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Abstract

Background: Burgeoning interest in integrative analyses has produced a rise in studies which incorporate data from
multiple genomic platforms. Literature for conducting formal hypothesis testing on an integrative gene set level is
considerably sparse. This paper is biologically motivated by our interest in the joint effects of epigenetic methylation
loci and their associated mRNA gene expressions on lung cancer survival status.

Results: We provide an efficient screening approach across multiplatform genomic data on the level of biologically
related sets of genes, and our methods are applicable to various disease models regardless whether the underlying
true model is known (iTEGS) or unknown (iNOTE). Our proposed testing procedure dominated two competing
methods. Using our methods, we identified a total of 28 gene sets with significant joint epigenomic and
transcriptomic effects on one-year lung cancer survival.

Conclusions: We propose efficient variance component-based testing procedures to facilitate the joint testing of
multiplatform genomic data across an entire gene set. The testing procedure for the gene set is self-contained, and
can easily be extended to include more or different genetic platforms. iTEGS and iNOTE implemented in R are freely
available through the inote package at https://cran.r-project.org//.
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Background
Burgeoning interest in integrative analyses has produced
a rise in studies which incorporate data from multiple
genomic platforms. In general, there are two methods of
integrating genomic data [1]. The first is horizontal inte-
gration, where genomic data from different studies but
of the same type (e.g. multiple gene- expression microar-
ray studies) are combined, sometimes across labs, cohorts,
and platforms. The second is vertical integration, where
multiple levels of ’omics data (e.g. DNA variation, methy-
lation, and gene expression) are gathered on the same
subjects and analyzed. A useful distinction to be made
in methods for vertical integrative approaches involves
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whether the multiplatform data are assessed via a “screen-
and-clean” paradigm [2, 3], where each platform is ana-
lyzed independently to screen for and select a subset of
significant candidates to use in a combined analysis (i.e.
a sequential integration analysis), or whether the mul-
tiplatform data are assessed simultaneously (i.e. a joint
integration analysis).
Most integrative studies employ approaches that pri-

marily rely on dimension reduction methods to accom-
modate the high dimensionality of analyzing multiple
platforms [4, 5]. These techniques seek to synthesize com-
plex genetic information into summary statistics, poten-
tially at the cost of discarding large quantities of data
which might still be mechanistically informative. And
while methods development for non-reductive multi-
platform integrative analysis has become more common
in recent years [6, 7], these methods are mainly restricted
to candidate gene interrogations, and do not encapsu-
late the highly likely network-level interactions between
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disease-risk-conferring genes. Of course, numerous tests
of gene sets are available [8–10] – but few that also include
the integration of additional genomic platforms.
Additionally, literature for conducting formal hypothe-

sis testing on an integrative gene set level is considerably
more sparse than that for estimation. For example, inte-
grative methods for identifying potential risk pathways
include strategies that employ Bayesian mixture mod-
eling [11–14], Bayesian graphical models [13], Bayesian
network models [15], non-negative matrix factorization
[16–18], and weighted gene correlation network
approaches [3]. To our knowledge, methods for joint
integrative testing of any kind are small in number; for
gene sets, there is a variant of GSEA [4, 5], and for can-
didate gene approaches there are a few multivariate and
mediation methods [6, 7, 19]. Although effect estimation
is informative when candidate gene sets/networks are
already identified or hypotheses are well-defined, an effi-
cient screening approach across multi-platform genomic
data is critical for hypothesis generation. Therefore,
in this paper, we focus on efficient testing procedures
to assess the effect of an entire gene set through the
joint analysis of multiple genomic platforms, such as
epigenomic and transcriptomic data.
Joint integrative analyses become substantially challeng-

ing when considered on the level of gene sets, where the
number of model parameters rapidly increases as the size
of the gene set grows. Additionally, correlation structure
within a gene on the level of methylation sites, as well
as between genes on the transcript expression level, may
cause conventional univariate or multivariate tests to per-
form poorly [10, 20, 21]. We therefore propose a variance
component test to assess the total effect of a set of methy-
lation loci and mRNA gene expressions across a gene set
on disease outcome. The test statistic for the joint gene set
analysis follows a mixture of χ2 distributions, which we
may approximate analytically, or empirically using a per-
turbation procedure, after specifying a disease model for
the whole gene set (e.g. epigenetic effect only, or epige-
netic effect and gene expression effect, or both epigenetic
and gene expression effect as well as their interactions).
However, because the true disease models underlying dif-
ferent genes may vary, we also construct two gene set level
omnibus tests to accommodate different disease models.
A general overview of our approach is presented in Fig. 1.
The biological motivation for this paper lies in the con-

nection between DNAmethylation (DNAm) patterns and
lung cancer survival. In particular, we are interested in
the total joint effect of DNAm and downstream mRNA
expression levels for all genes in a related pathway on
survival probability in 559 subjects with both epigenome-
wide DNAm and RNA-sequencing data from The Cancer
Genome Atlas (TCGA). We demonstrate the utility of our
integrative testing procedures by identifying significant

gene sets that can be further explored for potential
biomarkers of prognosis or even therapeutic targets.

Methods
Our integrative gene set testing approach can be viewed
as a variance component test [6, 10] under the generalized
linear mixed model framework [22].

Integrated genemodel and test of total effects
Huang et al. [6] proposed a method to jointly analyze
the effects of a set of genetic markers and a correspond-
ing measure of gene expression within a single candidate
gene on disease outcome, which is applicable to the anal-
ysis of epigenetic and transcriptomic data. Briefly, let Yi
represent the dichotomous disease outcome of subject i
(i = 1, . . ., n) and let X i represent r covariates of interest
for subject i. Further assume that Yi is associated with the
r covariates of interest X i (with the first covariate set as
the intercept), the methylation levels at a set of p CpG
loci within the candidate gene

(
Mi = (

M1i, . . .,Mpi
)′),

the corresponding gene expression (Gi), and possibly their
interactions. Then, the underlying model for any given
candidate-gene total effect test is:

logit {P (Yi = 1 | Mi,Gi,X i)} = X ′
iβX

+ M′
iβM + GiβG + GiM′

iβC ,
(1)

where βX = (
βX1 , . . .,βXr

)′, βM = (
βM1 , . . .,βMp

)′, βG,
βC = (

βC1 , . . .,βCp

)′ represent the regression coefficients
for the covariates, the CpG loci, gene expression, and the
interactions between the CpG set and gene expression,
respectively. Then, the null hypothesis for a single-gene
test of total effect is:

H0 : βM = 0, βG = 0, βC = 0, (2)

which can be cast into a variance component testing
framework by assuming: 1) the elements of βM are inde-
pendent and follow an arbitrary distribution with mean
0 and variance τM and 2) the elements of βC are inde-
pendent and follow an arbitrary distribution with mean 0
and variance τC . In other words, the outcome model (1)
becomes a logistic mixed model and the null hypothesis
may be re-expressed as:

H0 : τM = τC = 0, βG = 0. (3)

Using the abovemodel specifications, the score statistics
may be derived for τM,βG and τC respectively as:

UτM = (
Y − μ̂0

)′
MM

′ (Y − μ̂0
)
,

UβG = G′ (Y − μ̂0
)
,

UτC = (
Y − μ̂0

)′
CC

′ (Y − μ̂0
)
,
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Fig. 1 A general overview of the variance component-based total effect gene set testing procedure. Each gene within a gene set of interest has at
least two sources of genomic data such as DNAm and mRNA expression per subject. Two levels of integration occur, first at the single-gene level to
jointly test DNAm and mRNA expression, then at the network level where the evidence from all viable genes is jointly assessed to produce a test of
the gene set. Q̂∗ : observed Q-statistics; {Q̂(b)∗ }: the resampling-based perturbation distribution for Q̂∗ under the null

where M = (M1, . . .,Mn)
′, G = (G1, . . .,Gn)′,

C = (C1, . . .,Cn)
′, Ci = GiMi, μ̂0 = (

μ̂01, . . ., μ̂0n
)′, and

μ̂0i = eX′
i β̂X/

(
1 + eX′

i β̂X
)
is the mean Yi under the null

model

logit {P (Yi = 1 | Mi,Gi,X i)} = X ′
iβX (4)

where β̂X is the maximum likelihood estimator of βX .
Using a conventional approach to combine the score
statistics for each component such that Qconv = U ′I−1U ,
where U = (UτM ,UβG ,UτC )), would involve combining
score statistics from different scales and requires the exis-
tence of the 8th moment of Y to calculate the efficient
information matrix of U , I . Therefore, the component
score statistics are instead summed to create a weighted

test statistic for the null hypothesis (3), denoted as Q∗
statistics:

QMGC = n−1
(
a1UτM + a2U2

βG
+ a3UτC

)
.

QMG = n−1
(
a1UτM + a2U2

βG

)
,

QM = n−1 (
a1UτM

)
,

QG = n−1
(
a2U2

τβG

)
,

where Q∗ = {QMGC ,QMG,QM,QG} represents the under-
lying disease models MGC, MG, M, and G which corre-
spond to the model specifications that include 1) CpG,
gene expression, and their interactions across the full gene
set, 2) the CpG and gene expression effects across the full
gene set, 3) only CpG effect, and 4) only gene expression
effect respectively, and the weights a1, a2, and a3 defined
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as the inverse square root of the variances for their cor-
responding score statistics to make UτM , U2

βG
and UτC

comparable.
BecauseUτM ,U2

βG
, andUτC are all quadratic functions of

Y , the null distribution of Q∗ may be approximated with a
mixture of χ2 distributions, thus we may derive p-values
for Q∗ by using the Satterthwaite scaled-χ2 approxima-
tion [23] or the characteristic function inversion method
[24]. Alternatively, one can perform the test by conduct-
ing a resampling-based perturbation procedure [25–27].
The perturbation procedure is used to approximate the
null distribution of Q = Q(β̂X) by resampling realizations
of its asymptotic distribution underH0. Specifically, it can
be shown that

Q∗ →
∑
l

(
A′
lε

)2 ,

where ε is a multivariate normal random variable
with mean 0 and covariance D =

(
DXX DXV
DVX DVV

)
=

n−1U ′WU , U = (U1, . . .,Un)′, U i = (X ′
i,V ′

i), V i =
(
√a1M′

i,
√a2Gi,

√a3C′
i)

′, W = diag {μ0i(1 − μ0i)}, and
Al is the lth row of A =

[
−D′

XVD
−1
XX , I2p+1

]
where I is

the (2p + 1) dimensional identity matrix. In other words,
Q∗ can be shown to follow a mixture of χ2 distribu-
tions. The perturbation procedure then approximates the
asymptotic distribution ofQ∗ by generating realizations of
ε, ε̂, repeatedly, where ε̂ = n−1/2 ∑n

i=1U ′
i(Yi−μ̂0i)Ni and

Ni are independent N(0, 1). For perturbation b, we gener-
ate N (b) =

(
N (b)

1 , . . .,N (b)
n

)
, b = 1, . . .,B (the number of

perturbations) to obtain the realization of the distribution
of ε, from which we approximate the distribution of Q∗.

Integrated gene set model and test of total effects
We expand our model to extend the single-gene joint test
proposed by Huang et al. [6] to a full gene set. Let J × 1
vector Gi represent the expression level for j = 1, . . ., J
genes for subject i, and Mi =

(
M′

1i, . . .,M′
ji, . . .,M′

Ji

)′
,

represent the K × 1 methylation value vector for the pj
CpG loci of gene j with Mji = (

M1i, . . .,Mpji
)′, K =∑

j pj. Similarly, to allow for interaction effects, let Ci =(
C′
1i, . . .,C′

ji, . . .,C′
Ji

)′
, where Cji = (

GjiM1i, . . .,GjiMpji
)′.

The model thus underlying a gene set test which includes
interactions between the methylation sites and gene
expression can be specified as:

logit {P (Yi = 1 | Mi,Gi,X i)} = X ′
iβX

+ M′
iβM + G′

iβG + C′
iβC ,

(5)

where βM =
(
β ′
M1 , . . .,β

′
MJ

)′
K×1

, βG =
(
βG1 ,βG2 , . . .,βGJ

)′
J×1, and βC =

(
β ′
C1
, . . .,β ′

CJ

)′
K×1

represent the coefficients for all CpG loci, gene expres-
sion, and within-gene cross-product interactions across
the gene set, and βMj =

(
βMj1 , . . .,βMjpj

)′
pj×1

and

βCj =
(
βCj1 , . . .,βCjpj

)′
pj×1

. The resulting hypothesis test

for the total effect of a gene set is:

H0 : βM = 0, βG = 0, βC = 0. (6)

As the gene set grows, however, the number of
parameters to test becomes intractable under standard
likelihood-based multivariate testing methods. Similar to
the above single gene analyses, we resort to an empiri-
cal Bayes approach by assuming that the effect parameters
β ’s share common distributions for each gene j: 1) the
elements of βMj are independent and follow an arbitrary
distribution with mean 0 and variance τMj and 2) the ele-
ments of βCj are independent and follow another arbitrary
distribution with mean 0 and variance τCj . Based on the
above assumptions, we construct a test for the following
null hypothesis:

H0 : τMj = τCj = 0, βGj = 0, for j = 1, . . .J . (7)

We use a modified variance component testing proce-
dure to obtain our test statistic, QNet∗. For the gene set
being tested:

QNet∗ =
J∑

j=1
wjQj = n−1 (

Y − μ̂0
)′

× (
w1K1∗ + · · · + wJKJ∗

) (
Y − μ̂0

)
,

(8)

where Kj∗ indicates the kernel of the underlying disease
model specification for gene j: Kj∗ = a1jMjM′

j +a2jGjG′
j +

a3jCjC′
j for the MGC model, and Kj∗ = a1jMjM′

j +
a2jGjG′

j, Kj∗ = a1jMjM
′
j, and Kj∗ = a2jGjG′

j for the
MG, M, and G only models, respectively; we again chose
the weights w1, . . .,wJ to be the inverse of the standard
deviation to make each Qj comparable. In closed form
calculations, we assume all genes follow the same model
specification: M, G, MG, or MGC such that we obtain
as test statistics QNetM, QNetG, QNetMG, or QNetMGC . We
note that the disease-model specifying only gene expres-
sion effects is in fact equivalent to the single-platform
(i.e. non-integrative) gene set testing method proposed by
Huang and Lin [10] with working independence among
the genes. Their approach, called the total effect of a gene
set (TEGS), is therefore a special case of the integrative
methods presented here.
Under the null, QNet∗ can be shown to follow a mixture

of χ2 distributions. Thus, as in the single-gene total effect
test, we may calculate p-values for QNet∗ either by using
the characteristic function inversion method (Davies
method), the resampling-based perturbation procedure,
or approximate by matching the first two moments of the
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scaled-χ2 distribution (Satterthwaite method). We will
refer to this method as the integrated total effect of a
gene set (iTEGS) with iTEGS-M, iTEGS-G, iTEGS-MG
and iTEGS-MGC denoting tests under theM, G,MG, and
MGC models, respectively.

Integrated pathway-wide omnibus tests
Omnibus chi-squared gene set test
A gene set drawn from a network or pathway is comprised
of many genes, and each of these genes may have different
underlying disease models wherein causal relationships
with disease risk might be best represented by differing
models M, G, MG, andMGC. The algorithm to obtain the
empirical null distribution of the sum of χ2 statistics of
the gene set is as follows:

1. For each gene j in the gene set:

a. Calculate the observed Q̂jM , then obtain its
empirical distribution

{
Q̂(b)
jM , b = 1, . . .,B

}

where B denotes the number of perturbations.
b. Repeat a.) for Q̂jG, Q̂jMG, and Q̂jMGC

respectively.
c. Obtain p-values Pr

(
Q̂(b)
j∗ > Qj∗

)
for Q̂jM ,

Q̂jG, Q̂jMG, Q̂jMGC . Denote these as
P̂jM, P̂jG, P̂jMG, and P̂jMGC , respectively, and
P̂jmin = min

(
P̂jM, P̂jG, P̂jMG, P̂jMGC

)
.

Transform P̂jmin to its corresponding χ2
1

quantile denoted T̂jmin (the χ2
1 statistic with

tail probability P̂jmin ).
d. Obtain the empirical distribution of T̂jmin ,{

T̂ (b)
jmin

}
where T̂ (b)

jmin
is the χ2 statistic with tail

probability of
P̂(b)
jmin

= min
(
P̂(b)
jM , P̂(b)

jG , P̂(b)
jMG, P̂

(b)
jMGC

)

2. Sum the J observed T̂jmin across the gene set such
that T̂Net = ∑J

j=1 T̂jmin . To obtain the empirical null

for T̂Net, calculate
{
T̂ (b)
Net = ∑J

j=1 T̂
(b)
jmin

}
. Calculate

the gene-set p-value by obtaining the proportion of
values that are more extreme than the observed T̂Net.

This approach, which we term the chi-transformed inte-
grated network omnibus total effect test (iNOTE-chi),
should provide a powerful approach for testing gene sets
in cases where the true underlying disease models for the
genes in a gene set are unknown.

Omnibus uniform networkmodel gene set test
While iNOTE-chi provides the flexibility that different
genes may follow different disease models (M, G, MG or
MGC), its performance may depend on whether the true

underlying models for each gene are correctly selected,
which introduces another source of uncertainty in model
specification. In cases where the disease risk signal is
not easily differentiable between the disease risk mod-
els, omnibus selection of disease models for each gene
may not necessarily improve the power of the method.
Therefore, we developed another test that determines a
consensus disease model that is most generally applicable
across the whole gene set. The complete algorithm is as
follows:

1. For each gene j in the gene set:

a. Calculate the observed Q̂jM , then obtain its
empirical distribution

{
Q̂(b)
jM , b = 1, . . .,B

}

where B denotes the number of perturbations.
b. Repeat a.) for Q̂jG, Q̂jMG, and Q̂jMGC

respectively.

2. Sum the J observed Q̂j∗ across the gene set under
each disease model such that we have three test
statistics: Q̂NetM , Q̂NetG, Q̂NetMG, Q̂NetMGC . Calculate
their associated p-values Pr

(
Q̂(b)
Net∗ > Q̂Net∗

)
,

denoted P̂Net∗, then select as our omnibus network
test statistic:

P̂Netmin = min
(
P̂NetM, P̂NetG, P̂NetMG, P̂NetMGC

)

3. Obtain the empirical null for P̂Netmin by calculating{
P̂(b)
Netmin

= min
(
P̂(b)
NetM, P̂(b)

NetG, P̂
(b)
NetMG, P̂

(b)
NetMGC

)}
.

Calculate the gene set p-value as above by comparing
the observed P̂Netmin to

{
P̂(b)
Netmin

}
and obtaining the

proportion of values that are more extreme than the
observed P̂Netmin , or by using the Satterthwaite
method.

We term this approach the uniform model integrated
network omnibus total effect test (iNOTE-uni).

Simulation studies
We simulated DNAm based on Infinium HumanMethy-
lation 450K Beadchip data obtained from the lung
tissue samples of 681 lung cancer patients in The Can-
cer Genome Atlas. To realistically simulate disease out-
come and gene expression, high correlation CpG blocks
were identified across the epigenome to generate CpG
sets which were then used to model gene expression.
One causal CpG was selected per CpG set and gene
expression was simulated for each subject i by the lin-
ear regression model: Gi = δ0 + Mjcausalδ + εi, where
εi ∼ MVN (0,�) and � is a J × J covariance matrix
with diag(1) and between-gene covariance equal to 0.7.
Within-gene covariance was accounted for by the covari-
ance structure in actual subject data (from which the CpG
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blocks were drawn). For each simulation, a case-control
sample of 100 cases and 100 controls were randomly
selected from a simulated cohort of 681 subjects.
To evaluate the performance of the proposed omnibus

methods, iNOTE-chi and iNOTE-uni, we conducted
power simulations for gene set sizes of 10 and 50 at signal
density proportions (i.e. the proportion of genes randomly
selected to be causal within the gene sets) of 0.2, 0.5, 0.8,
1.0 across seven different simulation settings. The seven
scenarios varied the mixture of underlying disease mod-
els for the causal genes in a given gene set as follows: 1) all
genes followM-only models; 2) all genes followMGmod-
els; 3) all genes follow MGC models; 4) 50:50 mixture of
M-only and MG models; 5) 50:50 mixture of M-only and
MGC models; 6) 50:50 mixture of MG and MGC models;
7) one-third mixture of M, MG, MGC models.
We next compared our proposed methods, iTEGS,

iNOTE-chi, and iNOTE-uni with two existing methods:
1) gene set association analysis (GSAA) [5], an integra-
tive variant of the common gene set enrichment analysis
(GSEA) approach to gene set testing, and 2) a more recent
estimating equation-based integrative method proposed
by Zhao et al. [7] which assumes that any effects of the
exposure (e.g., methylation) are fully mediated by a medi-
ator (e.g., gene expression) to produce the outcome which
we will simply refer to as the ‘Zhao’ method. The Zhao
method requires estimation of parameters and thus strug-
gles to converge if the size of the gene set gets too large
(e.g., the number of genes is greater than 5). To accom-
modate the competing method, we reduced the size of
the gene set to three genes, each with 11 corresponding
CpG loci, but note that the number of parameters is still
quite large (i.e., 36 main effect parameters) relative to our
sample size. To compare the power performance of GSAA
which tests for a competitive null hypothesis [28], 49 back-
ground gene sets of equal size (3 genes per set) and null
effect on disease risk were simulated in the same manner
as the causal gene set in each simulation.

Application: pathway-wide association scans in TCGA
To illustrate the utility of our method, we obtained an ini-
tial sample of pre-processed level 3 genomic data from
681 lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) patients in The Cancer Genome Atlas
(TCGA) database (http://cancergenome.nih.gov/) with
DNAm data assayed on the Illumina Infinium Human
Methylation 450K. Among the 681 subjects, 559 also had
measured mRNA expression and clinical outcome data.
From the 559 patients with both levels of genomic data, we
identified a final analytic sample of 249 subjects who had
complete information on one-year survival since cancer
diagnosis. Methylation and RNA-Seq data were adjusted
for batch effects using the ComBat method in the Surro-
gate Variable Analysis (sva) Bioconductor package [29].

To obtain candidate pathways to test, we next scanned
the Molecular Signatures Database (MsigDB; version 5.1)
[4] for all gene sets that were associated with the keywords
“lung” and “(cancer OR carcinomas)” in homo sapiens, and
identified 103 gene sets of varying sizes (ranging from as
small as 5 to as large as 456 genes in the gene set) for joint
testing with integration of epigenomic and transcriptomic
data. Among these, four gene sets were excluded due
to the absence of methylation probes, mRNA expression
data, or both, in all the genes that comprised each gene
set, resulting in a final 99 gene sets for our joint analyses.
The 99 gene sets were then scanned using iTEGS under
the M, MG, and MGC disease-risk models, as well as
with the two iNOTE methods. The iTEGS-G test, assum-
ing mRNA gene expression effects only, was calculated to
provide a benchmark for assessing the benefits of inte-
grating methylation data, and incorporated in the iNOTE
omnibus model selection algorithm. Finally, all gene set
tests were adjusted for potential confounding covariates:
smoking history (pack years), sex, age at diagnosis, race
(white, black, other), pathologic tumor stage at time of ini-
tial biopsy, and cell type (adenocarcinoma, squamous cell
carcinoma).

Results
Simulation study
Size and power
With the gene set size of 50, type I errors were pro-
tected for the variance component test statistics of iTEGS
under each of the three gene set models assuming all
causal genes within the set followM,MG, orMGCmodels
(Table 1). The iNOTE-uni method was also well protected
with a type I error rate close to 0.05. The type I error rate
of iNOTE-chi was 0.052 under the gene set size of 10 but
slightly inflated when the gene set became larger: 0.067 for
the gene set size of 25 and 0.08 for the gene set size of 50.
To evaluate the performance of the iNOTE methods

with respect to power, we conducted power simulations
for a set of 50 genes with signal density of 20% (i.e. 10
genes with one causal CpG locus). Power curves for simu-
lation settings where all causal genes follow 1) M, 2) MG,

Table 1 Empirical sizes of the proposed variant-component
based tests

Davies Perturbation

iTEGS-M 0.043 0.041

iTEGS-MG 0.048 0.048

iTEGS-MGC 0.045 0.045

iNOTE-chi - 0.085

iNOTE-uni - 0.046

Type I error was calculated for a gene set of size 50 using 5000 simulations and
significance threshold of α = 0.05

http://cancergenome.nih.gov/
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3) MGC, and 4) an approximately equal mixture of M,
MG, andMGC disease-riskmodels are presented in Fig. 2.
Other mixtures of disease risk models were also assessed
but results were similar to those of the fourth simula-
tion setting (Additional file 1: Figure A.1). Increasing the
causal signal density proportion from 20% to 80% resulted
in sharp increases in power across all simulation settings,
as expected (Additional file 1: Figure A.2).
In the first simulation setting where all 10 causal

genes in the gene set follow the M disease-risk model,
iTEGS-M demonstrates the greatest power, as expected
(Fig. 2a). The other two model formulations, iTEGS-
MG and iTEGS-MGC, over-specify gene expression and
interaction parameters for testing and thus suffer a perfor-
mance loss in power. Similarly, in the simulation setting
under the MG model, iTEGS-MG, which correctly speci-
fies the model, has the most optimal power performance,
with iTEGS-MGC achieving very similar power perfor-
mance (Fig. 2b). However, iTEGS-M performs consider-
ably worse under settings where both methylation and
gene expression effects are present. In the third simulation
setting where the methylation-by-expression interaction
terms are present (i.e., the MGC model) and the true
disease risk model is MGC, iTEGS-MGC and iTEGS-
MG again have similar power performance, but iTEGS-M

demonstrates a steep drop in power as it tests only for
the presence of a portion of the signal (Fig. 2c). The
final simulation setting in which the causal genes are ran-
domly assigned toM,MG, orMGC disease-risk models in
equal proportion, the performance between the different
iTEGS statistics is similar to the second simulation setting
(Fig. 2d).
Notably, across all simulation settings, the iNOTE-chi

and iNOTE-uni tests reveal strong power performance
that is nearly equivalent to the iTEGS under the cor-
rectly specified model, with the exception of the first
simulation setting, where they are slightly less powerful.
In the first simulation setting, iNOTE-uni outperforms
iNOTE-chi; but in all other simulation settings however,
iNOTE-chi exhibits a slight power advantage compared
to iNOTE-uni, particularly in the case of mixtures of dif-
ferent causal-disease-risk models across different causal
genes within a given gene set.

Comparison to existing approaches
We also studied the performance of iTEGS and the two
iNOTE tests in comparison to two competing approaches
to integrative analysis, GSAA and the Zhao method using
the same four simulation settings described in the inter-
nal power comparisons (to review power performance

(a) (b)

(c) (d)

Fig. 2 Internal power simulations across various disease-model settings for moderately sized gene sets. Power performance is shown for a gene set
of size 50 with a 20% causal risk signal proportion of genes under the disease model settings where all causal genes contribute to disease via a
methylation effect only (M); bmethylation and mRNA expression effect (MG); cmethylation, mRNA expression, and their interactive effects (MGC); d
equal mixtures of M, MG, and MGC. κ on the x-axis denotes the coefficient multiplier for each of the effects βM , βMG , and βMGC
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for additional mixtures of disease-risk models, see
Additional file 1: Figure B.1) In the 3-gene setting, our
methods behave as in the 50-gene simulations where the
correctly specified iTEGS demonstrates optimal power
performance. Importantly, both omnibus approaches,
iNOTE-uni and iNOTE-chi, and the correctly specified
iTEGS tests consistently outperform GSAA and the Zhao
method under various simulation settings (Fig. 3). Our
variance component-based tests especially dominate the
Zhao method in the presence of high direct CpG methy-
lation effects and strong correlation between methylation
loci and gene expression (Fig. 3a), which suffers from
major power loss due to the presence of only direct methy-
lation effects, rather than mediated effects through gene
expression. The power of the Zhao method is somewhat
recovered in simulation settings where the gene expres-
sion signal exists. The GSAA method, which tests for
a competitive null hypothesis, achieved very low power
across all of the simulation settings.

Application: lung cancer survival associated gene sets
We next analyzed the TCGA lung cancer data using
iTEGS (under each of theM-only, MG andMGCmodels),
iNOTE-chi, and iNOTE-uni. Among the 99 lung can-
cer associated MsigDB gene sets that were tested, iTEGS

identified 57, 59, and 52 significant gene sets (p < 0.05)
under the MGC, MG, and M model specifications, and
iNOTE-chi and iNOTE-uni identified 51 and 58 signifi-
cant gene sets respectively (Table 2). The counts of iden-
tified gene sets using our proposed methods all exceeded
what we expected under the null, i.e., 5. Gene sets that
were identified as significantly associated with one-year
survival after Bonferroni correction at p < 5 × 10−4 in
at least one of each of the iTEGS and iNOTE tests are
reported in Table 3. The p-values obtained with the Davies
method for the iTEGS statistics were generally quite simi-
lar to the perturbation-based empirical p-values when the
gene set sizes were small, but tended to vary when the
gene sets grew in size (Additional file 1: Table C.1).
A total of 28 gene sets were identified as significant by

at least one of the iTEGS tests and by at least one of
the omnibus iNOTE tests. There were 23 and 28 gene
sets with significant iNOTE-chi and iNOTE-uni p-values
after Bonferroni correction, respectively. Interestingly, the
iTEGS-MGC, iTEGS-MG, iNOTE-chi and iNOTE-uni
outperformed the iTEGS-G in their ability to identify
gene sets significantly associated with one-year survival
which were known a priori to be related to lung cancer,
despite the fact that many of the gene sets curated by
the MsigDB were obtained from gene expression studies.

(a)

(c) (d)

(b)

Fig. 3 Power simulations comparing variance-component score-based gene set testing procedures to existing methods. Power performance is
shown for a gene set of 3 causal genes with a 100% causal risk signal proportion under the disease model settings where all causal genes contribute
to disease via amethylation effect only (M); bmethylation and mRNA expression effect (MG); cmethylation, mRNA expression, and their interactive
effects (MGC); d equal mixtures of M, MG, and MGC. κ on the x-axis denotes the coefficient multiplier for each of the effects βM , βMG , and βMGC
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Table 2 Counts of overlapping significant lung cancer gene sets associated with one-year survival by iTEGS, iNOTE, and GSAA

iTEGS iNOTE
GSAA

MGC MG M G chi uni

MGC 57 (27) 55 (25) 41 (13) 40 (13) 49 (20) 53 (25) 5 (1)

MG 59 (27) 44 (15) 39 (12) 50 (20) 54 (27) 6 (1)

M 52 (17) 27 (4) 38 (10) 46 (16) 5 (0)
iTEGS

G 40 (13) 37 (11) 39 (12) 3 (0)

chi 51 (23) 48 (20) 5 (1)
iNOTE

uni 58 (28) 6 (1)

GSAA 8 (1)

A total of 99 lung cancer associated gene sets were obtained and tested from MsigDB. Tests for iTEGS were calculated under disease-risk model specifications M: methylation
effect only, G: gene expression effect only, MG: methyation and mRNA expression effects, and MGC: methylation effect, mRNA expression effect, and their interactions. The
total and overlapping counts of significant gene sets identified by each method is reported here, with numbers in parentheses denoting the counts of gene sets that remain
significant after Bonferroni correction at p < 5 × 10−4

This is supportive of the notion that screening of gene sets
using efficiently integrated multiplatform ‘omic data can
increase the ability to identify potentially mechanistic dis-
ease pathways. Similar patterns supporting the utility of
integrative analysis also emerged in additional exploratory
gene set screening analyses with different outcomes (e.g.
pathological stage of tumor at initial biopsy) and in dif-
ferent pathway databases (e.g. BIOCARTA and KEGG
pathways, which include gene sets not specific to lung
cancer) can be viewed in Additional file 1: Tables D.1-D.3,
E.1, and E.2.
The GSAA method only identified 8 significant gene

sets, of which only one survived a Bonferroni adjustment.
This is a predictable feature of the adapted Kolmogorov-
Smirnov algorithm employed by the GSAA approach,
which ignores between-gene correlation among the genes
in a gene set and instead uses relative gene rankings
among all possible genes under consideration. Thus, the
GSAA approach is dependent on not only the size of the
gene set being tested, but also the proportion of signifi-
cantly associated genes belonging to a gene set of interest
versus the proportion that does not. Indeed, GSAA may
not reliably retrieve disease-associated gene sets when the
proportion of signal genes in the gene set is small, even if
the associations are strong and highly significant.
Among the top gene sets identified by iTEGS and

iNOTE in Table 3, we recovered several involving KRAS
expression and EGFR signaling, both of which are canon-
ical genes implicated in cancer literature, as well as others
related to a microRNA associated with cancer, mir-let7a3.
We also retrieved several gene sets previously identi-
fied as predictive of lung cancer survival, lending fur-
ther credibility to both the integrative approach and our
findings. For illustrative purposes, we created methyla-
tion and mRNA expression heatmaps for one small but
interesting gene set which was identified as associated
with one-year survival in our analyses: the Gautschi SRC

signaling gene set (p-values: iTEGS-MGC=0.017, iTEGS-
MG=0.030, iTEGS-M=0.653; iTEGS-G=0.007; iNOTE-
chi=0.005, iNOTE-uni=0.015; GSAA=0.205) [30], which
is comprised of a set of highly down-regulated genes
in lung cancer cell lines after the application of an
SRC inhibitor. Refined characterization of the individ-
ual genes viable for testing in the gene set showed that
non-survivors had generally higher mRNA expression val-
ues than survivors (Fig. 4); these findings are biologically
consistent with those of Gautschi et al. [30] that SRC inhi-
bition, and therefore reduced expression of genes in the Id
family, is associated with decreased cancer cell invasion.

Discussion
Our proposed approach has two advantages: first, it is a
variance component-based score test where the testing
procedure is constructed under the null without estimat-
ing the large number of effect parameters; second, the
omnibus tests approach the optimal performance demon-
strated under correct model specification by synthesizing
the evidence from three candidate models and are thus
robust to model misspecification. In our simulation stud-
ies, we found that iTEGS and iNOTE dominated two com-
peting methods, GSAA and the Zhao method. All three
tests use information across multiple genomic platforms.
However, the GSAA first discards information by using
weighted p-values across individual genes to integrate
different genomic data, and then performs an adapted
Kolmogorov-Smirnov test which assesses a competitive
null hypothesis [28]. The Zhao method requires strong
assumptions that all methylation effects on disease risk
are mediated through gene expression, and struggles to
converge when the ratio of parameters to the sample size
is too large or when there is strong correlation between
CpG loci. Although our simulations assumed causal asso-
ciations between DNAm and gene expression, our testing
procedures remain legitimate tests of joint effect even
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Fig. 4 CpG methylation (left) and mRNA expression (right) for the Gautschi SRC signaling pathway. Two heatmaps are shown separated on the
x-axis by one-year survival status, which represents non-survivors and survivors at one year post initial diagnosis, respectively, and on the y-axis by
individual genes within the gene set. Gene names highlighted in red were significant at p < 0.01

in cases where such associations do not exist. It should
also be noted that the original development of GSAA
and the Zhao method had slightly different purposes than
the multiplatform integrated analyses of a gene set. For
example, GSAA focuses on examining signal enrichment
within a gene set by testing competitive hypotheses rather
than self-contained null hypotheses; the Zhaomethodwas
designed to gain power by exploiting eQTL (expression
quantitative trait loci) effects. Their suboptimal perfor-
mance demonstrates the imperative need for an efficient
screening test specifically intended for the joint analysis of
gene sets by integration of multiplatform genomic data.
The perturbation procedures used in iNOTE-chi and

iNOTE-uni are the main source of computational burden
in the omnibus approaches; however, it is worth noting
that perturbation procedures resample from the asymp-
totic null distributions of the gene-level Q statistics, and
thus both 1) preserve the covariance structure within and
between genes when conducting gene set tests and 2) are
far more efficient than permutation procedures requir-
ing direct reshuffling of the data. It is additionally much
easier to adjust for covariates using perturbation proce-
dures than using permutations particularly when there
exist associations between the genetic data and the covari-
ates. To run one simulation in theMG-only setting using a
2.60GHz Intel Xeon E5-2670 CPU to test 50 genes with 11
CpG sites and 1000 perturbations each, the approximate
computation time is 29, 31, and 32 seconds for iTEGS
(any model specification), iNOTE-chi, and iNOTE-uni
respectively. For the Davies approximation to iTEGS, the

computation time is about 22, 22, and 25 seconds for the
M, MG, and MGC model specifications respectively.
In our data application to the lung cancer survival data,

we were able to recover a sizeable number of significant
gene sets. Many of these gene sets tended to be least
significant when tested under the iTEGS statistic with
only the DNAmdisease-riskmodel specification, but grew
increasingly more significant with the inclusion of mRNA
gene expression and interaction specifications. This is
biologically plausible in that given a true gene pathway,
it is highly unlikely that the CpG sites that biologically
map within the bounds of a given gene will behave in
a strictly linear manner; the remainder of the significant
signal in these gene sets can be deduced to arise from
the synergistic or antagonistic interaction effects between
DNAm and mRNA expression, which are more properly
characterized under MGC models. It is also worth not-
ing that a significant gene set identified by one of our
methods could be driven by a small subset of very sig-
nificant gene members (i.e., signals are sparse), whether
the signal arises from the main effects of DNAm or RNA
expression, or their interactions. Indeed, this is a dis-
tinct advantage of our approach, as sparse signals may
nonetheless have high biological significance with respect
to disease pathways (for example, in the case of CpG loci
in gene promoter regions). In these cases, it is useful to
conduct further locus-by-locus or gene-by-gene analyses
characterizing the gene members in the set, as we did for
our TCGA application and the Gautschi SRC signaling
pathway.
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Conclusion
While the iNOTE approaches make fewer assumptions
about the underlying causal disease models in a gene set,
the tradeoff is an increase in computational burden. Both
iNOTE methods are robust to model misspecification
and, importantly, performed with close to optimal power
across all simulations settings, particularly those in which
the gene set is comprised of mixtures of different disease
risk models – a highly likely biological scenario.
We propose two efficient procedures for gene set

screening which use self-contained hypothesis tests, and
therefore do not rely on the size or proportion of sig-
nals within, compared to without, the tested gene set.
Furthermore, iNOTE and iTEGS can easily incorporate
the adjustments for potential confounding covariates. Our
methods dominated two competing methods with respect
to power, and further recovered a much greater num-
ber of gene sets known a priori to be associated with
lung cancer in our scans for gene sets associated with
lung cancer survival. In particular, gene sets related to
KRAS, EGFR, mir-let7a3 were found to be significantly
associated with lung cancer survival. Finally, our methods
are easily extended to include more or different genetic
platforms. iTEGS and iNOTE software implemented in R
in the present manuscript are available in Additional file 2.
For any future updated versions, it may also be down-
loaded via the inote package at https://cran.r-project.org/.

Additional files

Additional file 1: Supplementary information. Figure A Internal power
simulation across various disease-model settings for moderately sized gene
sets Figure B Power simulations comparing variance-component-based
total effect gene set testing procedures to existing methods under mixture
disease-model settings Table C : Davies approximation p-values for gene
sets signficantly associated with lung cancer in TCGA subjects after
Bonferroni correction Table D Counts of overlapping significant BIOCARTA/
KEGG gene sets associated with one-year lung cancer survival status by
iTEGS, iNOTE, and GSAA Table E Counts of overlapping significant lung
cancer gene sets associated with pathological stage of tumor at diagnosis
by iTEGS, iNOTE, and GSAA; Table E.2: Variance component-based total
effect test p-values for lung cancer gene sets significantly associated with
pathological stage of tumor after Bonferroni correction. (PDF 2410 kb)

Additional file 2: iNote installable R package. (TAR 319 kb)
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