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Abstract

Background: In neuroscience research, mouse models are valuable tools to understand the genetic mechanisms
that advance evidence-based discovery. In this context, large-scale studies emphasize the need for automated
high-throughput systems providing a reproducible behavioral assessment of mutant mice with only a minimum level
of manual intervention. Basic element of such systems is a robust tracking algorithm. However, common tracking
algorithms are either limited by too specific model assumptions or have to be trained in an elaborate preprocessing
step, which drastically limits their applicability for behavioral analysis.

Results: We present an unsupervised learning procedure that is basically built as a two-stage process to track mice in
an enclosed area using shape matching and deformable segmentation models. The system is validated by comparing
the tracking results with previously manually labeled landmarks in three setups with different environment, contrast
and lighting conditions. Furthermore, we demonstrate that the system is able to automatically detect non-social and
social behavior of interacting mice. The system demonstrates a high level of tracking accuracy and clearly outperforms
the MiceProfiler, a recently proposed tracking software, which serves as benchmark for our experiments.

Conclusions: The proposed method shows promising potential to automate behavioral screening of mice and other
animals. Therefore, it could substantially increase the experimental throughput in behavioral assessment automation.

Keywords: Tracking, Mice, Animal behavior, Unsupervised learning, Shape matching, Shape context, Active shape
model

Background
Targeted mutations in mice have been successfully
employed for understanding gene function, testing
hypotheses and developing treatments for human genetic
disorders [1–3]. In particular, mouse models are used to
uncover disease mechanisms underlying neurocognitive
disorders such as autism or schizophrenia. By modify-
ing candidate genes that cause specific mental disorders
in mice, correlations between targeted mutations and
behavioral phenotypes are identified making mouse mod-
els a valuable tool for neuroscientists. Measures of social
interactions and behavior in mouse models are crucial
read-outs. However, manual documentation of behav-
ioral complexity in mice remains highly subjective and
may not provide reproducible results. Furthermore, the
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frame-by-frame assessment of long video tape record-
ings is time-consuming and still constitutes a bottleneck
in large-scale studies. In this respect, high-throughput
behavioral screening systems can overcome the aforemen-
tioned weaknesses of manual assessments.
From a technical point of view, automated simultaneous

tracking of two or more individuals and online classifi-
cation of their interactions and behavior are challenging
tasks.While tracking is straightforward when all individu-
als are spatially separated, task automation is complicated
when animals directly interact. In this case, additional
knowledge about shape or texture has to be taken into
account to separate individual shapes. A straightforward
method to keep track of individuals during interactions is
to label each subject with a unique marker, i.e., by bleach-
ing [4], color [5] or RFID technology [6, 7]. Labeling,
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however, has a direct impact on the environment and fre-
quently provides a sensory (i.e., olfactory and / or visual)
stimulus and, thus, it may influence an individual’s social
behavior.
When markers are omitted, automatic assessment of

social interaction is challenging. Several approaches have
been proposed to tackle this problem. Identification of
individuals has been addressed by ellipse fitting [8],
watershed segmentation [9] or particle filters [10, 11].
In some of these studies, camera images are comple-
mented by additional sensor data such as infrared [9]
or depth sensing [8]. Generally, using complementary
modalities enhances tracking reliability but involves addi-
tional hardware and demands a careful calibration. All
these approaches, however, do not incorporate prior
knowledge about the anatomy and motion patterns of the
individuals to be tracked.
Model-based tracking systems have been designed for

different animals, specifically drosophila [12], bees [13]
and mice [14]. In order to provide a reliable tracking rou-
tine, the anatomy of the animals is modeled by connected
rigid primitives representing the head, thorax, abdomen
or wing. The model parameters allow to document com-
plex motion patterns and furthermore provide informa-
tion about the orientation and distance for each individual
body part, which in turn allows more complex behavioral
state and body pose categorizations. Thereby, the degree
of generalization constitutes a crucial trade-off between
the time needed to adapt the model to a specific scenario
and the performance achieved in specific cases.
In this paper, we pursue a different strategy by auto-

matically building a model during runtime that facilitates
tracking when individuals interact closely. In the first
step, shape information of the individuals is learned and
documented in a catalog as long as they are spatially sepa-
rated. The second step involves training of an active shape
model (ASM) using the previously defined shape catalog
to separate the individuals when they are in close prox-
imity. The benefit of this procedure is twofold: first, the
shape information gathered in the first step constitutes
a-priori knowledge that helps to keep track of the indi-
viduals in challenging conditions and, secondly, the ASM
eigenvalues provide additional information about behav-
ioral states. Therefore, the proposed method provides
features to identify specific conditions and social inter-
actions. Moreover, all manual interaction that is required
before the tracking process (the user has to determine
head, nose and ear landmarks only once on a reference
shape) is completed within a few seconds.
The proposed method is validated by comparing man-

ual annotations with estimated position of head and
tail landmarks as well as viewing directions of pairs of
mice (male/male, female/female, male/female) interact-
ing in three different environments. From the set of

tracking parameters and the eigenvalue data, social and
non-social interactions are classified. The approach pre-
sented shows wide agreement between manual labeling
and automatic classification. This allows for a substan-
tial increase of experimental throughput in behavioral
assessment automation with only a minimum level of user
intervention.

Methods
Animals
All animal procedures were approved by local authori-
ties (AZ 39.3-60.06.04) and in compliance with European
Union legislation (Directive 2010/63/EU) and recommen-
dations by the Federation of European Laboratory Animal
Science Associations (FELASA). C57BL/6 mice (Charles
River Laboratories, Sulzfeld, Germany) were housed in
groups of both sexes (RT; 12:12 h light-dark cycle; food
and water available ad libitum).

Experimental setup
The tracking and phenotyping experiments were car-
ried out in a rectangular open field arena with a size
of 45 cm × 45 cm or a standard cage with a size of
16.5 cm × 32.5 cm. The animals were recorded with a
Panasonic WV-CP480 camera providing a spatial resolu-
tion of 768 × 494 pixels at 25 frames per second from a
top-view. First, the open field was prepared in two differ-
ent setups where two female C57BL/6 mice were placed.
In a first setup the arena was equipped with wooden walls
painted in a dark blue with moderate reflectance provid-
ing a poor contrast to the black mice to simulate challeng-
ing tracking conditions (Fig. 1a). Second, the walls were
covered with white paper which considerably reduced
reflectance and enhanced contrast conditions (Fig. 1b).
The second setup provides much better preconditions for
automated tracking and behavioral phenotyping. How-
ever, the white background and altered illumination con-
ditions may provoke considerably different patterns of
behavior and stress [15, 16]. Consequently, an automated
assessment should ideally cope with both scenarios. In a
third setup, mice were placed in a cage (Fig. 1c) and the
scene was recorded with the same camera. A male-male
and male-female combination was considered. Especially
themale-female setup provides a higher variability of close
interactions posing a particular challenge for the tracking
system.

Video data andmanual annotation
In order to validate tracking and behavioral phenotyping
performance, two videos, each with a length of 20min and
two videos, each with a length of 10 min were recorded
and processed: video 1 (V1) using the first setup, video 2
(V2) with optimized contrast and reflectance conditions,
video 3 (V3) with two male mice in a cage and video 4
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Fig. 1 Three different arena setups. a First setup: two female mice in an open arena with slightly reflecting walls and reduced contrast. b Second
setup: walls are covered with white paper providing enhanced contrast and reduced reflections. c Third setup: Pairs of mice male-male/male-female
in a cage

(V4) with a male and a female mouse in a cage. The
ground truth of position and orientation of both mice was
manually labeled for each video. The manual assignment
includes the nose tip, tail base and the viewing direc-
tion. Furthermore, grooming and mating behavior was
documented (see “Social behavior classification” section).
The manual assessment also included keeping the iden-
tity of each mouse to assess the tracker’s ability to assign
the correct identities to both animals during interactions.
To reduce the effort of labeling, every fifth frame was
labeled in each video, resulting in a total number of 18,000
manually labeled video frames. Annotations were made
with a Matlab program specially designed for labeling
nose, tail, ears and the viewing direction.

Social behavior classification
Based on several previous studies, we adopted a
list of behaviors and social interactions [14, 17, 18]
that are based on positional data, viewing direction
and shape characteristics (Fig. 2). Social interactions
(C1-C4) are identified according to the tracking results as
defined in [14]. This categorization defining interactions
have shown good agreement with human ratings [14].
Mating behavior (C5) was evaluated for video V4.
The first three conditions are based on positional
information whereas categories 4 and 5 also include
relative angles between the viewing directions.
Self-grooming (C6) was found to be evident for mouse
models in the context of autism [18] and can be identi-
fied according to the outer mouse segmentation when
observed from a top-view.

Validation
To compare the performance, the MiceProfiler
tracking software [14] served as benchmark for the
proposed method. The MiceProfiler is a sophisticated

software system based on physics engines [19, 20] that has
been evaluated comprehensively [14]. Tracking accuracy
of the proposed method was validated by computing the
Euclidean distances

dNose,{USM,MP}
f =

∥
∥
∥PNose,GTf − PNose,{USM,MP}

f

∥
∥
∥ (1)

and

Fig. 2 Social (C1-C5) and non-social (C6) conditions. Conditions
C1-C3 are determined by positional data settings, C4 and C5
additionally incorporates relative angles and C6 is characterized by
the outer shape of the mouse body



Unger et al. BMC Bioinformatics  (2017) 18:272 Page 4 of 14

dTail,{USM,MP}
f =

∥
∥
∥PTail,GTf − PTail,{USM,MP}

f

∥
∥
∥ (2)

between the key landmarks nose PNosef and tail base
PTailf as estimated by the proposed unsupervised learning
method (USM) or the Mice Profiler (MP) and the cor-
responding manually labeled ground truth (GT) where f
denotes the f-th frame. Analogously, the angular deviation

�ϕ
{USM,MP}
f =

∥
∥
∥ϕGT

f − ϕ
{USM,MP}
f

∥
∥
∥ (3)

between labeled and estimated viewing direction was
evaluated. Based on the tracking results, the interac-
tions 1–5 (Fig. 2) were automatically identified according
to positional data and viewing angles provided by both
tracking algorithms. For the self-grooming condition C6,
additional shape related data has to be considered. In the
current implementation, the Mice Profiler system does
not incorporate this information. The automated identifi-
cation of C6 is therefore evaluated only for the proposed
method.
Figure 3 summarizes the three consecutive steps of the

proposed method. After the preprocessing steps (A) the
frames are divided into two categories: both individu-
als are separated (B) or in direct contact (C). If they are
spatially separated, they can be easily distinguished and
segmented. In this case, both mice segmentations are
matched to a reference shape that has been previously
selected from an arbitrary frame and annotated by the
user. The matching results provide information about the
orientation and viewing angles and furthermore, they are
stored in a shape catalog describing the variations of their
shapes. Subsequently, an ASM is built on the basis of the
previously created shape catalog in order to separate the
individuals during direct interactions. The procedure is
explained in detail in the following sections.

Preprocessing: background separation
A static background is presumed for the proposed algo-
rithm. The focus is put on the individuals actively moving
within the scene whereas the background is removed.
First, the frames are converted to grayscale and temporal
illumination inhomogeneities are removed for each frame
separately by dividing each pixel intensity by the mean
image intensity and scaling back to an adequate intensity
range. The static background is eliminated by taking the
pixel-wise median over time and subtracting it from each
frame. Note that background subtraction is a common
way to separate objects from a scene [12, 14, 21, 22] and
was demonstrated to work well as long as the background
is static and the contrast is good enough [12, 14, 21]. The
automatic thresholding worked well for all the videos that
we tested. However, if the automatic setting fails for any
reasons, it can be adapted manually.

Fig. 3 Processing pipeline of the tracking routine. The method
consists of three subsequent blocks: a Preprocessing, b Separated
individuals: Segmentation and shape learning c Individuals crossing:
Using deformable models to segment individuals during interactions

Blob extraction The shapes acting in the foreground, in
the following referred to as blob objects, correspond to
the individuals moving. To obtain a precise delineation of
these blobs, a simple thresholding routine [23] is applied.
Remaining artifacts can be removed by defining a mini-
mum blob size bmin which can be set arbitrarily by the user
before the tracking routine is initiated.

Morphological operations For the following shape
extraction and learning routines (step B of the pipeline),
the tails of the animals are removed. The rationale is
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twofold: Firstly, the tails are frequently disappearing in the
binary segmentation [9]. The shape matching algorithm
thusmay fail whenmatching animal shapes with and with-
out tail. The second point is that the relative orientation
of body and tail are rather uncorrelated. Shape variances
to be learned for the active shape model are thus getting
much more complex for shapes where the tail is included.
As nose and tail points are easily switched when ana-

lyzing mice shapes, detecting the tail position provides
additional information as it indicates the orientation
of the segmented body.It is thus employed to enhance
the robustness of orientation estimation during shape
matching (see “Shape matching” section). A series of
morphological operations is performed on the binary seg-
mentationM to localize the tail base (Fig. 4). First, the tail
is extracted by subtracting the result of a morphological
opening from the original segmentation (Fig. 4c). Finally,
the tail base is given by the center of the intersection of
the dilated tail (Fig. 4d) and the body (Fig. 4b). The struc-
tural element S is chosen as open disc of radius rS. Note
that the radius rS depends on the diameter of the tail and
should be chosen accordingly.

Separated individuals: shape learning process
The preprocessing step yields blob objects where each
blob may contain one or two individuals. In a next step, a
catalog of shapes is built. The first step in catalog build-
ing is the identification of blobs where the individuals
are entirely separated and do not cross or touch. The set
of video frames where both individuals are separated is
denoted with FS and the set comprising the remaining
frames analogously with FC .

Initializing the learning process Initially, the user
selects a representative separatedmouse shape (preferably

in a straight alignment) from an arbitrary frame that is to
be tracked. The boundary

x = (x1, y1, . . . xn, yn)T (4)

obtained from the corresponding blob object is referred
to as reference shape. Subsequently, the user marks mean-
ingful boundary landmarks, i.e. head, tail and ear posi-
tions (Fig. 3). In a second step, all boundaries extracted
from FS are mapped to the reference shape using the
shape context matching and the inner-distance as pro-
posed by Ling and Jacobs [24] and as described in the next
“Shape matching” section. As nose and tail base of
the matching may be easily switched, the matching is
aligned to the tail base that has been localized using
the previously described morphological operations (see
“Preprocessing: background separation” section). If the
tail base cannot be localized, i.e. through occlusions, then
the orientation is aligned according to the previous frame.

Shape matching Belongie et al. [25] proposed a shape
matching procedure based on a log-polar histrogram. For
each contour point pi = (xi, yi)T , the distribution of the
remaining contour points is represented by the log-polar
histogram

hi(k) = #
{

q �= pi : (q − pi) ∈ bin(k)
}

, (5)

where bin(k) denotes the k-th bin of the log-polar space.
The costs of matching two points pi and pj are given by
the χ2 test

C(pi, pj) = 1
2

n
∑

k=1

[

hi(k) − hj(k)
]2

hi(k) + hj(k)
. (6)

Note that due to the logarithmic distance scaling, the cost
function is more sensitive to nearby contour properties.

Fig. 4 Tail base localization. A series of morphological operations (a)–(e) is applied to localize the tail base. It is obtained from the center of the
intersection of the body (b) and the dilated tail (d)
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Minimizing the total costs

H(π) =
∑

i
C(pi, qπ(i)), (7)

where π is a permutation, finally yields an optimal bipar-
tite graph matching providing the desired correspon-
dences for the graph matching. A detailed description
of the algorithm and a corresponding implementation, is
available in Belongie et al. [25].
However, the shape context matching relies on

Euclidean distance measures. Anatomical conditions of
animals, such as the flexibility of the spine, allow for a
high variance of shape delineations. A straightforward
extension which is less sensitive to articulations has been
proposed by Ling and Jacobs [24]. There, the Euclidean
distance is replaced by the inner-distance, defined as the
shortest path between landmark points within a shape
silhouette [24]. The relative angle between two points is
replaced by the inner-angle, which is defined as the angle
between the tangent at the starting point p and the initial
direction of the shortest path [24]. These modifications
allow for a better matching performance for animal shape
silhouettes and are therefore employed for the proposed
shape learning process. Particularly, the inner-distance
matching proved to be very successful for tracking mice
from a top-view [26].

Shape catalog As long as both individuals are sep-
arated, position and orientation can be directly esti-
mated by matching each blob boundary to the reference
shape using the shape context algorithm in combina-
tion with the inner-distance measure as described in
“Shape matching” section. Point correspondences of head,
tail and ear positions are exemplarily shown in Fig. 5
for different mice shapes and the reference shape they
are mapped to. The viewing direction is estimated from
the line going through the nose point and the midpoint
between both ears (red arrows in Fig. 5). In doing so, the
estimated viewing direction only depends on the relative
head position instead of the whole body alignment as i.e.
done by Hong et al. [8].

In a next step, in order to learn variations of ani-
mal shapes, a catalog is created. However, it cannot be
guaranteed that the matching produces plausible corre-
spondences. As this mismatching tends to have higher
matching costs, only shapes and corresponding images in
FS, where the total matching costs H (Eq. 7) are below
a predefined threshold ρmax, are added to the catalog.
The threshold level has to be defined by the user before
the tracking routine is initiated. High matching costs are
often related to slight offsets of the placed landmarks. The
threshold therefore constitutes a trade-off between a high
variability and plausibility of the shape data and has to be
chosen with caution.
Finally, the line connecting head and tail points is

aligned to the vertical axis for each shape of the cata-
log. Eliminating whole-body in-plane rotation from the
shape model and working exclusively on vertically aligned
shapes allows to drastically reduce the complexity of shape
variation while maximizing shape-relevant information in
the model’s eigenvectors.

Occlusion events: separation of individuals
When two individuals are close together, the segmented
blob object covers both individuals. To separate their
shapes, an ASM is trained using the shape and image
information that has been previously stored in the catalog.

Active shape model The ASM was originally proposed
by Cootes al. [27] and is closely related to active contour
models as introduced by Kass et al. [28]. In contrast to
active contour models, the deformation is restricted to
shape variations that are previously learned from a train-
ing set. From the landmarks x of the s training images the
covariance matrix

Sx = 1
s − 1

s
∑

i=1
(xi − x̄) (xi − x̄)T (8)

is computed where

x̄ = 1
s

s
∑

i=1
xi. (9)

Fig. 5 Five matching examples. Left: reference shape where tail, nose and both ears are marked, right: boundaries matched to the reference shape
using the algorithm proposed by Ling and Jacobs [24]. The viewing direction (red arrows) is given by the straight line connecting the midpoint
between both ears and the nose
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is the mean shape of the training set. Consequently, any
shape from the training data can be approximated by

x ≈ x̄ + Pb (10)

where P = (p1 p2 . . . pt) denotes the matrix whose
columns are given by the eigenvectors pi and b =
(b1, b2, . . . , bt) is a vector of weights. Thus, any shape
can be approximated by a linear combination b of the
eigenvectors. As the eigevectors are orthogonal,

b = PT (x − x̄) (11)

allows forming shapes that are closely related to the
instants of the training set. To maintain plausibility of the
resulting shape, the range of the coefficients bi is typically
restricted to the interval

−m
√

λi ≤ bi ≤ m
√

λi. (12)

where λi denotes the i−th eigenvalue and m determines
the range of the model parameters. The segmented mouse
shapes exhibit a high degree of freedom as their ori-
entation can be arbitrary. A considerable reduction of
complexity can be achieved by consistently aligning the
shapes in a predefined orientation. Here, the axis con-
necting tail base and nose points is aligned to the vertical
axis where the nose points downwards (see Fig. 3). The
first three eigenvectors obtained from the unsupervised
learning routine using the vertical alignment are shown
in Fig. 6 demonstrating the dominant variations of the
mouse shapes. In particular, these refer to bending left,
bending right, compressing and stretching for the first
two eigenvectors and the third eigenvector encodes more
complex variations.

Fig. 6 First three eigenvectors of the covariance matrix. The first
indicates a left or right turn, the second squash and stretch and the
third eigenvalue comprises only slight variations that are difficult to
interpret

The number of eigenvalues taken into consideration
depends on a predefined parameter fv specifying the vari-
ance that contributes to the shape approximation. It is
given by the smallest t where

t
∑

i=1
λi ≥ fv

∑

i
λi. (13)

The deformable shape model is based on extracting and
normalizing the first derivatives gi of the intensity pro-
files orthogonal to the contour landmarks. If we assume
that gi is Gaussian distributed, computing the mean pro-
file ḡ and the profile covariance matrix Sg allows adapting
an unknown shape g by minimizing the Mahalanobis
distance

dM(gi) = (gi − ḡ)TS−1
g (gi − ḡ) (14)

which is equivalent to maximizing the probability that g
originates from the Gaussian distribution [27]. The opti-
mal fit along the profile is obtained from an iterative
search [29] where the model is shifted and sampled along
the normal vector minimizing dM in Eq. 14. Finally, the
model constraints provided by the training set are applied
to the updated landmarks [29].

Initialization and adaption of the ASM During mouse
interactions, the ASM is positioned and oriented accord-
ing to the previous frame. Subsequently, a constant num-
ber of iterations is alternatingly performed for each ASM
in order to adapt segmentation results to the current
frame. To avoid that both models merge together, the iter-
ative search along the profiles is restricted to landmarks
outside the overlapping area whereas the remaining land-
marks are kept in place until the model constraints are
applied to the updated landmarks. This strategy on the
one hand allows to handle occlusions and on the other
hand avoids a gradual attraction of both shapes. The ASM
adaption is consequently driven by the landmarks outside
the overlapping area where the shape is delineated by clear
edges.
Exemplarily, the initial segmentations and the results

after 10 and 60 iterations for each ASM are shown in Fig. 7
for three successive video frames. Between two consecu-
tive video frames, there is only a slight movement of the
animals. Thus, only a limited number of iterations Nmax
has to be performed for ASM adaption in each frame.

Identity preservation Assigning the correct identity to
each mouse is a crucial point for studying social interac-
tions and is a challenge when both mice are close together
or partially occluded. Since an ASM is built for each
mouse, it keeps track of the identity of an individual dur-
ing occlusion events. If both mice are spatially separated,
the identity is assigned according to the maximum overlap
between shapes of successive frames.
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Fig. 7 Iteration steps during shape optimization. First column: Final
segmentation of frame no − 1, Second to fourth column: next frame no
and the ASMs after 0, 10 and 60 iterations (green and white contours)

Results
Parameter settings
One of the most important parameters of the proposed
method is the threshold ρmax directly affecting the size of
the shape catalog. It constitutes a trade-off between shape
plausibility and variability of the training dataset. If, on
the one hand, the threshold is chosen too low, only few
variations are learned from the catalog. If, on the other
hand,matching costs are too high, the landmarks nose and
tail base might not be identified satisfactorily and thus,
the training data might not be representative. In order to
empirically determine an appropriate value for ρmax, we
evaluated the mean error

ε = 1
2

N
∑

f=1

(

dNose,USM
f + dTail,USM

f

)

(15)

of nose and tail positions for different values of ρmax in
video V1. The results for ε and the corresponding size of
the training dataset are shown in Fig. 8. The minimum
error is achieved for ρmax = 120 where approximately
half of the candidate shapes are included into the catalog.
As ρmax depends on the number of frames and land-
marks of the ASM, we define the ratio cv as the number
of samples taken for training divided by the total num-
ber of samples. According to the experiments shown in
Fig. 8, the algorithm performs best if cv is set to approx-
imately 0.5 meaning that 50% of the shape matchings are
used for the shape catalog. Although for cv < 0.05 there

Fig. 8 Tracking error ε (top) and the size of the shape catalog (bottom)
for different choices of ρmax . The optimum is achieved for ρmax = 120
which corresponded to approximately half of the shape candidates
(cv = 0.5). Evidently, the error changes only marginally around cv =
0.5, so that the influence on the error is assumed to be rather low

is a clear decrease in the error rate, within the interval
0.15 ≤ cv ≤ 0.83 the error ε changes only marginally in
a low subpixel range. The optimization potential for cv is
therefore assumed to be rather low around cv = 0.5.
The number of radial and angular bins for the shape

matching routine were chosen as proposed by Belongie
et al. [25]. Likewise, the ASM was configured with com-
mon settings [27] (m = 3 eigenvalues explaining more
than fv = 98% of the shape variation). The number of iter-
ations, however, should be determined with respect to the
sampling rate and the maximummovement of the tracked
individual between successive frames. Generally, higher
values provide a better adaptivity of the ASM but also
involve higher computational costs. In our setup, we con-
sidered Nmax = 60 iterations to be more than sufficient
for the mice movement.

Tracking performance
Figure 9 exemplarily illustrates three interactions between
both mice taken from video V1. The first and second
sequence demonstrate the potential of the unsupervised
learning approach even for challenging scenes. Due to
several thousand training samples, the ASM shows good
agreement with both individuals even dealing with occlu-
sions as illustrated in frame 705 and, moreover, enables to
estimate viewing direction during occlusions.
The tracking performance of the proposed unsuper-

vised learning approach was compared to theMiceProfiler
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Fig. 9 Three different crossing events in video V1. In sequences #1 and #2 the ASM robustly keeps track of both individuals during collision. A switch
of the identities occurs in sequence #3

[14, 19]. For this purpose, the MiceProfiler was care-
fully configured according to the tutorial provided by the
authors. We empirically determined binary threshold and
mouse model scale parameters that performed best. Due
to slightly varying lighting conditions, the threshold had
to be adapted during the video to maintain reasonable
binary segmentations. Instead of the nose, the physics
model implemented in the MiceProfiler software keeps
track of the head position. We therefore estimated the
optimal extension of the straight line from the shoulder to
the head position [19] that minimizes the mean distance
to the nose position given in the ground truth. The same
strategy was applied for the tail base position by extend-
ing the straight line from the belly to the tail position.
The viewing angle was extracted from the line connecting
shoulder and head positions. In order to evaluate the posi-
tional and angular tracking performances of the proposed
method and theMiceProfiler, precision plots are shown in
Fig. 10 for the estimated nose and tail positions as well as
the viewing angle. Precision plots show the percentage of
frames (vertical axis) where the deviations of the position
or viewing angle is below a given threshold (horizontal
axis) from the ground truth [30]. The MiceProfiler was
evaluated in two different configurations. In a first setup
(MP1), the model has been placed properly at the begin-
ning of the video and was left without interventions until
the end. As the authors point out that the MiceProfiler
sometimes has problems with contact and overlap, in a
second setup (MP2), manual readjustment of both mouse
models were performed after each direct interaction. In all
precision related evaluations, identity switches were cor-
rected for USM, MP1 and MP2, respectively, and do not
affect the precision plots.
The MiceProfiler had considerable problems in keep-

ing the correct orientation, which significantly improved
in case of user intervention after interactions. Regarding
the open field setup, the optimized contrast brought no
improvement in tracking precision for both algorithms.

For MP2, precision was even less accurate for the tail base
position in the enhanced setting. A clear improvement
could be observed for the viewing angle. For USM and
MP2, precision increased by approximately 0.2 for devi-
ations of up to 20 degrees. The proposed unsupervised
learning scheme clearly outperformed the MiceProfiler
in all setups (MP1, MP2) regarding tracking precision of
head and tail landmarks as well as the estimated viewing
angle.
The number of identity switches occurring for USM,

MP1 and MP2 are given in Table 1 for V1-V4. The
proposed algorithm provokes considerably less switches
than the MiceProfiler. Likewise, contrast conditions had
a major impact on identity preservation for both algo-
rithms, respectively. An example where mouse identities
are switched by the USM is illustrated in the third row
of Fig. 9. The poor contrast between both mice provokes
a rotational shift of the ASMs in frame no. 11580 which
continues until mice identities are switched in frame
no. 11600.

Automatic recognition of behavioral states
We compared the automatic behavior classification of
the conditions C1-C4 based on the positional and angu-
lar data proposed by Chaumont [14] (as described in
“Social behavior classification” section) identified by the
tracking algorithms (USM,MP1,MP2) and labeled in the
ground truth (GT). To evaluate the time evolution of
the interactions, we compared the duration of C1-C4 found
by the different methods in five minute intervals for both
videos (Fig. 11a and b). The error of duration estimation

E{USM,MP1,MP2}
Ci =

∣
∣
∣T {USM,MP1,MP2}

Ci − TGT
Ci

∣
∣
∣

TGT
Ci

(16)

was averaged over all time intervals, where T {USM,MP1,MP2}
Ci

denotes the duration of event Ci estimated by the pro-
cedure USM, MP1 or MP2 and TGT

Ci the duration of Ci
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Fig. 10 Precision plots showing the tracking accuracy for the tail and nose positions as well as the viewing angle

derived from the ground truth. Considerable differences
between MP and USM were observed for nose to nose
and following events. Although nose to nose contact was
observed for about 5 s in V1 and 9 s in V2 according to
the manually labeled landmarks, it was never recognized
by the MiceProfiler (EMP1 = EMP2 = 1.0). Likewise, the
condition C4: following behavior was rarely recognized by
theMiceProfiler in V1 (EMP1 = 0.90, EMP2 = 0.95). For all
categories, a higher accuracy was observed for the USM.

Table 1 Number of identity switches for videos V1 - V4 occurring
during the tracking process for USM, MP1 and MP2

V1 V2 V3 V4

Unsupervised approach (USM) 3 1 1 5

MiceProfiler uncorrected (MP1) 16 6 3 14

MiceProfiler corrected (MP2) 12 3 2 12

The mating condition C5 was identified for the male-
female setup in video V4. Figure 12 exemplarily illustrates
the tracking results for the mating condition (Fig. 12a) as
well as the results of the automatic recognition (Fig. 12b).
The video frames demonstrate the challenges for the
tracking algorithm. It is remarkable that although there is
a high level of occlusion, the ASM works well and delin-
eates the real mice shapes. However, as both ASM are
pretty close together, the mating condition is prone to
identity switches as shown in Table 1. For the USM, 4 of
the 5 switches occur directly after the mating condition.
Likewise, the automatic assessment seems to provide a
good approximation of the ground truth (EUSM = 0.25).
In contrast, the MiceProfiler couldn’t cope with such a
high level of occlusion and thus, it was not able to recog-
nize condition C5.
The self-grooming condition C6 was identified from the

eigenvalue configuration, it was therefore only evaluated
for USM. A Support Vector Machine (SVM) was trained
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Fig. 11 Automated detection of social and non-social interactions. a, b Duration of social interactions C1–C4 in video (a) V1 and (b) V2 estimated by
the tracking algorithms (USM, MP1, MP2) compared to the ground truth. c, d Duration of the self-grooming condition C6 in video (c) V1 and (d) V2
estimated by the tracking algorithms (USM, MP1, MP2) compared to the subjective assessment. e PCA space of the first 100 s of mouse no. 1 in
video V1 spanned by the first and second eigenvector. Self-grooming conditions are colored in red, all remaining samples are blue

in order to identify the duration of the self-grooming con-
dition from the eigenvalues describing the outer boundary
of the segmentation. Consistently, validation was per-
formed for each five minute time interval and training
from the remaining time of the same video. The SVM
was configured with an RBF kernel and was weighted
according to the ratio of previously labeled self-grooming
to non-grooming conditions in the training set. In video
V1, a low error of EUSM = 0.19 was achieved, whereas
for V2, EUSM = 1.00 seems rather error-prone but might
be due to the high imbalance of the self-grooming condi-
tion C6 over time. Exemplarily, the PCA space of mouse
no. 1 for the first 100 s is shown. Grooming conditions
are indicated by the red color and non-grooming in blue.
Evidently, self-grooming conditions correspond to a low

value of the second eigenvalue indicating a stooped body
posture (see Fig. 6).

Discussion
Behavioral screening of manipulated mice is a crucial
step for understanding gene function and developing
treatments for genetic disorders. In this contribution,
we developed an algorithm to automatically track two
mice in an enclosed area which makes it possible to
automatically assess their social behavior. We imple-
mented a prototype in MATLAB which is not fully opti-
mized yet requiring approximately 4 hours computation
time for a 30 min video on a Intel I5 with 3.3 GhZ and
16 GB memory. Despite the comparatively high compu-
tational costs, the algorithm is well-suited for large-scale
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Fig. 12 Automatic assessment of the mating condition C5. a Sequence involving the mating condition. b Duration of the mating condition C5 in
video V4 estimated by the tracking algorithms (USM, MP1, MP2) compared to the ground truth

studies due to the accurate tracking results and the low
level of necessary user interventions. With respect to
tracking accuracy, the number of identity switches and
the phenotyping results, the proposed procedure clearly
outperforms the recently developedMiceProfiler. Further-
more, due to the iteratively optimization of the ASMs,
occlusions can be handled adequately, a feature that
is not supported by the MiceProfiler yet. Nevertheless,
it has to be noted that the MiceProfiler provides a com-
fortable solution to assess and to readjust the model
landmarks in a frame-by-frame manner and considerably
speeds up manual assessments [14].
Model-based tracking approaches often struggle with

appearance variations of the scene. Pose variations and
shape deformations are among the key challenges for
tracking algorithms. In order to tackle these problems, the
proposed unsupervised learning algorithm gathers train-
ing data during runtime. This has the advantage that
appearance variations can be learned from the scene and
are thus handled robustly. The procedure showed a high
level of robustness even for poor contrast and reflectance
conditions. Moreover, the method is able to deal with
complex situations during tracking, for example occlu-
sions as illustrated in sequence no. 2 in Fig. 9. As the
shape database is built during runtime, the method should
principally work with arbitrary species, although parts
of the processing pipeline, e.g. the tail detection routine,
are specialized for rodent species. Upcoming studies will
therefore focus on the method’s generalizability and a
more general formulation of the processing pipeline. We
expect that the tracker should also be able to cope with
insects such as drosophila, ants and various larvae.
An important feature of the proposed method is con-

tinuous documentation of shape information during run-
time. The eigenvalues reliably indicate self-grooming
behavior which is an important non-social parameter
showing high relevance e.g. for autism or Huntington’s
disease [17, 31]. The high tracking precision of head and
tail landmarks, the viewing angle and additional shape

information allows an automated and comprehensive
assessment of social interactions and non-social behav-
ior. It was demonstrated that behavioral classification was
very close to the ground truth which was derived from the
manually annotated video frames. Texture descriptors and
spatio-temporal features [32] may provide further com-
plementary information for automatic classification and
may also increase robustness, which will be considered in
future work. We also plan to extend and refine the list of
behavioral states as it is not claimed to be exhaustive. For
example behavioral conditions such as fighting were not
seen in our videos. More complex behavioral states will
be addressed in future publications to allow for a more
detailed analysis.
Although a high level of tracking precision was

achieved, a manual validation of the results is still nec-
essary. It has been observed that, even for optimized
contrast conditions, one switch between individuals’ iden-
tities occurred during tracking. In this context, the con-
cept of texture-based fingerprints as proposed by Pérez
et al. [21] might help to enhance robustness. The pro-
cedure does not track individuals, but aims to assign
their identities after a successful segmentation. Thus, it
could be applied after processing the collisions to correct
these switches post-hoc, thereby considerably decreas-
ing the time needed to manually monitor correct identity
assignments.

Conclusion
Mouse models have shown high relevance for under-
standing genetic and mental diseases and for assessing
the efficacy of various therapeutic strategies. A reliable
tracking algorithm that requires onlyminimum user inter-
vention is a crucial prerequisite for any high-throughput
behavioral analysis. In this paper, we propose an unsuper-
vised learning procedure which copes with direct mouse
interactions, occlusions and poor contrast conditions. As
training data is gathered during runtime, only minimal
user input is required to initiate the tracking process. The
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proposed method was found to track head and tail land-
marks precisely and, furthermore, enables identification
of non-social conditions such as self-grooming which is
a crucial parameter for several mice models. Overall, the
proposed method shows substantial potential to automate
behavioral screening of mice and other animals.
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