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Abstract

Background: Identifying disease correlated features early before large number of molecules are impacted by disease
progression with significant abundance change is very advantageous to biologists for developing early disease
diagnosis biomarkers. Disease correlated features have relatively low level of abundance change at early stages.
Finding them using existing bioinformatic tools in high throughput data is a challenging task since the technology
suffers from limited dynamic range and significant noise. Most existing biomarker discovery algorithms can only
detect molecules with high abundance changes, frequently missing early disease diagnostic markers.

Results: We present a new statistic called early response index (ERI) to prioritize disease correlated molecules as
potential early biomarkers. Instead of classification accuracy, ERI measures the average classification accuracy
improvement attainable by a feature when it is united with other counterparts for classification. ERI is more sensitive to
abundance changes than other ranking statistics. We have shown that ERI significantly outperforms SAM and Localfdr
in detecting early responding molecules in a proteomics study of a mouse model of multiple sclerosis. Importantly,
ERI was able to detect many disease relevant proteins before those algorithms detect them at a later time point.

Conclusions: ERI method is more sensitive for significant feature detection during early stage of disease
development. It potentially has a higher specificity for biomarker discovery, and can be used to identify critical time
frame for disease intervention.

Keywords: Disease correlated features, Early stage of disease, Biomarker discovery, Feature selection, Gene/protein
expression change, Multiple Sclerosis

Background
Identifying disease correlated molecules at early stages,
before the disease process induces high abundance
changes in large number of molecules, is a challeng-
ing but important problem. The identification will not
only lead to the discovery of early diagnostic biomark-
ers, intervening the disease early for high risk individuals
will also be viable. However, before the disease pro-
cess induces significant changes, most disease correlated
biomarkers only have small abundance changes. Sev-
eral contemporary data mining algorithms are reviewed
in [1–3] which include multivariate analysis [4], CART
analysis [5], voting panel approach [6], artificial neural
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network [7], genetic algorithm [8], Significance Anal-
ysis of Microarrays (SAM) [9], KTSP [10], and most
recently BBPC [11]. However, few progresses has been
made towards overcoming the challenge of early diagnos-
tic biomarker discovery. Most feature selection algorithms
are designed to boost classification accuracy that favor
the detection of features (proteins or genes) with high
abundance changes (See Fig. 1(c) for example). Typically,
several hundred of candidate biomarkers can be identi-
fied at the onset clinical stage with significant abundance
changes, and in order to discover a true biomarker for
early disease diagnosis, each of them has to be tested
using expensive low throughput methods like ELISA to
confirm their early involvement [12]. To overcome this
problem, gene set analysis based methods [13] has been
proposed. However, gene set analysis can only be applied
to features with previously known functions, and it does
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Fig. 1 Protein expression time profile across different days for (a) proteins identified by ERI at day 5; (b) the significant proteins identified by SAM
and Localfdr at day 10 but not significant according to ERI at day 5; and (c) significant proteins identified by SAM and Localfdr at day 5

not return individual features that can be tested rou-
tinely in low throughput methods. Consequently, there
is an urgent need in developing bioinformatic tools
for early diagnostic markers detection based on high
throughput data.
We address this problem by proposing a new statis-

tics called Early Response Index (ERI) that is sensitive
to changes of feature (protein/gene) expression at early
stages. Instead of focusing on features that are the most
differentially expressed, this index quantifies how much
classification accuracy improvement a feature can provide
when it is combined with other features in a classifier.
The rational is that although a potential biomarker may
not have a differential expression that can be regarded as
significant by existing tools, its ability in improving clas-
sification accuracy may have been significant, and can be
detected in high throughput data. Features with signifi-
cant ERIs can be prioritized for testing as early diagnositic
biomarkers. The ERI method is fundamentally different
from other feature selection methods [14] that also con-
sider the synergy of features. These “synergistic” methods
focus on finding subsets of features that maximize classi-
fication performance rather than the average performance
improvement a feature can bring as in ERI. Consequently,
they tend to return features with high abundance changes
and miss potential biomarkers suitable for early diagnosis.
We applied the developed ERI algorithm to a locally col-

lected proteomics dataset of experimental autoimmune
encephalomyelitis (EAE), and the results has been com-
pared to SAM and Localfdr [15] algorithm, which are
typical feature selection algorithms with controlled false
positive rates (FPR). Although the EAE dataset is a time
series data, most existing time series data processing soft-
ware [16, 17] are not applicable because these algorithms
require a controlling time series data, which is absent

in the tested dataset . Other multivariate and synergis-
tic feature selection algorithms such as KTSP [10] are
not designed to return a comprehensive list of signifi-
cantly expressed features, and are not included in our
comparison study.
EAE is an animal model of autoimmune neuroinflam-

matory demyelinating disease and the most common
pre-clinical model for studying human multiple sclero-
sis [18] which is a disease in the central nervous system
(CNS). The proteomics dataset was generated using M2-
proteomics [19, 20], a previously described quantitative
mass spectrometry method which utilizes TMT labels
[21, 22]. The analyzed dataset was collected using 160
mice at 8 time points [23]. At each time point, 18 to 20
mice were used to obtain the proteomic expression profile
of the mice’s brain homogenate. Day 5 and day 7 are con-
sidered as the pre-clinical onset stage of the disease (early
stage), when no obvious symptoms are observed; overt
symptom appear at approximately day 10 [23]. In this
work, our goal was to identify significantly differentially
expressed proteins at day 5 which is the pre-onset stage of
the disease. Day 5 is considered here because a large num-
ber of proteins show significant expression changes after
this time and hence, it is a critical turning point of disease
development.
As expected, existing data mining tools such as SAM

and Localfdr tends to detect many significantly expressed
proteins at later stages of disease development. For
instance, SAM detected 191 proteins with 0% FPR on day
10, however, only 6.81% of these proteins were detected
by SAM on day 5 at the same FPR. Similarly, 152 pro-
teins were identified by Localfdr in day 10 out of which
merely 4% proteins were determined as significant by the
same algorithm on day 5. In contrast, 25.6% of the proteins
identified by both SAM and Localfdr on day 10 can be
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detected by ERI on day 5. In total, ERI detected 73 signifi-
cantly expressed proteins on day 5 at 0% FPR, while SAM
and Localfdr detected only 35 and 18 proteins respec-
tively in an identical experiment. SAM couldn’t identify
50 out of these 73 proteins that were detected by ERI
whereas Localfdr failed to detect 59 of those proteins.
Similar results were also obtained on day 25. Identifica-
tion of a large number of non-overlapping proteins by ERI
illustrates the efficacy of the proposed method in early
biomarker detection.
Testing results also show that detecting biomarkers ear-

lier on day 5 results in a higher specificity of CNS related
pathways in a pathway enrichment analysis using DAVID
[24]. The specificity is 80% (4 of 5), 20% (1 of 5) and
100% (1 of 1) using the features selected by ERI, SAM
and Localfdr on day 5 (Additional file 1). On the other
hand, the specificity is 46 and 21.7% using SAM and
Localfdr on day 10. This also highlights the need of detect-
ing biomarkers earlier. ERI method doesn’t enrich any
pathways on day 10 because it detects only 2 proteins
as differentially expressed at that time point. This result
is expected because on day 10, a large number of pro-
teins have high expressions which indicate that day 10 is
not an early stage anymore in terms of protein expression
changes.
To understand if the ERI algorithm is applicable to

clinically collected datasets, we further applied ERI on 9
clinically collected gene expression datasets. Since these
datasets are not collected from the early stages, ERI didn’t
return asmany genes as the other twomethods under con-
sideration. However, in 2/3 of the datasets, ERI returned
significant number of genes, and this shows the wide
applicability of ERI.
The much higher sensitivity of ERI at an early stage

offers a new statistical tool for identifying features that
are involved in the earlier stage of the disease. Currently,
the ERI algorithm is applicable to animal model studies in
which the disease causing event is known. In the future,
when more high quality retrospective longitudinal clinical
data will be available, it is expected that ERI will have
broad applications in clinical studies.

Methods
In the process of developing the early response index (ERI)
method, the complete work can be categorized into three
sections–colletion of EAE dataset and pre-processing of
the data, algorithm development and performance evalu-
ation methodology of the developed algorithm.

EAE dataset collection
The EAE dataset is a large scale proteomic dataset based
on 6-plex TMT labeling and TandemMass Spectrometry,
which has been collected using 160 mice at 8 time points
(day -1, 0, 5, 7, 10, 15, 20, and 25). TMT 6-plex allows

the simultaneous quantification of six samples in 6 TMT
channels in one LC-MS run so that experimental varia-
tion can be reduced [25]. At each time point, 18-20 mice
were used to obtain the proteomic expression profile of
the mice’s brain. Samples from the 18-20 mice are ana-
lyzed using 5 runs each day, and within each run of the
6-plex TMT labeling experiment, channel 1 and 6 were
reference channels, and the rests were informative chan-
nels reserved for measuring protein expression levels of
up to 4 mice. The reference channels measured samples
pooled from all mice across all days. For details of the
experiments, see [23].

Pre-processing of the EAE dataset
Peptide identification and quantification were performed
using Mascot. For details of searching parameters please
see [23]. The experiment runs total 40 times generat-
ing 5 datasets per day over 8 days. These datasets were
arranged such that, the rows represent different peptides
and the columns provide various information of the iden-
tified peptides including their abundance measurements
on all 6 channels.
Additional file 1: Figure S1 shows the workflow involved

in preprocessing the EAE experimental data (Additional
file 1). To process raw data, we first merged repeatedly
identified peptides within each run by adding their abun-
dance values. Then, to minimize the effect of inherent
experimental and biological noise and to eliminate the
bias due to experimental factors, we divided the abun-
dance measurements of 4 informative channels by the
average of 2 reference channels for each identified pep-
tide. As a result, the variance was reduced by 2 folds and
the data became free from experimental bias.
After normalizing using the reference channels, we

quantile normalized the 4 ratios on the informative chan-
nels across all datasets to remove any channel effects,
because the channels were randomly assigned for the 20
biological replicates on each day, which should generate
identical ratio distributions across the 4 channels.
We then grouped the quantile normalized peptide ratios

by their associated proteins. For a particular protein, its
abundance level was obtained by taking the median of
ratios for all unique peptides of the protein measured in
the same channel in each run.
After protein quantification, we unionized all quantified

proteins across all 8 time points, and obtained a 734-by-
8 cell structure in Matlab, where 734 rows correspond to
all of the proteins quantified across all days. The columns
correspond to 8 time points. Each cell contains the expres-
sion measurement of 20 mice for a particular protein on a
certain day.
Due to the selective nature of tandem mass spectrom-

etry, only a fraction of all fragmented peptides has been
identified in each run as well as most of the proteins were
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not quantified in all TMT channels. To address the prob-
lem of missing values, we discarded proteins that have less
than 12 measurements out of 18-20 total measurements.
For proteins with 12 or more measurements, we replaced
the missing values with measurements randomly sampled
from the 12 or more existing measurements. After this
step, 313 proteins remained for day 0 and day 5.

Description of clinical datasets
To assess if ERI can be applied generally, we down-
loaded and and applied ERI method on 9 clinically
collected datasets. Table 1 provides a summary of the
datasets. Six of the datasets have binary classes, while
the GSE14333, GSE27854 and CNS datasets are multi-
classes.We are focused on studying the two class problem,
and in the GSE14333 dataset, patients having colorectal
cancer (CRC) of stage I and II tumors are combined as sin-
gle class representing non-invasive tumors, while patients
with stage III tumors, which represent invasive tumors are
treated as another class. In the GSE27854 dataset, CRC
patients with stages I and II were defined as one class,
while stage III and IV patients are combined as other
class. In the CNS dataset, the original study was composed
of three different sets of samples (Dataset A,B,C) rang-
ing from children with medulloblastomas to adults with
malignant gliomas. We analyzed dataset C only, which
consists of medulloblastoma survivors and non-survivors.

The Algorithm for calculating Early Response Index
Early Response Index (ERI) is calculated in the following
process. Suppose a pair of features are Fi and Fj, and we
use them as features of a Support-Vector-Machine (SVM)
classifier [26]. Suppose the classification accuracy rate
achievable is Acc(Fi, Fj) when the SVM classifier is trained
using the expression levels of Fi and Fj in a training sam-
ple set and evaluated on a testing set in a cross-validation
scheme. Suppose Acc(Fi) and Acc(Fj) represent the clas-
sification accuracies if only Fi or Fj are used as the SVM

feature. We define the performance improvement due to
combining Fi and Fj as the improvement score (IS) of Fi
due to Fj,

IS(Fi, Fj) = Acc(Fi, Fj) − max
[
Acc(Fi),Acc(Fj)

]
, (1)

We calculate this improvement score for all possible
combinations of features, and the overall early response
index (ERI) of a feature Fi is obtained by taking the average
of all improvement score of Fi when it is combined with
other features:

ERI(Fi) =
∑

j,j �=i IS(Fi, Fj)
N − 1

, (2)

where N is the total number of proteins.
We can see that ERI only quantifies the average perfor-

mance improvement due to a protein feature when it is
combined with other features regardless of the maximum
accuracy achievable by individual features. It will not favor
features that is highly differentially expressed as in other
feature selection algorithms.
We selected SVM classifiers for calculating the accura-

cies because it gives us high sensitivity. We investigated
the possibility of replacing SVM with Naive Bayes (NB)
[27] and Random Forest (RF) classifier [28]. When using
NB, only 13 proteins with significant expressions were
detected at 0% FPR on day 5 in the EAE dataset, which is
82% less than that using SVM. Similarly, ERI method iden-
tifies only 10 proteins as differentially expressed between
day 0 and 5 while using RF instead of SVM as classifier.
Moreover, 92% (12 of 13) and 80% (8 of 10) of the proteins
detected by NB and RF consecutively were also detected
by SVM. Hence, there is little need to calculate ERI again
using these classifiers after employing SVM.

Feature selection process using ERI
To apply the ERI as a ranking criteria for feature selection,
the processing steps were performed as shown in the flow
diagram (Fig. 2).

Table 1 Summary of clinical datasets used in this study

Dataset Genes Samples class size No of features Source

(ERI) (SAM) (Localfdr)

GSE14333 54675 138/91 0 2 0 [39]

GSE27854 54675 57/58 0 0 0 [40]

CNS 7129 21/39 4 0 2 [41]

Colon Cancer 2000 40/22 3 46 8 [42]

GLI-85 22283 26/59 51 1458 1198 [43]

Lung Cancer 7129 24/62 0 0 0 [44]

Prostate Cancer 10509 50/52 11 946 769 [45]

SMK-CAN-187 19993 90/97 8 289 271 [46]

Breast Cancer 22283 138/71 5 14 2 [47]
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Fig. 2 Feature selection flow diagram of ERI algorithm

Estimate classification accuracy of individual features
To estimate the classification accuracy of single features
(protein or gene), we used a 5-fold cross validation scheme
[29] to avoid the problem of overfitting. We trained SVM
classifiers using 80% of samples from both classes, and
evaluated the performance using the rest 20% of samples.
In order to mitigate any effect of selection bias [30], these
steps were repeated 5 times by randomly dividing the
samples into 5 folds each time. Finally, the average accu-
racy over the 5 repetitions of 5-folds cross validation was
estimated as the classification accuracy achievable (see
Additional file 1).

Estimate classification accuracy of all pairs of features
If there is a large number of features in a dataset, estima-
tion of the accuracy of all feature pairs poses a significant
challenge on computational complexity. To reduce the
complexity, t-test based pre-filtering scheme can be used
to reduce the number of features as described in [3]. We
found that when we ranked features based on t-test statis-
tics, using more than 300 features does not increase the
sensitivity of ERI feature selection (Fig. 3). In the EAE
dataset, since there were only 313 proteins measured on

both day 0 and day 5, all of them were used. In other
datasets, the top 300 proteins are kept.
After pre-filtering, we considered all possible combina-

tions of pairs of the remaining features, and estimated the
accuracy achievable using pairs of features in the same
procedure as that for individual features.

Calculation of improvement score (IS) and early response
index (ERI)
The improvement score (IS) of a feature was calculated
according to Eq. 1. To determine the ERI score of the
feature, the average of all its IS score was calculated
(Eq. 2). This process was repeated for all features. ERI
stands for the average performance improvement a fea-
ture can bring when it is combined with other features for
classification.

ERI cutoff threshold estimation based on FPR.
To determine the cutoff threshold on ERI for selecting
statistically significant features at 0% false positive rate
(FPR), we employed a permutation scheme as that in
SAM, in which the class labels of samples were randomly
permutated. Subsequently, the ERI scores were calculated
for all features using the procedure as described in the
flow chart in Fig. 2. Cutoff threshold was estimated at
0% FPR because we intended to show the usefulness of
our algorithm under the most stringent criteria. Since
the class labels were randomly permuted, it is expected
that none of the features would have a high ERI score.
The procedure was repeated 10 times, and the overall
maximum ERI score achieved in this repetitive experi-
ment was selected as cutoff threshold. A higher number of
permutation trials guarantees more robust threshold esti-
mation. However, the time complexity increases with the
increasing number of permutation trials.
Selection of maximum ERI score as cutoff threshold

ensures the 0% FPR in true dataset. For example, in our
test between day 0 and 5 in the EAE dataset, themaximum
ERI score achieved by any protein out of the 10 random
permutation trials was 0.0258. Hence, when we set the ERI
cutoff threshold as 0.026, it ensures a zero FPR for proteins

Fig. 3 Comparisonofoverlapof discovered significant proteins between selecting (a) 200 and 300 features; (b) 300 and 400 features in pre-filtering step
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with ERIs above 0.026. The ERI threshold was calculated
independently for each of the tested dataset.

Early response feature selection algorithm evaluation
The goal of the ERI algorithm is to prioritize and con-
firm the early involvement of disease correlated features
as potential early diagnosis biomarkers. Thus, the num-
ber of statistically significant features detected at an early
stage of diseases can be used to evaluate the performance
of various algorithms.
In this study, we compared the number of significant

proteins detected by ERI, SAM and Localfdr at different
days using day 0 as reference. SAM had been chosen as
one of the comparable algorithms because this method
ranks features with a significance score at controlled
FPRs. According to [31], in which the authors com-
pared six methods for identifying differentially expressed
genes across multiple conditions, SAM is one of the best-
performing methods when the sample size is greater than
6 (we have 40+ samples in our tests). SAM has been also
used widely for analyzing differentially express genes for
various disease conditions until very recently [32, 33]. In
addition, Localfdr has been shown to perform competi-
tively in presence of large noise variance [31]. Since, ERI is
focused on identifying disease correlated features at early
stage when the expression changes in real biomarkers are
minimal and vulnerable to be subdued by other noisy
features, we also included Localfdr for performance com-
parison. There are existing feature selection algorithms
such as KTSP [10] and MRMR [34] that strive to improve
class prediction performance but these algorithms are
designed to return a minimal number of features, which
makes them inappropriate to be compared with ERI for
the purpose of sensitive detection.

Under 0% FPR, we used the R-package of SAM called
“samr” [35] to select a list of significant differentially
expressed proteins at various time points.

Results and discussion
Detecting early responding features
Number of significant features identified at day 5 and 25
In the EAE dataset, day 5 is the pre-onset clinical stage
when the disease symptoms are not obvious. As our exper-
imental data have shown, hundreds of proteins will have
high abundance changes after this time point, and iden-
tifying biomarkers that have responded to the disease
on day 5 will offer opportunities for disease intervention
before a large number of proteins are affected.
We first applied the comparable methods between day

5 and day 0. The ERI algorithm was applied at 0% FPR
with a cutoff score of 0.026 which identified 73 proteins
as significantly expressed (ERI score ≥ 0.026). In contrast
SAM and Localfdr detected 35 and 18 proteins respec-
tively at 0% FPR. Out of the 73 ERI identified proteins,
50 proteins were not identified by SAM (Fig. 4a) while
Localfdr missed 59 of those proteins detected by ERI
(Fig. 4b). The results between day 0 and day 25 are sim-
ilar. Day 25 marks the initiation of the remission process
which is characterized by clinical attacks (relapses) with
diverse neurological dysfunctions, followed by functional
recovery (remission) [21]. Though, ERI detected 38 signif-
icant proteins at this stage, SAM and Localfdr detected 18
and 7 proteins respectively. Among the 38 ERI proteins,
only 26.3 and 5.2% can be detected consecutively by these
methods. Interestingly, we also discovered that 50% of the
significant proteins identified by ERI during the remission
stage were also identified by ERI during the initial stage of
the disease.

Fig. 4 Comparison of overlap of discovered significant proteins (a) between ERI and SAM at day 5; (b) between ERI and Localfdr at day 5; (c)
between ERI at day 5 and SAM, Localfdr at day 10; (d) between SAM at day 5 and SAM at day 10 (e) between Localfdr at day 5 and Localfdr at day 10
and (f) between day 5 and day 10 by ERI, SAM and Localfdr combined
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This shows that ERI is capable of detecting more sig-
nificant proteins than both competitive methods before
critical turning points of disease development.

Repeatability of significant feature detection
We investigated how many proteins that were detectable
on day 10 could be detected earlier on day 5. While SAM
detected 191 significant proteins on day 10, only 13 (6.8%)
of the 191 proteins can be detected on day 5 by SAM
alone (Fig. 4c). Similarly, out of the 152 proteins iden-
tified by Localfdr as differentially expressed on day 10,
only 6 proteins (4%) were detected on day 5 too by the
same method (Fig. 4d). The proteins detected by Localfdr
on day 10 completely overlaps with those detected by
SAM on the same day (Fig. 4e) which shows that both
the methods perform identically during disease onset and
the proteins identified are truly differentially expressed.
When we applied ERI, 39 of the 152 proteins (25.6%) that
were detected by bothmethods on day 10, can be detected
on day 5 (Fig. 4e). Combining ERI with SAM and Localfdr
together can significantly increase the number of repeat-
edly identified proteins. Altogether, the three methods
identified 193 unique proteins at day 10 and 84 proteins
at day 5, out of which 48 are overlapping proteins (Fig. 4f).
We also noticed that 60.27% of the total proteins identi-
fied by ERI at day 5 were detected by SAM and Localfdr at
day 10. The result is similar when we examine the overlap
between other days.
This shows that ERI can verify the involvement of more

disease correlated proteins at an earlier stage than SAM
and Localfdr. In additionwhen ERI is combinedwith those
methods, it is possible to identify more features that are

responding to the disease process at multiple stages of the
disease.

Expression profile over time for significant proteins
In Fig. 1(a), we plot the average expression time profile of
12 arbitrarily picked proteins from the 73 proteins iden-
tified by ERI on day 5. Only 12 proteins are randomly
picked in the expression profile plots because showing
more profiles clogs the view. We can see that most of
these proteins have shown sustained and monotonically
increasing patterns between day 0 and day 10. In con-
trast, in Fig. 1(b), we plot the expression profiles of 12
randomly selected proteins from the list identified by both
SAM and Localfdr on day 10, but were not called as
significant by ERI on day 5. Even though these pro-
teins also show the monotonically increasing pattern as
in Fig. 1(a), but they have minimal changes between day
0 and day 5. This explains why these proteins were iden-
tified by other methods at day 10 but not by ERI at day
5. For comparison, the average expression time profiles
of 12 randomly picked proteins from those identified by
SAM and Localfdr at day 5 are shown in Fig. 1(c). It can
be seen that these proteins generally have little correlation
with disease development from day 0 to day 10, and their
expression levels cannot track disease development.
A comprehensive comparison of average ratio change

of ERI picked proteins (73) and those detected by other
algorithms on day 10 but not by ERI (146) on day 5 is
shown in the boxplot of Fig. 5. The protein abundance
ratios were calculated as the median expression value of
proteins across 18-20 samples at day 0 over the themedian
expression value of these proteins at day 5. The absolute
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value of all logarithmic protein ratios were used to cre-
ate the box plot. The box plot shows that ERI identified
proteins have higher differential expression levels than
those not identified by ERI. Therefore, they should be
prioritized as potential early diagnostic biomarkers.

Performance of ERI after day 5
It shall be noted that ERI is very sensitive to early changes
of protein expression, but not very sensitive to later stage
changes. We applied the ERI algorithm between day 0
and all other time points, and the number of significant
detection is listed in Table 2. These numbers are com-
pared with that of SAM and Localfdr. We noticed that
from day 7 to day 20, SAM detects more proteins than
ERI when large number of proteins showed significant
abundance changes, whereas ERI detects more on day 5
before significant expression changes occurred in large
number of proteins (see Fig. 1a), which indicates that ERI
is more sensitive to the changes in feature expression due
to the disease. Similar pattern is evident between ERI and
Localfdr as well except day 15 and 20 when the number of
detected significant proteins are close to each other. These
results imply that ERI method should be applied for early
stage biomarker discovery.
From Table 2, it becomes clear that whether ERI can

detect a significant amount of features depends on when
the samples are collected. So, the relative number of sig-
nificant features identified by ERI and other methods can
be utilized to infer the time frame of disease development
roughly. If SAM and Localfdr detects more than ERI, then
it is likely that the disease development has passed its ini-
tial stage. ERI and SAM can be applied jointly to detect
potential disease biomarkers through the whole course of
a disease.

Biological relevance of identified early stage proteins
To understand the biological relevance of proteins
detected by ERI, SAM and Localfdr on day 5, we per-
formed a pathway enrichment analysis through DAVID
[24]. It turns out that the 73 proteins identified by ERI
on day 5 enriched five KEGG pathways with p-value less
than 0.05. The pathways are Glycolysis/Gluconeogenesis,
gap junction, Parkinson’s, Huntington’s and Amyotrophic
Lateral Sclerosis (ALS) diseases, 4 of which are similar to
Multiple Sclerosis disease pathways that affect the central

Table 2 Number of significant proteins identified by three
methods across different days of EAE dataset

Method Day 5 Day 7 Day 10 Day 15 Day 20 Day 25

ERI 73 5 2 13 23 38

SAM 35 106 191 17 27 18

Localfdr 18 219 152 5 21 7

nervous system (CNS). In contrast, feeding DAVID sepa-
rately with proteins detected by SAM and Localfdr on day
5 resulted into only one CNS specific pathways each with
p-value< 0.05 (see Additional file 1). Considering the fact
that multiple sclerosis is a CNS disease, it signifies the ERI
can return more disease related pathways.
We have also examine the pathways detected by SAM

and Localfdr at day 10, and compared with those detected
at day 5 using ERI. SAM returned 19 enriched KEGG
pathways having p-value less than 0.05, and 7 of them
were CNS specific. On the other hand, 23 pathways were
enriched with p-value < 0.05 by Localfdr day 10 pro-
teins out of which five were CNS related. By dividing the
number of detected CNS pathways by the number of total
number of significant pathways , ERI’s specificity in find-
ing CNS related pathways is 80% on day 5, while SAM
and Localfdr are only 37 and 21.7% specific on day 10.
These results show that performing biomarker discovery
at an earlier stage using ERI could potentially increase
the specificity of biomarker discovery. The list of detected
pathways are provided in Additional file 1.

Wide applicability of ERI
To assess the applicability of ERI method on human
dataset, we have applied the algorithm at 0% FPR on
9 datasets collected from the literature (Table 1). These
datasets were collected in clinical settings after the onset
of the disease. Thus, they cannot be used to test the effi-
cacy of ERI in discovering early diagnostic biomarkers.
However, some of the data are still expected to return
significant features as in the case of EAE dataset on day 25.
Since there are thousands of measured genes in these

clinical datasets, we used a pre-filtering step to reduce the
number of features to 300 based on their t-test P values.
To test if 300 is an appropriate number, we applied the
procedure of calculating ERI scores for the GLI-85 [43]
dataset by keeping 200, 300 and 400 genes after the pre-
filtering step.We found that when we increase the number
of genes from 200 to 300, the number of significantly
detected genes by ERI increases significantly as shown in
Fig. 3(a). However, when we increased the number of fea-
tures to 400, the total number of detected features does
not increases further (Fig. 3b). There is also a significant
overlap when selecting different number of pre-filtered
features. Twelve of the 14 proteins detected when keep-
ing 200 features are found again with 300 features. The
overlap between using 300 and 400 features is 68.6%.
The number of detected significant proteins for the 9

datasets by the methods under consideration are listed
in Table 1. It can be seen that at least in 2/3 of the
datasets, there are a significant number of genes identified
by ERI indicating that the method can be applied broadly.
For most of the dataset, SAM and Localfdr clearly out-
performs the ERI algorithm in terms of the number of
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significant genes identified. These results are not beyond
expectation because in clinical settings, the datasets are
usually collected after the onset stage of diseases. When
there exists a significant number of ERI detected genes,
it is indicative that the disease is progressing to another
stage, since ERI only detects early responders to a disease
condition.
Notably, ERI identified 4 significant genes for the CNS

dataset whereas Localfdr detected 2 significant genes
and SAM failed to detect any. The CNS dataset has 60
samples, which includes 39 cases of medulloblastoma
survivors and 21 treatment failures. All tumor samples
were obtained at the time of initial surgery prior to treat-
ment. Failure of SAM in discovering any significant genes
is attributed to the strict false positive rate (0% FPR) that
we have applied. This is a more stringent criteria for
significance detection than in the original work [41], in
which the author discovered a list of 50 markers using a
signal-to-noise statistic. Interestingly, B-50 neural phos-
phoprotein (GAP43), one of the 4 genes identified by
ERI method, has been consistently proven to be down-
regulated in an independent work by the deficiency of
nitric oxide synthase (Nos2) which is indirectly involved
in controlling proliferation and differentiation of medul-
loblastoma developmental process cells [36]. ERI also
detected LTC4S, which has also been identified in the list
of common cancer signature genes [37]. Another signifi-
cant gene identified by ERI in this dataset was Endothelial-
3 (END3). Though, there is no reference of END3 to
be directly involved with medulloblastoma patients but
this gene has been reported to be highly produced by
glioblastoma stem cells [38], which is a subtype of malig-
nant brain tumors (Glioma) along with medulloblastoma.
These results show that ERI can return disease correlated
genes even when SAM failed to return any.

Conclusion
In this paper, a novel statistics, Early Response Index (ERI)
is proposed for the detection of disease correlated features
for early diagnostic biomarker discovery. The proposed
method is shown to have significantly higher sensitivity
in biomarker detection compared to SAM and Localfdr
before critical turning points of the disease process, after
which large number of molecules will be impacted by the
disease with significant abundance changes. Furthermore,
ERI is sensitive to the time of sample collection. ERI only
returns significant number of features before critical turn-
ing points when the disease is about to impact a large
number of molecules. Consequently, ERI can be used for
identifying the best time frame for disease intervention.
Besides increased sensitivity at early stage, ERI has also

been shown to have a higher specificity in returning cen-
tral nervous system (CNS) related pathways when it is
used early during the disease process than using SAM at a

later stage. This further illustrates the need for using ERI
at an earlier stage for more specific and more sensitive
biomarker discovery.
In summary, the ERI method has been shown to be very

sensitive for significant feature detection before critical
turning points of disease development within the scope of
Multiple Sclerosis and some clinical cancer dataset used
in this study. It potentially has a higher specificity for
biomarker discovery, and can be used to identify critical
time frame for disease intervention.

Additional file

Additional file 1: Supplementary material. Supplementary material
ERI.docx — This supplementary document contains results of path
enrichment analysis, a pseudo code describing the classification accuracy
estimation scheme and flow chart of EAE data preprocessing steps.
Proteins detected by different methods in different days.xlsx — This file
lists all the significant features detected by various methods at different
timepoints on EAE dataset. (XLSX 34.1 kb)
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