed search (see bottom of Fig. 1) LBD. As both
Raynaud disease and Raynaud phenomenon appear
separately in UMLS, the hidden knowledge generated
will vary if these are treated as one unit.

8. Relation type. Focusing on one type of discovery,
adverse drug reactions, Shang et al. [13] employ only
the INTERACTS_WITH and COMPARED_WITH
relations within one step of their inference process.

The A − B − C model generates justification(s) for
each hidden connection, the linking (B) terms – raynaud
disease and fish oil were found to be connected via the
linking term blood viscosity, with one decreasing and the
other increasing the same. However, hidden knowledge
can be identified by following longer paths of linking
terms, i.e. A → b1 → b2 → · · · → bn → C. This
approach shows promise and has already been explored.
For example, Kontostathi and Pottenger [14] investigate
paths of linking terms generated by co-occurrence and
Wilkowski et al. [15] show the feasibility of the approach
on a single A and C pair. However, previous evaluation
of this approach has been restricted to small numbers
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of examples and no large scale evaluation has yet been
carried out.
The novelty of our work lies in a detailed analysis of

the quantity of hidden knowledge produced and the effect
of various filtering approaches upon this. This thorough
investigation of filtering combined with single or multi-
step linking term chains is, to our knowledge, the first
comprehensive investigation of this type.

Methods
Literature based discovery system
We use an LBD system which accepts an adjacency matrix
M describing relations between pairs of terms in a term
collection: the entry mij is a positive integer if a rela-
tion R is detected between terms ti and tj. If ti and tj are
not directly related anywhere in the document collection,
mij will be zero. Using graph theory [16], any non zero
terms in

norm(M2) − norm(M)

where norm converts mij to 1 if mij > 0 and leaves 0 oth-
erwise, represent connections via one linking step. The
system can be extended to find connections via any num-
ber of linking steps, for example any positive (non zero
and non negative) terms in

norm(M3) − norm(M2) − norm(M)

represent connections via two linking steps. Similarly,
connections via three steps can be obtained and so on.

Relations
The LBD system described above relies on the exis-
tence of a relation between a pair of terms. We base
our relations on the output of the SemRep system
[17] which uses underspecified syntactic processing and
UMLS [9] domain knowledge to extract subject-relation-
object triples (such as X-treats-Y or X-affects-Y ) from
biomedical texts. Building on the output of MetaMap
[11], SemRep extracts a number of positive and negative
relations as well as a positive and negative comparative
relations. For example, from the sentence in 1 SemRep
extracts the relations in 2 (terms are presented here
for ease of understanding; SemRep extracts CUIs rather
than terms):

1. We used hemofiltration to treat a patient with
digoxin overdose that was complicated by refractory
hyperkalemia.

2. Hemofiltration-TREATS-Patients
Digoxin overdose-PROCESS_OF-Patients
hyperkalemia-COMPLICATES-Digoxin overdose
Hemofiltration-TREATS(INFER)-Digoxin overdose

A SemRep processed version of Medline is available
from NLM [18], and we use all positive relations from

semmedVER24_2 processed up to 30 June 2014 (which
contains 70,364,020 relations) to populate the adjacency
matrixM.
A clear advantage of SemRep is its output in ‘UMLS

CUI – relation - UMLS CUI’ format: this excludes non-
content words, as CUIs do not exist for these, and ensures
that a hidden connection is found via a compatible sense
of a term. For example, the top five UMLS senses of cold
are: cold temperature, common cold, cold therapy, chronic
obstructive lung disease and cold sensation. If SemRep did
not yield CUIs, its output would be:

• Mechanical ventilators TREATS Chronic obstructive
lung disease

• Common cold PROCESS_OF Rhinovirus

If the two senses of cold were not differentiated, a
hidden connection could be found between mechanical
ventilators and rhinovirus.
While mapping to CUIs clearly reduces the number of

incorrect hidden knowledge pairs, it will not eliminate
connections via general terms – words such as patient,
clinical study or week. The following section discusses a
number of filtering techniques.

Filtering
sy - synonymmerging
As with any type of dictionary, a decision is made by the
creators as to dividing up senses, termed as lumping or
splitting in lexicography [19]. As UMLS is composed of
terms from multiple source vocabularies, the splitting /
lumping decision is not consistent throughout. In general,
there is a tendency to split senses and later merge based on
application, and we therefore, based on finding separate
CUIs for Raynaud disease and Raynaud phenomenon and
finding that Cameron et al. [12] manually augment their
selected A and C terms “with related concepts”, investi-
gate an automatic approach to synonym merging within
UMLS.
Note that merging synonyms will affect the quantity of

A and C terms as well as possible linking terms, B:

• If the start point, A (e.g. Raynaud Disease), has
multiple synonymous CUIs, merging these will result
in the generation of more hidden knowledge from A.

• If a linking term CUI is equivalent to the CUI of
another term, there could be more hidden knowledge
generated. Examination of documents supporting a
Raynaud disease – fish oil link reveals that some of
the expected connections from CUI C0034734
(Raynaud disease) are linked to CUI C0034735
(Raynaud phenomenon) instead. Although the two
terms are synonymous for the purposes of evaluating
the Raynaud disease – fish oil link, due to their
different CUIs, the connection will not be found.
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• Since synonymous pairs of hidden knowledge (and
linking terms) will merge, this will reduce the burden
on a user.

The synonymous, SY, relation within UMLS is source
asserted synonymy, and thus is listed alongside a source.
The quality of synonyms in UMLS has been questioned
[20], and we evaluate the synonym classes created (these
are formed by gathering all synonyms, and their synonyms
etc., into disjoint classes) for synonyms asserted by one
or more sources. Table 1 displays details of the synonym
information broken down by the minimum number of
sources supporting each extracted SY relationship (the
first column), with the second column representing the
number of synonym classes with at least 2 distinct CUIs.
The remaining columns describe the synonym classes:
the largest synonym class (max), the number of synonym
classes containing at least X CUIs (> X) and the mean
synonym class size.
Basing classes on 1 source produces a class of 74 ele-

ments – this is unlikely to contain synonyms useful for
knowledge discovery. Synonym classes with more than 20,
or even 10, elements are similarly unlikely to be helpful: we
employ synonym classes supported by at least two sources
with class size ≤ 5 which leaves 614 synonym classes and
reduces the original 2,868,943 UMLS CUIs to 2,867,188
distinct CUIs (restricting to CUIs that appear in Sem-
Rep relations inMedline, this reduces the original 485,538
CUIs to 484,924 distinct CUIs).

st - semantic type
The UMLS Semantic Network contains a hierarchy of
subject categories, semantic types (STs), with at least
one assigned to each CUI. Previous work selects a num-
ber of STs allowed to act as linking or target terms as
these are thought to describe the type of desired hid-
den knowledge; for example Yetisgen-Yildiz and Pratt
[8] allow both linking and target terms to be chemi-
cals & drugs and genes & molecular sequences, but link-
ing terms can also be disorders, physiology and anatomy
members.
Rather than restricting CUIs to a small number of

STs according to the type of discovery expected (which
requires prior knowledge), we explore a number of general
ST exclusions:

Table 1 Information about synonym classes related to the
number of sources supporting the synonymy

Min sources Num classes Max > 20 > 10 > 7 > 5 > 3 Mean

1 11,030 74 21 174 401 850 1,938 2.91

2 1,542 73 1 1 3 5 26 2.14

3 6 3 0 0 0 0 0 3

Obvious removes STs which rarely appeared in useful
relations: activities & behaviours, geographic areas,
occupations, organizations and procedures.

Manual based on the expert opinion of the likelihood of
being in relations, 70 STs were manually selected for
exclusion [21].

Half contains the ST supertypes for which at least half
of the subtypes were removed in manual: activities
& behaviours, geographic areas, occupations, orga-
nizations, procedures, anatomy, concepts & ideas,
devices, living beings and objects.

And one inclusion approach:

Y-Y&P containing the STs chemicals & drugs, genes
& molecular sequences, disorders, physiology and
anatomy members.

Figure 2 shows the decrease in number of CUIs when
various semantic types are removed.

clt - common linking terms stoplist
Some CUIs correspond to terms which are clearly too
general but their ST also contains useful CUIs and there-
fore should not be removed. Although UMLS is hier-
archically structured, and thus general terms could be
expected closer to root nodes, it is composed of mul-
tiple hierarchies with different levels of granularity and
so an overall threshold is unlikely to be found. The
hypothesis that a CUIs which frequently acts as a linking
term is unlikely to be informative gives rise to an auto-
matic technique for building a stoplist shown in Fig. 3
[22]. We create our stoplist from the 1865–2000 segment
of Medline.

Fig. 2 CUIs remaining after removing semantic types
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Fig. 3 Pseudocode for creating a stoplist by identifying common linking terms

break – breaking common linking term connections
A filtering technique based on a stoplist needs to be
quite conservative so it does not remove useful terms
and therefore it is likely to leave some unhelpful terms.
Breaking common linking term connection is a funda-
mentally different idea to creating a stoplist: instead of
finding frequently appearing terms, this approach bases
its decisions on the number of terms a given term is
connected to.
Terms A and B are related if a (non negative) Sem-

Rep relation exists between them. An uninformative word,
such as study or patient, can be expected to be connected
to a large number of CUIs. The hypothesis that highly
connected terms are likely to be fairly general (and there-
fore not useful linking terms), gives rise to the following
filtering options:

1. When creating the matrix A, break (discard) all
connections to CUI A when the C(A) > threshold.

2. Discard the connection between CUIs A and B when
min(C(A),C(B)) > threshold.

(Where C(A) represents the number of CUIs linked to A,
and the threshold needs to be empirically determined.)

Results and discussion
LBD is clearly difficult to evaluate: by virtue of the gen-
erated knowledge being new, there is no gold standard
for comparison. Two standard techniques for evaluation
exist: 1) replication of existing discoveries (e.g. [5, 10,
23]), where discoveries made using previous LBD systems
are collected from literature and a new LBD system is
employed over the same time segment in an attempt to
produce the same discovery, and 2) timeslicing [24], which
allows the generation of precision and recall figures by
allowing a gold standard to be automatically created from
publications after a cut off date with hidden knowledge
generated from publications prior. We present both types
of evaluation below.

Replication of existing discoveries
Seven separate discoveries were identified from LBD lit-
erature which have previously been used for replication
experiments. We include the time segment used in the
original discovery and remove any documents containing
a direct link between the A and B terms – this can be
present for a number of reasons a) LBD is being employed
to suggest alternatives, e.g. alternative treatments, or b)
the connection was removed in previous work, for exam-
ple due to a manual inspection showing that A and B are
not related despite co-occurring in the same title – the
number of documents removed is described as the num-
ber of direct connections and the abbreviation used in
Table 2 is also included:

1. [RD-fsh] Raynaud disease – fish oil [5, 10, 25];
1960–1985, no direct connections.

Table 2 Number of linking terms yielded in replication of
existing discoveries

Mig–Mg RD–fsh Som–Arg Mg–ND AD–est Sc–iPL AD–INN

Number of linking terms found after a single step

unfiltered 81 2 232 101 490 0 365

sy 76 2 221 97 485 0 356

manual 58 0 157 57 362 0 258

Y-Y&P 0 2 0 1 1 0 0

clt 54 0 147 55 350 0 248

break 47 0 114 38 0 0 0

Number of linking terms found after two steps

unfiltered 49,877 1,386 132,514 69,669 424,712 9 386,098

sy 46,551 1,333 126,178 65,845 408,875 9 371,354

manual 25,921 510 67,206 27,046 217,834 9 203,616

Y-Y&P 0 602 44 121 396 0 0

clt 23,258 453 59,317 25,227 200,720 8 187,936

break 17,659 361 35,323 11,173 0 8 0



The Author(s) BMC Bioinformatics 2017, 18(Suppl 7):249 Page 64 of 88

2. [Som-Arg] Somatomedin C – arginine [26];
1960–1989, 27 direct connections.

3. [Mig-Mg] Migraine disorders – magnesium [25];
1980–1984, no direct connections.

4. [Mg-ND] Magnesium deficiency – neurologic
disease [27]; 1960–1994, no direct connections.

5. [AD-INN] Alzheimer’s disease – indomethacin [28];
1966–1996, 6 direct connections.

6. [AD-est] Alzheimer’s disease – estrogen [29];
1960–1995, 25 direct connections.

7. [Sc-iPL] Schizophrenia – Calcium-Independent
Phospholipase A2 [30]; 1960–1997, 1 direct
connection.

Figure 4 shows the effect that the various filtering algo-
rithms have on the number of SemRep relations remaining
within each discovery’s segment (the filtered number of
direct connections remaining is averaged over the 7 dis-
coveries and the percentage remaining, in comparison to
the original, unfiltered set, is presented). Except for the
unfiltered, original, results, all other filtering results carry
out synonym merging, clt and break are added on top
of manual semantic type filtering. The graph shows that
filtering is an effective way of reducing the number of rela-
tions: with the exception of synonym merging alone, all
filtering approaches reduce the number of direct relation
pairs by at least 50%.
Table 2 presents the number of linking terms found

when each discovery is replicated: the upper part of
the table describes the number of linking terms cor-
responding to single step connections. Since the single
step approach sometimes fails to find a connection,
two step connections are sought and are presented in
the lower part of the table. The number of linking
terms generated for each discovery is clearly linked to

Fig. 4 Percentage of original relations remaining after filtering

the number of connections input – however, despite
the connection being inferrable using co-occurence, the
reduction to zero hidden links using SemRep com-
bined with filtering is valid. For example, the two
linking terms connecting Raynaud disease to fish oil
with synonym merging are C0029064 (operating theatre)
and C0040426 (set of teeth). Neither clearly supporting
the connection and therefore justifiably removed with
semantic types.
It is interesting that in most filtering cases, the fre-

quently cited Raynaud disease – fish oil connection is not
replicated: this was revealed to be due to a combination
of synonym failure and the relation employed not extract-
ing the necessary connections. The schizophrenia –
Ca2+iPLA2 link is not replicated via a single step as
Ca2+iPLA2 only appears very few times in Medline and
is only seen in one SemRep relation. In these cases, it is
worth examining two step connections:

schizophrenia – Ca2+iPLA2
The 9 two step connections for schizophrenia
(C0036341)– Ca2+iPLA2 (C0538273) generated with
manual filtering can be seen below:

1. C0001473 (atpase) – C0020063 (Parathyroid
Hormone)

2. C0001655 (adrenocorticotropic hormone) –
C0020063 (Parathyroid Hormone)

3. C0003779 (Arginine vasopressor) – C0020063
(Parathyroid Hormone)

4. C0021641 (Regular insulin) – C0020063 (Parathyroid
Hormone)

5. C0021740 (Recombinant Interferon Gamma) –
C0020063 (Parathyroid Hormone)

6. C0033371 (Prolactin preparation) – C0020063
(Parathyroid Hormone)

7. C0037659 (Somatostatin preparation) – C0020063
(Parathyroid Hormone)

8. C0040160 (Thyrotrophin product) – C0020063
(Parathyroid Hormone)

9. C0041249 (tryptophan (Trp)) – C0020063
(Parathyroid Hormone)

As the UMLS definition states, the parathyroid hor-
mone elevates blood Ca2+ levels and thus is related to
the PLA2G6 protein, showing all nine connections to be
worthy of further consideration.

fish oil – Raynaud disease
For fish oil and Raynaud disease, the two step connections
include:

1. C0005823 (blood pressure) - C0006938 (captopril)
2. C0005848 (blood viscosity) - C0030899

(pentoxyphylline)
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3. C0005848 (blood viscosity) - C0232338 (blood flow
function)

4. C0005848 (blood viscosity) - C0206502
(hemorheology)

Captopril and pentoxyphylline are used in the treat-
ment of Raynaud’s phenomenon, and both Raynaud’s and
fish oil are known to affect blood viscosity. The blood
viscosity links are also supported by the linking term
analysis in [10].
These findings suggest that multi linking term explo-

ration is worth pursuing when a connection is suspected
but is not found via a single step connection.

Timeslicing
One of the drawbacks of evaluating LBD by replicat-
ing existing discoveries is that it relies on the use of
small test sets. Timeslicing is an alternative approach that
allows larger test collections to be created automatically.
A cutoff date is chosen, hidden knowledge is generated
from publications published prior to this date and the
resulting pairs are compared to the new knowledge pub-
lished after the cutoff (as identified by the used relation)
[24]. This section reports results using the timeslicing
approach.
Hidden knowledge is generated from all publications

listed in Medline up to the end of 2005 and it is evaluated
against a gold standard generated from 2006–2015. The
gold standard is created by extracting all SemRep relations
from abstracts published after the cutoff and removing
any SemRep pairs present in Medline before the cutoff;
this leaves 1,193,495 pairs.
The results of a timeslicing evaluation are presented in

Table 3 – these include the total number of pairs of hid-
den knowledge generated, the number of generated pairs

Table 3 Timeslice evaluation

Filtering Total Correct Precision Recall F-measure Average

Performance after a single step

sy 1,049,250,170 526,363 0.05 44.10 1.00e-03 11,131

manual 386,952,997 268,327 0.07 22.48 1.38e-03 6,099

Y-Y&P 243,218,893 190,072 0.08 15.93 1.56e-03 4,952

clt 387,603,836 269,003 0.07 22.54 1.38e-03 6,103

break 131,199,050 213,193 0.16 17.86 3.22e-03 2,232

Performance after two steps

sy 3,733,002,802 534,301 0.01 44.77 2.86e-04 39,602

manual 1,638,685,466 274,544 0.02 23.00 3.35e-04 25,828

Y-Y&P 994,744,004 194,749 0.02 16.32 3.91e-04 20,257

clt 1,641,987,567 275,230 0.02 23.06 3.35e-04 25,857

break 1,085,230,979 227,998 0.02 19.10 4.20e-04 18,467

which appear in the gold standard (“correct”), the pre-
cision (the percentage of pairs generated that are in the
gold standard), recall (the percentage of pairs present in
the gold standard that were generated) and the F-measure,
a combination of precision and recall. Again, the upper
part of the table represents results for single step con-
nections, and the lower part represents both one and two
step connections. There is an obvious trade off between
precision and recall – the higher the number of pairs
returned, the greater the recall, but obviously the less
likely it is for a person to be able to go through the result-
ing knowledge: the last column lists the average number
of pairs of hidden knowledge generated per term seen in
the segment.
The overall precision can be expected to be low for a

number of reasons, including:

1. Even if the hidden knowledge generated is genuine, it
may not have been discovered yet within the segment
on which the gold standard is based.

2. Some knowledge will be known but never published
as it is considered ‘obvious’. An LBD system will
generate such knowledge nonetheless.

While the total amount of hidden knowledge gen-
erated may seem unmanageable and not useful, it
is supported by manual findings: UMLS includes
manually identified relations, and on average goes
through 2 releases per year. There were 29,936,977
instances of relations added between 2015AA and
2005AA version of UMLS. Since 29, 936, 977 × 4 =
119, 747, 908 (with the number of hidden knowledge
pairs generated using break = 131, 199, 050), the quan-
tity of hidden knowledge produced no longer seems
unreasonable.
In turn, low precision accounts for the low F-measure;

again, this is not unusual for large scale timeslicing
results in LBD [6]. The highest F-measure for sin-
gle step connections (3.22e-03) is achieved by break-
ing common linking term connections. In this setting
the amount of hidden knowledge generated (an aver-
age of 2,232 pieces per term) is much more man-
ageable than the amount generated without filtering
(34,986 pieces per term).
The very low recall (and precision) of the two step

connections is caused by the high recall from the one
step connections which results in a large number of two
step connections to be generated (see Literature based
discovery system).
The large number of two step connections will, in

general, make the results unusable for open discovery.
However, two step connections provide a good backoff
for closed discovery when a link is suspected by can-
not be found using a single step. This appears to be
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more common with rarer, thus more likely to be specific,
concepts (such as Ca2+iPLA2).
The results do raise the question of whether precision

and recall are good measures for evaluating large scale
LBD systems.

Conclusions
We present an extensive discussion of filtering within
literature based discovery, and show that using a more
sophisticated definition of relation as well as UMLS
CUIs (rather than terms directly) is insufficient in itself
to yielding usable quantities of hidden knowledge. We
explore a number of different approaches and show their
effect on both replication and timeslicing evaluations. We
find the best performance from the rarely used approach
which breaks connections on a term pair basis, rather than
removing entire terms.
Based on the results of replication of existing discov-

eries, we propose that the quantity of hidden knowledge
generated for a term A will be proportional to its over-
all frequency within the corpus, and argue that the high
proportion of frequent terms is the cause of the low
F-measure found using timeslicing evaluation. A com-
parison with the number of relations (manually) added
to UMLS on each release also suggests a high expected
number of hidden knowledge pairs.
We also examine the possibility of generating hidden

knowledge between terms A and C using a chain of multi-
step linking terms bi, i.e. A → b1 → bn → C with
no direct connection between A and C. While such an
approach clearly generates an unmanageable quantity of
data in open mode, its value can be seen when a single
step connection fails to be found in closed mode: in this
case, some multi step connections may be suggested and
we propose using amulti step system as a backoff for failed
single connection LBD.
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