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Abstract

Background: Quantitative molecular biology remains a challenge for researchers due to inconsistent approaches
for control of errors in the final results. Due to several factors that can influence the final result, quantitative analysis
and interpretation of qPCR data are still not trivial. Together with the development of high-throughput qPCR
platforms, there is a need for a tool allowing for robust, reliable and fast nucleic acid quantification.

Results: We have developed “quantGenius” (http://quantgenius.nib.si), an open-access web application for a reliable
qPCR-based quantification of nucleic acids. The quantGenius workflow interactively guides the user through data
import, quality control (QC) and calculation steps. The input is machine- and chemistry–independent. Quantification
is performed using the standard curve approach, with normalization to one or several reference genes. The special
feature of the application is the implementation of user-guided QC-based decision support system, based on qPCR
standards, that takes into account pipetting errors, assay amplification efficiencies, limits of detection and quantification
of the assays as well as the control of PCR inhibition in individual samples. The intermediate calculations and final
results are exportable in a data matrix suitable for further statistical analysis or visualization. We additionally compare
the most important features of quantGenius with similar advanced software tools and illustrate the importance of
proper QC system in the analysis of qPCR data in two use cases.

Conclusions: To our knowledge, quantGenius is the only qPCR data analysis tool that integrates QC-based decision
support and will help scientists to obtain reliable results which are the basis for biologically meaningful data interpretation.

Keywords: Quantitative molecular biology, Quantitative PCR, Nucleic acid quantification, Web application, Decision
support system

Background
The immense potential of quantitative molecular biology
in life sciences is challenged by inconsistent approaches
for control of errors in the final results. Due to its
performance characteristics and general applicability,
quantitative PCR (qPCR) has become the golden stand-
ard method for the quantification of nucleic acids.
Although with the help of laboratory automation, qPCR
data generation has become easy and fast, quantitative
data analysis and interpretation is still not trivial due to
several factors that can influence the final result. To
ensure high quality of results and allow for potential

reproduction of experiment, the Minimum Information
for Publication of Quantitative Real-Time PCR Experi-
ments (MIQE) guidelines have been proposed [1].
qPCR is used to measure the quantity of target DNAs

in a given sample through repeated cycles of DNA
amplification. The cycle at which the observed
amplification-derived fluorescence first exceeds a certain
threshold is called the quantification cycle (Cq). The
analysis starts with the examination of the amplification
curves and initial assessment of their quality, followed
by the determination of the Cq values, which are further
used for the quantification of the nucleic acids. It can be
performed by either a standard curve or a comparative
approach (formerly referred to as “absolute” and “rela-
tive” quantification, respectively). Both approaches are
relative, but each is based on its own assumptions [1]. In
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the standard curve approach, the number of target DNA
molecules in the sample is calculated using a calibration
curve of serially diluted DNA standards of known con-
centrations. The calibration curve presents a linear rela-
tionship between the Cq and the logarithm of the initial
amount of template DNA. Test sample copy numbers
are calculated from the linear regression of the standard
curve, assuming equal amplification efficiencies for the
standard and test samples [2]. When reference materials
with known contents are available, the outcomes are ab-
solute copy numbers [3] whereas when the copy num-
bers of the targets in the standards are not known,
relative standard curves can be used to determine copy
numbers ratios between different samples [4]. The sec-
ond approach, comparative quantification, is based on
determining the fold-differences in the expression of the
target in relation to the reference gene. The most popu-
lar, comparative threshold cycle method (ΔΔCq) relies
on a direct comparison of the Cq values and assumes
equal and 100% efficiencies of the target and the refer-
ence gene. However, the amplification efficiencies
between different genes analysed can differ which makes
the ΔΔCq method unsuitable in many cases [5]. Conse-
quently, modifications that allow for amplification effi-
ciency correction have been developed [1]. Although
they do not perform as accurate as the standard curve
approach [3], they can be applicable in research applica-
tions where high accuracy is not needed.
The efficiency of PCR amplification is considered as

one of the most important parameters in qPCR analysis,
as it strongly influences the final result [5, 6]. The
efficiency is defined as the fraction of target molecules
that are copied in one PCR cycle. Deviations from an
optimal 100% efficiency are observed as inhibition,
caused by the presence of inhibitory components, or
over-amplification, caused by compound or structural
conformation changes during the PCR [6]. Most com-
mon and broadly accepted way of efficiency determin-
ation is from the slope of a standard curve using linear
least squares regression [1] where the preciseness of the
efficiency estimate is affected by qPCR platform, the
number of replicate reactions and serial dilution volume
[7]. Recently, robust regression methods were shown to
present a reliable alternative because they are less af-
fected by outliers [8]. Alternatively, the efficiency can be
calculated from the fluorescent increment in single amp-
lification curves which were shown to be less accurate
(reviewed in [9]) and they also require an additional step
in the analysis that is sometimes cumbersome and im-
practical. The efficiency of the amplification is highly
dependent on primer sequence and therefore the as-
sumption of most quantification algorithms is that PCR
efficiency is assay-dependent and sample-independent
[10]. Yet, it is not uncommon that individual samples

originating from different or even same matrix have dif-
ferent amplification efficiencies [6] which can result in
quantification inaccuracies [11]. A simple control of
efficiency in individual samples can be performed by
analysing two dilutions of the same sample [6].
Normalization controls for variations in extraction yield,

reverse-transcription yield and efficiencies of amplification,
thus enabling comparisons of nucleic acid concentrations
across different samples. Various normalization strategies
and reference genes selection algorithms have been
proposed with the common guideline that several validated
reference genes should be used for normalization (reviewed
in [12]).
Although numerous commercial and open-access soft-

ware tools for the analysis of qPCR data exist (see [13]
for a recent review), they lack quality control (QC) of
the final result that would aid the researcher in inter-
preting it. We have developed the web application
quantGenius (http://quantgenius.nib.si), the only qPCR
data analysis solution that integrates a QC-based deci-
sion support system (DSS). Among other features, it
includes a control of inhibition in individual samples
which is extremely useful when working with difficult
samples, such as environmental or plant samples. In this
way, it helps the scientist to obtain reliable results in a
fast and high-throughput manner and thus provides the
basis for biologically meaningful data interpretation.

Implementation
Front-end of the web application is built in HTML, CSS
and JavaScript. Back end is written in PHP with exten-
sive use of Laravel framework. The data is stored and
managed using MySQL relational database management
system (Additional file 1). The application is fully func-
tional in most popular web browsers (Chrome, Internet
Explorer 9+ and Firefox) with enabled JavaScript.
The most recent quantGenius release is available at

http://quantGenius.nib.si. The source code for quant-
Genius is freely available under the GNU General Public
License version 3.0. All the application functionalities
are freely available without login or registration. Never-
theless, registration and login option have been imple-
mented for users that wish to keep their datasets for
later analysis.
In the application, data are organised as experiments,

containing data for all the assays that were analysed in a
sample set (see screenshot in the Additional file 1).
The quantGenius workflow features three main steps:

1) data import, 2) interactive calculation of target and
reference genes copy numbers and normalization to ref-
erence genes with implemented QC-DSS and 3) export
of final results in a gene-sample matrix format (Fig. 1).
quantGenius enables a transparent overview of all calcu-
lations, including intermediate values and mathematical
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formulas used as well as QC-based decisions. All the for-
mulas used for calculations are available in the
Additional file 2 (Equations 1–25) and a detailed user
manual is available on the application website.

Results
Platform-independent and consistency-checked data input
The application’s input is qPCR machine- and chemis-
try- independent. For each tested assay, sample names,
Cq values and relative copy numbers (based on sample
dilutions) are imported by pasting pre-formatted tab-de-
limited data into the input form. In this way, sample
data analysed with one or two sample dilutions and any

number of technical replicates can be processed. Data
for the standard curve, which can be either actual or
relative copy numbers, are imported separately
(Additional file 3).
Standard output files of the microfluidic qPCR plat-

form BioMark (Fluidigm) can be converted to a format
suitable for the import using the “Fluidigm data prep
tool”, available on the quantGenius website.
All imported data are automatically checked for

consistency (i.e., that the sample names, replicates and a
number of dilutions are consistent between the target
and reference genes) to prevent wrong calculations due
to incorrect imports (for example copy-pasting errors).
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Fig. 1 quantGenius workflow. The data for the target and reference genes is imported and quality controlled. Relative copy numbers are calculated using
standard curve parameters and normalized. The final results are exported as a gene-sample matrix. The calculation steps are marked with bold, while the
calculated parameters are listed below with regular letters. All the formulas used for calculations (Equations 1–25) are available in the Additional file 2.
Abbreviations: Cq – quantification cycle, Rel. - relative no.- number, Std. – standard, QC – quality control, CV - coefficient of variation, CqExtC – Cq value of
the extraction control, CqLOQ – Cq value of the limit of quantification
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Copy number calculation and normalization to reference
genes
In quantGenius, a standard curve quantification ap-
proach is implemented, which allows for the calculation
of comparable copy numbers on multi-plate experi-
ments, when the same standard curve is used on all
plates. For optimal transparency of the process, the
calculations are performed in several steps (Fig. 1,
Additional file 2), differing slightly whether simple (one-
dilution) or two-dilution analysis is selected. Based on
the standard curve parameters (Additional file 2, Equa-
tions 3-8), sample target and reference gene copy
numbers are calculated (Additional file 2, Equation 11).
In the next steps, replicate copy numbers are averaged
and sample dilution is taken into account (Additional
file 2, Equations 13, 14).
Target gene copy numbers are normalized to reference

gene copy numbers, or in the case of several reference
genes, to their average (Fig. 2; Additional file 2, Equa-
tions 17–20). To avoid unequal contribution of the indi-
vidual reference genes and to allow for quantification in
the cases where data for one of the reference genes is
missing due to QC issues, all the reference gene copy
numbers are scaled to the average of the reference gene
that was imported first (Additional file 2, Equation 18).

User-guided quality control-based decision support
system
The unique and novel feature of the presented application,
quantGenius, is the implementation of an easy-to-use
QC-based DSS that enables robust analyses of quantitative
biology data. It includes all critical parameters of qPCR

QC, such as technical pipetting errors, nucleic acid extrac-
tion and reverse transcription yields, estimations of the
detection and quantification ranges of the assays as well
identification presence of inhibitors in the individual sam-
ples [3]. Several QC parameters are calculated at different
steps of the workflow (Fig. 1, Additional file 2, Equations
2, 4, 5, 8–10, 13, 15, 22). The QC stringency is user-
controlled, based on the level of accuracy required for
particular application (Fig. 3). By changing the QC param-
eters all the data are instantly recalculated. Moreover, the
“clone experiment” option allows for analysis of the same
experiment with different QC parameters and thus direct
comparison of the effects that the parameter settings
changes have on the final results.
quantGenius enables a transparent overview of all QC-

related issues and decisions. Highlighting of the values
that fall out of the pre-defined QC thresholds enables the
identification of the pipetting errors in the standard curve
or target sample reactions as well as standard curve dilu-
tions that are out of the quantification range which should
all be manually removed by the user (Fig. 3).
Based on the implemented DSS, the final result will

be, in the case that the data is out of the quantification
range, imputed or, if the calculated numbers are consid-
ered unreliable, not given. In both cases, warnings are
issued, notifying the user about the QC issues. The deci-
sion tree slightly differs depending on whether simple
(one-dilution) or two-dilution calculation approach is
chosen (Fig. 4) and hierarchically takes into account the
following factors:
Extraction control. For each reference gene assay,

CqExtC, a Cq value indicating a valid nucleic acid (DNA

Fig. 2 Screenshot of the calculation of the reference copy numbers. An example of two reference genes (COX and EF-1) is shown. The second
imported reference gene (EF-1) is scaled to the average of the first reference gene imported and the average of both values is calculated. The
calculations are performed for each dilution separately
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or RNA) extraction procedure is defined by the user
ensuring that only good quality data is used for calcula-
tions. By default, the CqExtC is set to 34, therefore rarely
affecting the quantification. Based on the assumption
that the reference genes are highly expressed, the users
can, however, lower this threshold to identify outlier
samples. If all the reference genes fail this criterion, the
target gene final result is not calculated (Fig. 4).
Limit of quantification (LOQ). For each target gene

assay, the Cq at the LOQ (CqLOQ), specifying the lower
limit of the quantification of the assay is defined by the
user, either based on previous in-house validation data
(if available) or estimated from the experiment’s standard
curve. On the other hand, the LOQ can be recognized
by quantGenius as high variability (CV > 30) between
the replicates’ copy numbers, arising from pipetting
stochasticity, assuming that the true pipetting errors
have previously been manually removed. In the simple
calculation, the final result for samples below LOQ is
imputed based on the CqLOQ and all sample reference
gene data (Fig. 4a, Additional file 2, Equation 24). In the
two-dilution calculation, the LOQ QC step is performed
in two steps: a) if the first dilution (less diluted

reactions) is under LOQ, the final result is calculated as
in the simple calculation (described above), b) if only the
second dilution (more diluted reactions) is under LOQ,
the first dilution is used for the calculation of the final
result (Fig. 4b).
Limit of detection (LOD). If all reactions of the sample

for a target gene are missing Cq values, indicating that
the target DNA levels in the sample are under the LOD
of the assay, then the final result is imputed based on
the CqLOQ copy numbers of all sample reference gene
data (Fig. 4, Additional file 2, Equation 25). The final
result is, therefore, a very small number (lower than the
LOQ-imputed value but not zero) which makes further
data analyses possible without additional data imput-
ation. LOD imputation is performed only for target
genes, as the reference genes must be present well above
the LOQ.
Individual sample amplification efficiency control. This

QC step is implemented only in the case of two-dilution
calculation and is used to identify outlier samples with
apparently inappropriate amplification efficiencies as
compared to the one of the standard curve [6]. If the in-
dividual sample slope (Additional file 2, Equation 9) falls

Fig. 3 Screenshot of the individual gene calculations. The calculations are done in three steps. 1) QC parameters CqLOQ, CqExtC, slope range, and
slope difference and calculation mode are defined by the user. 2) Standard curve is reviewed for possible outlier reactions. 3) Sample reactions are
reviewed. The pipetting error (red circle) causes deviations from the predefined QC parameters (red arrows). All formulas used for the calculations can
be viewed (blue arrow)
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out of the pre-defined slope range or its difference from
the standard curve’s slope (Additional file 2, Equation
10) is bigger than the pre-defined maximum slope differ-
ence, the reference or target gene copy numbers are not
calculated for this sample (Fig. 4b).

Export enabling further data analysis
All the data, imported sample names, quantities and Cq

values, intermediate calculations and QC parameters as

well final results are available for the export from quant-
Genius to allow for further analysis and visualization in
third-party software tools. All the data per individual
gene can be exported in Excel (.xls) format (see example
in Additional file 4). On the other hand, final results for
all the target genes in the experiment can be also
exported in a form of a sample-gene matrix in tab-
delimited.txt or.xls formats. In the latter, the results are
complemented with the QC warnings, so the user can

Fig. 4 quantGenius quality control-based decision support system (DSS). Decision tree case of (a) simple (one-dilution) calculation and (b) two-dilution
calculation. The following QC control steps are implemented hierarchically: 1) extraction control, 2) limit of detection 3) limit of quantification, and 4)
individual sample efficiency of amplification control. Based on the DSS, the final result is calculated (blue boxes), modified (orange boxes) or not given
(red boxes) and warnings are issued. Abbreviations: Cq – quantification cycle, CqExtC – Cq value of the extraction control, no. – number, CqLOQ – Cq
value of the limit of quantification, dil. – dilution, QC – quality control, CV - coefficient of variation
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distinguish between values, calculated directly from the
sample data or the imputed values.

Comparison of features with advance qPCR analysis
software tools
The quantification approach and crucial QC features of
quantGenius were compared with similarly advanced
software tools for qPCR data analysis: REST [14], one of
the first software tools for qPCR analysis, two popular
commercial packages qBASE+ (Biogazelle NV, [10]) and
GenEx (MultiD Analyses AB) as well as an open source
tool DAG Expression [15], one of the rare tools that uses
standard curve based quantification (Table 1). It is im-
portant to note that the compared software tools have
additional features that are not included in quantGenius,
such as qualitative QC parameters (positive and negative
controls, control of genomic DNA removal etc.) or
further steps in the data analysis pipeline such as statis-
tical analysis, graph plotting etc. These features were not
included in quantGenius as it is focused on the quantifi-
cation aspect of the qPCR data analysis pipeline.

Performance validation
The current version of the application was tested in-
house for a year to detect and remove coding bugs. Fur-
ther, we have analysed 50 experiments from different
projects, where 40 were set on 384-well plates and 10 on
the Fluidigm 48.48 Dynamic Arrays. Quantification and
QC were performed in parallel in quantGenius and
Microsoft Excel using preformatted formulas. A subset
of the comparison is shown in the Additional files 4 and
5, respectively. Using both approaches, all the intermedi-
ate and final copy numbers, as well as those of the calcu-
lated QC parameters, were identical.

Use cases showing the importance of the quantGenius
decision support system
To show the importance of proper QC in quantitative
analyses we have reanalysed two datasets from different
qPCR applications using quantGenius, a gene expression

study and a genetically modified organism (GMO) quan-
tification analysis.
For the gene expression use case, a subset of qPCR data

from our previously published experiment [16], analysing
two target genes in the response of potato to virus inocu-
lation. The raw data (Cq values) and basic experimental
details are available in Additional file 6, while the experi-
mental details are available in the original publication [16].
Three quantification approaches were compared:

a) quantGenius two-dilution quantification with the
default QC settings

b) standard curve quantification approach without any
QC-DSS

c) commonly used ΔΔCq approach [17], using only one
dilution of the samples

The relative copy numbers obtained in the three
approaches are presented in Fig. 5 and Additional file 7.
The overall results of the methods correlate highly (r >
0.99) for both target genes. Nevertheless, the power of
quantGenius is shown in the case of individual samples
with low gene expression values and sub-optimal ampli-
fication efficiencies.
The expression of the PR-1b gene was near the LOQ

in the mock-inoculated samples (demonstrated as Cq

values near CqLOQ and high inter-replicate CVs), which
resulted in high copy number variation (CV > 50)
between different quantification approaches (Fig. 5, top
panel, a arrows, Additional file 7). With quantGenius,
the copy number values below LOQ are imputed with a
small value number that is in the range of values calcu-
lated for other samples near LOQ. The user is alerted
with a warning and will take this into account when
interpreting the results. On the other hand, in the sam-
ples where only more diluted reactions were under the
LOQ, only the less diluted reactions were used for the
quantification.
In both target genes, there were cases of inhibition of

amplification in individual samples, resulting in outlier

Table 1 Comparison of selected features of quantGenius and other software tools

Analysis tool/Feature Quantification
method

Multiple reference
genes

Quality control factor

Replicates Extraction
control

LOQ LOD Sample
efficiency

gDNA

quantGenius Std.curve + + + + + + -

GenEx ΔΔCq-E/Std.curve + + - - + - +

qBase+ ΔΔCq-E + + + - - - -

REST ΔΔCq-E + + - - - - -

DAG Expression Std.curve + + - - - - -

Quantification method, use of multiple reference genes for normalization and implementation of QC factors in quantification are compared. Std.curve – standard
curve, ΔΔCq-E – efficiency corrected ΔΔCq method, replicates – replicate variability, extraction control – extraction efficiency, LOQ/LOD imputation – identification
and imputation of copy numbers that are under LOQ or LOD, respectively, sample efficiency – individual sample efficiency estimate, gDNA – gDNA contamination correction
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results, which are especially evident in the Glu-II gene re-
sults (Fig. 5, b arrows). In these cases, quantGenius does
not calculate the final result and thus again increases the
reliability of the outputs of the quantification.
The second dataset is from the GMO diagnostics,

where the quantity the GMO (Round-up-ready soybean,
RRS) in the samples is quantified as a ratio of the trans-
gene and reference gene (soybean lectin) copy numbers,
both calculated from the standard curve of the reference
material with known GMO content [3]. In the presented
example, strong inhibition for the both, the reference
gene and the transgene assays in both of the analysed

DNA extractions from the same sample was observed
which resulted in more diluted DNA reactions having
lower Cq values than less diluted ones (Additional file 8).
Without the QC, the calculated % of the GMO would
have been ranging from 56 to 1090%, depending on the
DNA isolation and dilution used. On the other hand, in
the quantGenius workflow, the results for this sample
are not given, primarily because of unacceptable effi-
ciency of the reference gene (see decision tree in Fig. 4).
For this sample, the DNA isolation and qPCR analysis
were repeated and it then passed QC and the GMO con-
tent was determined to be 33% (data not shown).

Fig. 5 Importance of implemented QC-DSS as shown in the gene expression use case. Expression of two target genes (PR1-b, upper panel and
Glu-II, lower panel) was analysed in mock- and virus-inoculated potato plants at one, three and six days post infection (dpi). EF-1 and COX were
used for normalization [16], (Additional file 6). Relative expression values obtained by quantGenius (cross) are compared to the ones obtained
using standard curve quantification without QC performed (std curve, circle) and the ΔΔCq quantification approach (ΔΔCq, diamond). To get
comparable values in the three approaches, the results of each approach were normalized to one of the samples (virus 3dpi 2) and then scaled
to the average expression of the first experimental group (mock 1dpi). a arrows - examples of samples with Cq values near LOQ showing high
variability among the quantification approaches used. b arrows - examples of outlier samples with an efficiency problem detected in either the
target or the reference gene where results are not calculated in quantGenius
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Discussion
The paper presents a web application for quantification
of nucleic acids, integrating unique QC-based DSS
(Fig. 4), built based on the acknowledged qPCR stan-
dards [1, 3, 18] which ensure that only high-quality data
is used for biological interpretation. Most qPCR data
analysis tools (partly reviewed in [13]) have been
designed with a simple experimental design. Individual
QC steps that are implemented in quantGenius are also
included in other software tools (Table 1). None, how-
ever, to our knowledge, uses individual sample efficiency
estimates as a QC step. Moreover, the application was
built to be simple and intuitive and offers full flexibility
for different experimental setups. Although the same
calculations, including QC, can be done in spreadsheet
software such as Microsoft Excel, the use of quantGen-
ius does not require manual interventions for either QC
or data preparation for other analysis tools. Combined
with the import data consistency check-up, the use of
quantGenius greatly reduces the risk of human errors
when handling the data. The QC steps implemented in
the DSS are the ones critical for quantification, whereas
the users need to perform initial (qualitative) QC steps,
such as checking fluorescence curves, qDNA contamin-
ation, the efficiency of reverse transcription, non-
template or other controls, prior to importing the data
to quantGenius.
quantGenius is based on quantification using a stand-

ard curve [2]. Although this approach is more robust
and gives the user the biggest flexibility in the cases of
suboptimal samples and/or assays [3, 6, 18] and also
eliminates the need for additional interplate calibration
if the same standard curve is used on all plates [3], it is
implemented only in some qPCR data analysis tools
(Table 1, [13]). It was previously shown that with ideal
samples and assays, the results of more commonly used
ΔΔCt and the standard curve approach are identical
[15], as was also confirmed by the presented case study,
where the correlation of the quantGenius and ΔΔCq re-
sults was really high (Fig. 5, Additional file 7).
In quantGenius, normalization to several validated refer-

ence genes is enabled, as it is considered the gold standard
for most of the experimental setups and is also recom-
mended by the MIQE guidelines [1, 19]. Still, the selection
and validation of the reference genes should be performed
beforehand by specialized tools (GeNorm, NormFinder,
BestKeeper; reviewed in [12], GrayNorm [20]).
Lower copy numbers of the reference gene can indicate

problems with DNA/RNA isolation or reverse transcription
yields [21], leading to unreliable quantification of target
genes. The extraction control implemented in quantGenius
eliminates such samples from further analyses (Fig. 4).
Depending on the biological system studied, the tar-

gets in individual samples may not be detected (are

under the LOD). Moreover, low amounts of DNA in the
qPCR reaction can increase the measurement uncer-
tainty due to the high variability of quantity estimations
caused by the occurrence of stochastic effects, therefore
only the reactions above the LOQ can be accurately
quantified [5]. The reactions where Cq values are not
determined are treated differently in different analysis
approaches: they are either excluded from downstream
analysis, which makes further calculation impossible and
can lead to unnecessary information loss or even false
interpretation. Alternatively, these reactions are assigned
a maximum obtained Cq value which leads to biased in-
ference or they are imputed using different statistical
models [22]. In the quantGenius data analysis scheme
(Fig. 4), the values below LOD and LOQ are imputed
taking into account the target gene copy numbers at
the LOQ and average reference gene copy numbers,
resembling the background correction implemented in
high-throughput gene expression analysis methods
[23]. Therefore, the imputed values are comparable
but appropriately lower than the ones within quantifi-
cation range of the assay where the LOD imputed
values are lower than the LOQ imputed ones. In this
way, the user can easily spot the imputed values when
inspecting the resulting output matrix and take ap-
propriate caution when interpreting such results as
was shown in our gene expression use case (Fig. 5,
Additional file 7). Nevertheless, in cases, where the
target DNA is truly absent (e.g absence of micro-
organism or transgene), the LOD imputation may re-
sult in false “positive” result and in these cases the
exported data matrix without the imputed values
should be used for interpretation of the results.
Low reproducibility of the Cq values from technical

replicates can be an indication of an unstable assay, a
pipetting error or stochastic effects due to the low
amount of DNA in the reaction [24]. The latter is im-
plemented in quantGenius, as an indication of below
LOQ target DNA amounts [6] which allows for ro-
bust analysis.
There is currently no consensus on how sample

specific PCR efficiencies should be calculated and used
for robust quantification. Although the individual sample
amplification efficiencies determined from the amplifica-
tion curves increase the random error of qPCR quantifica-
tions [24], the individual sample efficiency determination
has a great value for outlier detection [25]. However, as
the reaction efficiency is both sample and assay dependent
[6], use of RNA spike-ins is not the best option for
individual sample efficiency. Therefore, quantGenius
workflow includes a simple control of PCR efficiency in
individual samples by comparing the Cq values of two di-
lutions of the same sample to identify outlier samples with
suboptimal efficiencies. As quantification is in those cases
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not accurate, no result is given for those samples. The pre-
sented approach is associated with slightly higher cost of
wet-lab analysis (caa 15% higher cost for chemicals), but
on the other hand it greatly increases the quality and reli-
ability of the data, especially in samples where the
presence of inhibitors is expected, such as plant samples,
food and feed samples, environmental samples, microor-
ganisms grown in complex media etc. [6, 11]. This kind of
outlier samples were also observed in our gene expression
dataset (Fig. 5, Additional file 7) and in the GMO quantifi-
cation use case (Additional file 8). The default limits of ac-
ceptable individual sample efficiencies are quite loose,
allowing for reliable detection of two-fold copy number
differences. The stringency of this QC parameter can
be modified depending on the application which will
result in change of the quantification measurement
uncertainty [3, 4]. However, in matrices free of inhibi-
tors (e.g., cell cultures extracts, plasmid DNA), a sim-
ple (one-dilution) approach, which is also available in
quantGenius, can be used safely.
To promote quantGenius use within the scientific

community, the application was is registered in the
ELIXIR Tools and Data Services Registry (https://bio.-
tools) [26]. Future improvements are envisaged to auto-
mate data import, which is especially beneficial for the
analysis of data generated by high-throughput platforms.
Moreover, the connection of the application database to
other databases (such as gene, assay or experimental
data) will contribute to data management following the
FAIR Data Principles [27].

Conclusions
As opposed to black box solutions, quantGenius was
designed by biologists with ease of use, flexibility and
transparency in mind. It is an intuitive and easy to
use tool for qPCR data organization, analysis and
decision support in various qPCR applications. The
integration of QC-based DSS makes it unique and
enables researchers to spend more time for interpret-
ing the biology behind the results than analysing the
data.
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values for an individual gene. (XLS 41 kb)

Additional file 5: quantGenius performance validation: calculations in
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Additional file 6 Experimental data of the gene expression use case.
(XLS 71 kb)

Additional file 7: Comparison of gene expression values calculated by
quantGenius and other standard methods. (XLS 49 kb)
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