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Abstract

Background: Phred quality scores are essential for downstream DNA analysis such as SNP detection and DNA
assembly. Thus a valid model to define them is indispensable for any base-calling software. Recently, we developed
the base-caller 3Dec for Illumina sequencing platforms, which reduces base-calling errors by 44-69% compared to the
existing ones. However, the model to predict its quality scores has not been fully investigated yet.

Results: In this study, we used logistic regression models to evaluate quality scores from predictive features, which
include different aspects of the sequencing signals as well as local DNA contents. Sparse models were further
obtained by three methods: the backward deletion with either AIC or BIC and the L1 regularization learning method.
The L1-regularized one was then compared with the Illumina scoring method.

Conclusions: The L1-regularized logistic regression improves the empirical discrimination power by as large as 14
and 25% respectively for two kinds of preprocessed sequencing signals, compared to the Illumina scoring method.
Namely, the L1 method identifies more base calls of high fidelity. Computationally, the L1 method can handle large
dataset and is efficient enough for daily sequencing. Meanwhile, the logistic model resulted from BIC is more
interpretable. The modeling suggested that the most prominent quenching pattern in the current chemistry of
Illumina occurred at the dinucleotide “GT”. Besides, nucleotides were more likely to be miscalled as the previous bases
if the preceding ones were not “G”. It suggested that the phasing effect of bases after “G” was somewhat different
from those after other nucleotide types.
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Background
High-throughput sequencing technology identifies the
nucleotide sequences of millions of DNA molecules
simultaneously [1]. Its advent in the last decade greatly
accelerated biological and medical research and has led
to many exciting scientific discoveries. Base calling is
the data processing part that reconstructs target DNA
sequences from fluorescence intensities or electric signals
generated by sequencing machines. Since the influential
work of Phred scores [2] in the Sanger sequencing era, it
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has become an industry standard that base calling soft-
ware output an error probability, in the form of a quality
score, for each base call. The probabilistic interpreta-
tion of quality scores allows fair integration of different
sequencing reads, possibly from different runs or even
from different labs, in the downstream DNA analysis such
as SNP detection and DNA assembly [3]. Thus a valid
model to define Phred scores is indispensable for any
base-calling software.
Many existing base-calling software for high throughput

sequencing define quality scores according to the Phred
framework [2], which transforms the values of several pre-
dictive features of sequencing traces to a probability based
on a lookup table. Such a lookup table is obtained by train-
ing on data sets of sufficiently large sizes. To keep the
size of lookup table in control, the number of predictive
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features, also referred to as parameters, in the Phred
algorithm is limited.
Thus each complete base-calling software consists of

two parts: base-calling and quality score definition. Bus-
tard is the base-caller developed by Illumina/Solexa and is
the default method embedded in the Illumina sequencers.
Its base-calling module includes image processing, extrac-
tion of cluster intensity signals, corrections of phasing
and color crosstalk, normalization etc. Its quality scor-
ing module generates error rates using a modification
of the Phred algorithm, namely, a lookup table method,
on a calibration data set. The Illumina quality scoring
system was briefly explained in its manual [4] without
details. Recently, we developed a new base-caller 3Dec [5],
whose preprocessing further carries out adaptive correc-
tions of spatial crosstalks between neighboring clusters.
Compared to other existing methods, it reduces the error
rate by 44-69%. However, the model to predict quality
scores has not been fully investigated yet.
In this paper, we evaluate the error probabilities of

base calls from predictive features of sequencing signals,
using logistic regression models [6]. The basic idea of
the method is illustrated in Fig. 1. Logistic regression, as
one of the most important classes of generalized linear
models [7], is widely used in statistics for evaluating suc-
cess rate of binary data from dependent variables and in
machine learning for classification problems. The train-
ing of logistic regression models can be implemented by
the well-developed maximum likelihood method, and is
computed by Newton-Raphson algorithm [8]. Instead of
restricting to a limited number of experimental features,
we include a large number of candidate features in our
model and select predictive features via the sparse mod-
eling. From previous research [9, 10] and our recent work
(3Dec [5]), the candidate features for Illumina sequenc-
ing platforms should include: signals after correction for
color-, cyclic- and spatial-crosstalk, the cycle number of
the current positions, the two most likely nucleotide bases
of the current positions and the called bases of the neigh-
bor positions. In this article, we select 74 features derived
from these factors as the predictive variables in the initial
model.
Next, we reduce the initial model by imposing sparsity

constraints. That is, we impose a L0 or L1 penalty on the
log-likelihood function of the logistic models, and opti-
mize the penalized function. The L0 penalty includes the
Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC). However, the exhaustive search
of minimum AIC or BIC in all sub-models is a NP-hard
problem [11]. An approximate solution can be achieved
by the backward deletion strategy, whose computational
complexity is polynomial. We note that this strategy cou-
pled with BIC leads to the consistent model estimates in
the case of linear regression [12]. Thus it is hypothesized

Fig. 1 The flowchart of the method. The input is the raw intensities
from sequencing. Then the called sequences are obtained using 3Dec.
Next we used Bowtie2 to map the reads to the reference and defined
a consensus sequence. Thus bases that are called different from those
in the consensus reference are regarded as base-calling errors.
Meanwhile a group of predictive features are calculated from the
intensity data followed previous research and experience. Afterwards,
three sparse constrained logistic regressions are carried out, and they
are backward deletion either with BIC(BE-BIC) and AIC(BE-AIC), and
L1-regularization respectively. Finally, we use several measures to
assess the predicted quality scores of the above three methods

that the same strategy would lead to a similar consistent
asymptotics in the case of logistic regressions. Compared
to BIC, AIC is more appropriate in finding the best model
for predicting future observations [13]. The L1 regular-
ization, also known as LASSO [14], has recently become
a popular tool for feature selection. Its solution can be
solved by fast convex optimization algorithms [15]. In this
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article, we use these three methods to select the most
relevant features from the initial ones.
In fact, a logistic model was already used to calibrate the

quality values of training data sets thatmay come from dif-
ferent experiment conditions [16]. The covariates in the
logistic model are simple spline functions of original qual-
ity scores. The backward deletion strategy coupled with
BIC was used to pick up the relevant knots. In the same
article, the accuracy of quality scores was examined by
the consistency between empirical (aka. observed) error
rates and the predicted ones. Besides, the scoring method
could be measured by the discrimination power, namely,
the ability to discriminate the more accurate base-calls
from the less accurate ones. Ewing et al. [2] demonstrated
that the bases of high quality scores are more important
in the downstream analysis such as deriving the consen-
sus sequence. Technically, they defined the discrimination
power as the largest proportion of bases whose expected
error rate is less than a given threshold. However, this def-
inition is not perfect if bias exists, to some extent, in the
predicted quality scores of a specific data set. Thus, in this
article, we propose an empirical version of discrimination
power, which is used for comparing the proposed scoring
method with that of Illumina.
The sparse modeling using logistic regressions not only

defines valid Phred scores, but also provides insights into
the error mechanism of the sequencing technology by
variable selection. Like the AIC and BIC method, the
solution to L1-regularized method is sparse and thereby
embeds variable selection. The features identified by the
model selection are good explanatory variables that may
even lead to the discoveries of causal factors. For example,
quenching effect [17] is a factor leading to uneven fluores-
cence signals, due to short-range interactions between the
fluorophore and the nearby molecules. Using the logistic
regressionmethods, we further demonstrated the detailed
pattern of G-quenching effect in the Illumina sequencing
technology, including G-specific phasing and the reduc-
tion of the T-signal following a G.

Methods
Data
The source data used in this article were from [18], and
were downloaded at [19]. This dataset includes three tiles
of raw sequence intensities from Illumina HiSeq 2000
sequencer. Each tile contains about 1,900,000 single-end
reads of 101 sequencing cycles, whose intensities are from
four channels, namely A, C, G and T. Then we carried
out the base calling using 3Dec [5] and obtained the
error labels of the called bases by mapping the reads to
the consensus sequence. The more than 400X depths of
sequencing reads make it possible to define a reliable con-
sensus sequence, and the procedure is the same as [5].
That is, first, Bowtie2 (version 2.2.5, using the default

option of “−sensitive”) was used to map the reads to the
reference (Bacteriophage PhiX174). Second, in the result-
ing layout of reads, a new consensus was defined as the
most frequent nucleotide at each base position. Finally,
this consensus sequence was taken as the updated ref-
erence. According to this scheme, the bases that were
called different from those in the consensus reference
were regarded as the base-calling errors. In this way,
we obtained the error labels of the called bases. We
selected approximately three million bases of 30 thousand
sequences from the first tile as the training set, and tested
our methods on a set of bases from the third tile.
Throughout the article, we represent random variables

by capital letters, their observations by lowercase ones,
and vectors by bold ones. We denote the series of target
bases in the training set by S = S1S2 · · · Sn, where Si is the
called base taking any value from the nucleotides A, C, G
or T. Let Yi be the error label of base Si (i = 1, 2, · · · , n).
Therefore,

Yi =
{
1 if base Si is called correctly ,
0 otherwise .

Phred scores
Many existing base-calling software output a quality score
q for each base call to measure the error probability after
the influential work of Phred scores [2]. Mathematically,
let qi be the quality score of the base Si, then{

qi = −10 log10 εi ,
εi = Pr(Yi = 0|X i = xi) ,

(1)

where εi is the error probability of base-calling and Xi
is the feature vector described below. For example, if the
Phred quality score of a base is 30, the probability that
this base is called incorrectly is 0.001. This also indicates
that the base call accuracy is 99.9%. The estimation of
Phred scores is equivalent to the estimation of the error
probabilities.

Logistic regression model
Ewing et al. proposed the lookup table stratified by
four features to predict quality scores [2]. Here, we
adopt a different stratification strategy using the logistic
regression [6].
Mathematically, the logistic regression model here esti-

mates the probability that a base is called correctly. We
denote this probability for the base Si as

p(xi;β) = 1 − εi = Pr(Yi = 1|X i = xi;β), (2)

where β is the parameter to be estimated. We assume that
p(xi;β) follows a logistic form:

log
(

p(xi;β)

1 − p(xi;β)

)
= xTi β , (3)
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where the first element in xi is a constant, representing the
intercept term. Equivalently, the accuracy of base-calling
can be represented as:

p(xi;β) = 1
1 + exp

(−xTi β
) . (4)

The above parameterization leads to the following form
of log-likelihood function for the data of base calls:

L(β ; x1, · · · , xn) =
n∑

i=1

(
yi log p(xi;β) + (1 − yi)

log(1 − p(xi;β))
)
,

(5)

where yi is the value of Yi, namely 0 or 1, and β represents
all the unknown parameters. Then β is estimated by max-
imizing the log-likelihood function, and is computed by
the Newton-Raphson algorithm [8].
The computation of logistic regression is implemented

by the “glm” package provided in the R software [20], in
which we take the parameter “family” as binomial and take
the “link function” as the logit function.

Predictive features of Phred scores
Due to the complexity of the lookup table strategy, the
number of predictive features in the Phred algorithm
is limited for Sanger sequencing reads. Ewing et al. [2]
used only four trace features such as peaking spacing,
uncalled/called ratio and peak resolution to discriminate
errors from correct base-calls [2]. However, these features
are specific in the Sanger sequencing technology and are
no longer suitable for next generation sequencers. In addi-
tion, next generation sequencing methods have their own
error mechanism leading to incorrect base-calls such as
the phasing effect. From previous research [9, 10] and our
recent work [5], it should be noted that the error rates
of the base calls in the Illumina platforms are related to
the factors such as the signals after correction for color-,
cyclic- and spatial crosstalk, the cycle number of cur-
rent positions, the two most likely nucleotide bases of
current positions and the called bases of the neighbor
positions. Therefore, a total of 74 candidate features are
included as the predictive variables in the initial model.
Let X i = (Xi,0,Xi,1, · · · ,Xi,74) be the vector of the predic-
tive features for the base Si, and we explain them in groups
as follows. Notice that some features are trimmed off to
reduce their statistical influence of outliers.

• Xi,0 equals 1, representing the intercept term.
• Xi,1, Xi,2 are the largest and second largest intensities

in the ith cycle, respectively. Because 3Dec [5] assigns
the called base of ith cycle as the type with the largest
intensity, the signal intensities such as Xi,1 and Xi,2
are crucial to the estimation of error probability. It
makes sense that the called base is more accurate if

Xi,1 is larger. On the contrary, the called base Si has a
tendency to be miscalled if Xi,2 is large as well,
because the base calling software may be confused to
determine the base with two similar intensities.

• Xi,3, Xi,4 and Xi,5 are the average of Xi,1, the average
and standard error of |Xi,1 − Xi,2| in all the cycles in
that sequence, respectively. The average signals
outside [0.02, 3] and the standard error outside [0.02, 1]
were trimmed off. Xi,3 to Xi,5 are common statistics
that describe the intensities over the whole sequence.

• Xi,6,Xi,7,Xi,8 are 1/Xi,3,
√
Xi,5 and log(Xi,5),

respectively. Xi,9 to Xi,17 are nine different piecewise
linear functions of |Xi,1 − Xi,2|, which are similar to
[16]. Xi,6 to Xi,17 are used to approximate the
potential non-linear effects of the former features.

• Xi,18 equals the current cycle number i, and Xi,19 is
the inverse of the distance between the current and
last cycle. These two features are derived from the
position in the sequence due to the facts that bases
close to both ends of sequences are more likely to be
miscalled [18].

• Xi,20 to Xi,26 are seven dummy variables [21], each
representing whether the current cycle i is the first,
the second, . . . , the seventh, respectively. We add
these seven features because the error rates in the
first seven cycles of this dataset are fairly high [18].

• Xi,27 to Xi,74 are 48 dummy variables, each
representing a 3-letter-sequence. The first letter
indicates the called base in the previous cycle; the
second and third letter respectively correspond to the
nucleotide type with the largest and the second
largest intensity in the current cycle. It is worth
noting that these 3-letter-seuqnces involve only two
DNA neighbor positions, instead of three. Take
“A(AC)” as an example, the first letter “A” indicates
the called base of the previous cycle, namely Si−1; the
second letter “A” in the parenthesis represents the
called base in the current cycle, namely Si; and the
third letter “C” in the parenthesis is corresponding to
the nucleotide type with the second largest intensity
in the current cycle. All the 48 possible combinations
of such 3-letter sequences are sorted in
lexicographical order, which are “A(CA)”, “A(CG)”,
“A(CT)”, . . . , “T(GT)”, respectively.
The 48 features are chosen based on the facts that the
error rate of a base varies when preceded by different
bases [10]. These 3-letter sequences derived from the
two neighboring bases can help us understand the
differences among the error rates of the bases
preceded by “A”, “C”, “G” and “T”. Back to the
example mentioned earlier, if the coefficient of
“A(AC)” was positive, in other word, the presence of
“A(AC)” led to a higher quality score, we would
consider that an “A” after another “A” was more likely
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to be called correctly. On the contrary, if the
coefficient of “A(AC)” was negative, the presence of
“A(AC)” would reduce the quality score. In this case,
there would be a high probability that the second “A”
was an error while the correct one was “C”. Thus it
would indicate a substitution error pattern between
“A” and “C” proceeded by base “A”.

Sparse modeling andmodel selection
To avoid overfitting and to select a subset of significant
features, we reduce the initial logistic regression model
by imposing sparsity constraints. That is, we impose a L0
or L1 penalty to the log-likelihood function of the logistic
models, and optimize the penalized function.
The L0 penalty includes AIC and BIC, which are respec-

tively defined as

AIC = 2k − 2L̂, (6)

BIC = k log(n) − 2L̂, (7)

where k is the number of non-zero parameters in the
trained model referred to as ||β||0, n is the number of
samples, and L̂ is the maximum of the log-likelihood func-
tion defined in Eq. (5). AIC and BIC look for a tradeoff
between the goodness of fit (the log-likelihood function)
and the model complexity (the number of parameters).
The smaller the AIC/BIC score is, the better the model is.
The exhaustive search of minimum of AIC or BIC among
all sub-models is a NP-hard problem [11], thus approx-
imate approaches such as backward deletion are usually
used in practice. The computational complexity of the
backward deletion strategy is only polynomial. In fact,
we note that this strategy coupled with BIC leads to the
consistent model estimates in the case of linear regres-
sion [12]. Thus it is hypothesized that the same strategy
would lead to a similar consistent asymptotics in the case
of logistic regressions. Compared to BIC, AIC is more
appropriate in finding the best model for predicting future
observations [13].
The details of backward deletion are as follows. First, we

implement the logistic regression with all features and cal-
culate the AIC and BIC scores. Second, we remove each
feature, recalculate the logistic regression models as well
as their AIC and BIC scores, then delete the feature result-
ing in the lowest AIC or BIC score if it was removed. Last,
we repeat the second step in the remaining features until
AIC or BIC score no longer decreases. We note that this
heuristic algorithm is still very time consuming due to the
repetitive calculation of the logistic regression.
An alternative approach for sparse modeling is L1 regu-

larization. It imposes a L1 norm penalty on the objective
function, rather than the hard constraint on the number
of nonzero parameters. Specifically, L1-regularized logis-
tic regression is to minimize the log-likelihood function

penalized by the L1 norm penalty of the parameters as
follows:

min
β

−L(β ; x1, · · · , xn) + λ||β||1, (8)

where ||β||1 is the sum of the absolute value of each
element in β , and λ is specified based on a certain cross-
validation procedure. The L1 regularization, also known
as LASSO [14], is applied here due to its two merits: first,
it leads to a convex optimization problem which is well
studied and can be solved very fast; second, it often pro-
duces a sparse solution which embeds feature selection
and enables model interpretation. We further extended
LASSO to the elastic net model [22], and the details were
described in Additional file 1.
All these three methods seek for a tradeoff between the

goodness of fit and model complexity. They also extract
underlying sparse patterns from high dimensional features
to enhance the model interpretability. However, they may
result in different sparse solutions. If the data size n is
large enough, log(n) is much larger than 2, then backward
deletion with BIC results in a sparser result than the AIC
procedure does. Similarly, the sparsity of L1 regularization
depends on λ. The larger λ is, the sparser the solution is.
The backward deletion with either AIC or BIC is imple-

mented by the “stepAIC” function in “MASS” package
provided in R [20], and L1-regularized logistic regression
is implemented in C++ using the liblinear library [23].

Model assessment
Consistency between predictive and empirical error rates
First, we follow Ewing et al. [2] and Li et. al. [16] to cal-
culate the observed score stratified by the predicted ones.
The observed score for the predicted quality score q is
calculated by

qobs(q) = −10 · log10
( Errq
Errq + Corrq

)
, (9)

where Errq and Corrq are, respectively, the number of
incorrect and correct base-calls at quality score q. The
consistency between the empirical scores with the pre-
dicted ones indicates the accuracy of the model.

Empirical discrimination power
Second, Ewing et al. [2] proposed that the quality scores
could be evaluated by the discrimination power, which is
the ability to discriminate the more accurate base-calls
from the less accurate ones.
Let B be a set of base-calls and e(b) be the error proba-

bility assigned by a validmethod for each called base b. For
any given error rate r, there exists a unique largest set of
base-calls, Br , satisfying two properties: (1) the expected
error rate of Br , i.e. the average assigned error probabili-
ties of Br is less than r; (2) whenever Br includes a base-call
b, it includes all other base-calls whose error probabilities
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are less than e(b). The discrimination power at the error
rate r is defined as

Pr = |Br|
|B| .

However, if bias exists, to some extent, in the predicted
quality scores of a specific data set, the above defini-
tion is not perfectly fair. For example, if an inconsistent
method assigns each base call a fairly large score, then Pr
reaches 1 at any r. Therefore, its discrimination power is
much larger than any consistent method, which is obvi-
ously unfair. Thus we proposed an empirical version of
discrimination power, defined as:

P̃r = |B̃r|
|B| , (10)

where the above Br is replaced by B̃r having the properties
that: (̃1) the empirical error rate of B̃r , i.e. the number of
errors divided by the number of base-calls in B̃r , is less
than r. (2) the same as that in Ewing et al’s definition, see
above. When little bias exists in the estimated error rates,
the empirical discrimination power converges to the one
proposed in Ewing et al. [2].
We note that the calculation of empirical discrimination

power requires the information of base call errors, which
could be obtained by mapping reads to a reference. Then
P̃r is calculated as follows: (1) sort the bases in descending
order by their predicted quality scores; (2) for each base,
generate a set containing the bases from the beginning to
the current one, and calculate its empirical error rate; (3)
for a given error rate r, select the largest set whose empir-
ical error rate is less than r; (4) P̃r equals the number of
base calls in the selected set divided by the number of total
bases.
We can take the quality scores as reliability measures

of base-calls, assuming that the bases with higher scores
are more accurate. Therefore, a higher P̃r indicates that
a method could identify more reliable bases for a given
empirical error rate. By plotting the empirical discrimi-
nation power versus the empirical error rate r, we can
compare the performance of different methods.

ROC curve
Last, we plot the ROC and Precision-Recall curve to com-
pare the methods. That is, by adjusting various quality
score thresholds, we can classify the bases as correct and
incorrect calls based on their estimated scores, and cal-
culate the true positive rate against false positive rate and
plot the ROC curve [24]. The area under the ROC curve
(AUC) represents the probability that the quality score of
a randomly chosen correctly called base is larger than the
score of a randomly chosen incorrectly one.

Results and discussion
Model training
First we trained the model by the AIC, BIC and L1 reg-
ularization method using a data set of about 3 million
bases from a tile. The computation was implemented
on a Dell T7500 workstation that has an Intel Xeon
E5645 CPU and 192 GB RAM. It took about 50 h to
train the model using the backward deletion coupled with
either AIC or BIC. In comparison, the L1 regulariza-
tion training took about 2 min only. As we increased the
size of training data set to 5- and 50-folds, the work-
station could no longer finish the training by the AIC
or BIC method in a reasonable period of time while it
respectively took 5 and 15 min for the L1 regularization
training.
The coefficients of the trained model using a data set

of 3 million bases are shown in Table 1. If we compare
the models trained on the 3 million base dataset, the
backward deletion with BIC deleted 53 variables, and the
backward deletion with AIC eliminated 14 ones. Besides,
the latter is a subset of the former. Unlike AIC/BIC,
the sparsity of L1-regularized logistic regression depends
on the parameter λ. Here λ was chosen by a cross-
validation method that maximizes AUC as described in
Methods. When we took λ to be 1.0, the L1 regular-
ization removed 11 variables, two of them were not
removed by BIC. Overall, The BIC method selected the
least number of features, thus was most helpful for model
interpretation.
We also calculated the contribution of each feature,

defined as the t-score, namely, the coefficient divided
by its standard error. As shown in Table 2, we listed
the contribution of each feature, and classified the fea-
tures into different groups by the method it was selected.
The features contributing the most to all three meth-
ods were x10 to x14, which were the transformations
of x1 − x2, namely the difference between the largest
and second largest intensities. It makes sense that the
model could discriminate called-bases more accurate if
the largest intensity is much larger than the second largest
intensity.
We have defined a consensus sequence described in

Methods. This strategy may not eliminate the influence of
polymorphism. Polymorphisms do occur in this data set of
sequencing reads of Bacteriophage PhiX174, but they are
very rare. Generally, we could use variant calling methods,
such as GATK-HC [25] and Samtools [26], to identify vari-
ants and then remove those bases mapped to the variants.
This could be achieved by replacing the corresponding
bases in the reference by “N”s before the second mapping
(the first mapping is for variant calling). In addition, this
proposal has been implemented in the updated training
module of 3Dec, which was published in the accompany
paper [5].
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Table 1 The coefficients of the 74 predictive variables in the
three methods

x Description L1LR BE-AIC BE-BIC

x0 intercept 1.09 11.47 7.63

x1 largest intensity 1.48 - -

x2 second largest intensity -1.73 -4.84 -4.42

x3 average of x1 -1.18 - -

x4 average of (x1-x2) -4.65 -6.2 -5.65

x5 standard error of (x1-x2) 3.19 -10.03 -

x6 1/x3 -2.37 -3.22 -2.88

x7
√
x5 0.54 1.42 0.77

x8 log(x5) -0.93 2.69 -

x9 piecewise function of |x1-x2| 0.59 - -

x10 3.53 4.94 4.71

x11 3.45 6.62 6.3

x12 2.42 9.32 8.74

x13 1.44 12.35 11.43

x14 0.34 15.41 14.21

x15 - 23.06 21.45

x16 - 118.87 46.79

x17 - - -

x18 current cycle number -0.016 -0.019 -0.018

x19 inverse distance -0.24 - -

x20 indicators of the first 7th cycles -0.3 -2.99 -

x21 -0.15 - -

x22 - - -

x23 - - -

x24 -0.25 - -

x25 -0.54 -1.22 -

x26 0.32 12.49 -

x27 A(AC) -0.11 - -

x28 A(AG) -0.91 -2.21 -1.32

x29 A(AT) -0.67 -3.39 -1.15

x30 A(CA) 1.29 - -

x31 A(CG) 0.86 -2.89 -

x32 A(CT) 0.25 -5.31 -

x33 A(GA) 1.44 -3.23 -

x34 A(GC) 0.21 -5.8 -

x35 A(GT) 1.66 -6.51 -

x36 A(TA) 0.89 -6.96 -

x37 A(TC) 0.44 -8.77 -

x38 A(TG) - -10.79 -

x39 C(AC) 2.27 2.88 2.29

x40 C(AG) - -1.34 -

x41 C(AT) - -2.77 -

x42 C(CA) -0.95 -2.65 -1.4

x43 C(CG) -0.7 -5.29 -

Table 1 The coefficients of the 74 predictive variables in the
three methods (Continued)

x44 C(CT) -0.7 -5.29 -

x45 C(GA) -1.29 -7.09 -1.68

x46 C(GC) 0.89 -3.51 -

x47 C(GT) 0.63 -5.31 -

x48 C(TA) 0.68 -7.14 -

x49 C(TC) - -9.25 -

x50 C(TG) -0.54 -11.32 -

x51 G(AC) 0.58 -1.09 -

x52 G(AG) 0.05 -1.09 -

x53 G(AT) -0.45 -3.32 -1.1

x54 G(CA) 0.18 -1.4 -

x55 G(CG) -0.18 -4.54 -

x56 G(CT) -1.02 -6.89 -1.52

x57 G(GA) 1.6 -2.78 -

x58 G(GC) 0.24 -5.76 -

x59 G(GT) -0.75 -9.81 -1.28

x60 G(TA) 0.93 -7.26 -

x61 G(TC) 0.24 -9.18 -

x62 G(TG) 0.7 -10.12 -

x63 T(AC) - - -

x64 T(AG) -0.23 -1.68 -

x65 T(AT) 2.03 - -

x66 T(CA) 0.21 -1.28 -

x67 T(CG) -0.74 -5.27 -

x68 T(CT) -0.1 -5.72 -

x69 T(GA) 0.16 -4.64 -

x70 T(GC) 0.73 -5.15 -

x71 T(GT) 1.94 -6.55 -

x72 T(TA) - -8.09 -

x73 T(TC) -0.29 -9.76 -

x74 T(TG) -0.99 -11.72 -

We denote these 74 variables by x = (x0, x1, · · · , x74). In the first row of the table,
‘L1LR’ means the L1-regularized logistic regression, ‘BE-AIC’ indicates the backward
deletion with AIC, and ‘BE-BIC’ represents the backward deletion with BIC. The
details of the variables in each row are described in Methods. x27 to x74 are
corresponding to the 3-letter sequences, which indicate the type of the base in the
previous cycle, type of the base with the largest and the second largest intensity in
current cycle. Meanwhile, ‘-’ implies that the method has removed the feature

Consistency between predictive and empirical error rates
We assessed the quality-scoring methods in several
aspects. First, following Ewing et al. [2] and Li et al. [16],
we assess the consistency of error rates predicted by each
model. That is, we plotted the observed scores against the
predicted ones obtained from each method. The results
from the 3 million base training dataset are shown in
Fig. 2. Little bias was observed when the score is below
20. All the three methods slightly overestimate the error
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Table 2 The contribution of each feature in the three methods: the backward deletion with either AIC or BIC and the L1 regularization
method

Selected methods Contribution

L1 & AIC & BIC Description L1 AIC BIC

1 x2 second largest intensity -7.2243 -20.211 -18.458

2 x4 average of (x1-x2) -21.93 -29.24 -26.646

3 x6 1/x3 -8.696 -11.815 -10.567

4 x7
√
x5 0.47013 1.2363 0.67037

5 x10 piecewise function of |x1-x2| 35.389 49.525 47.219

6 x11 14.579 27.974 26.622

7 x12 7.4602 28.731 26.943

8 x13 4.3013 36.89 34.142

9 x14 2.3397 106.05 97.787

10 x18 current cycle number -0.00054878 -0.00065167 -0.00061738

11 x28 A(AG) -5.3348 -12.956 -7.7384

12 x29 A(AT) -4.2171 -21.337 -7.2382

13 x39 C(AC) 14.771 18.74 14.901

14 x42 C(CA) -8.0916 -22.571 -11.925

15 x45 C(GA) -10.411 -57.22 -13.558

16 x53 G(AT) -3.3127 -24.44 -8.0976

17 x56 G(CT) -7.7223 -52.163 -11.508

18 x59 G(GT) -5.893 -77.08 -10.057

AIC & BIC Description L1 AIC BIC

1 x15 piecewise function of |x1-x2| 0 859.11 799.13

2 x16 0 19180 7549.6

L1 & AIC Description L1 AIC BIC

1 x5 standard error of (x1-x2) 121.95 -383.44 0

2 x8 log(x5) -2.8995 8.3866 0

3 x20 indicators of the first 7th cycles -3.0296 -30.195 0

4 x25 -5.4533 -12.32 0

5 x26 3.2316 126.13 0

6 x31 A(CG) 5.7108 -19.191 0

7 x32 A(CT) 1.864 -39.591 0

8 x33 A(GA) 9.9989 -22.428 0

9 x34 A(GC) 1.4679 -40.542 0

10 x35 A(GT) 11.712 -45.93 0

11 x36 A(TA) 5.7597 -45.042 0

12 x37 A(TC) 2.8418 -56.643 0

13 x43 C(CG) -5.6759 -42.894 0

14 x44 C(CT) -5.8779 -44.42 0

15 x46 C(GC) 7.3038 -28.805 0

16 x47 C(GT) 5.051 -42.573 0

17 x48 C(TA) 4.8103 -50.508 0

18 x50 C(TG) -4.0949 -85.841 0

19 x51 G(AC) 4.0089 -7.5339 0

20 x52 G(AG) 0.3575 -7.7936 0
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Table 2 The contribution of each feature in the three methods: the backward deletion with either AIC or BIC and the L1 regularization
method (Continued)

21 x54 G(CA) 1.1807 -9.1835 0

22 x55 G(CG) -1.2149 -30.643 0

23 x57 G(GA) 13.802 -23.981 0

24 x58 G(GC) 1.9919 -47.805 0

25 x60 G(TA) 6.2969 -49.157 0

26 x61 G(TC) 1.9621 -75.049 0

27 x62 G(TG) 5.7278 -82.807 0

28 x64 T(AG) -1.6306 -11.911 0

29 x66 T(CA) 1.6158 -9.8488 0

30 x67 T(CG) -5.0538 -35.991 0

31 x68 T(CT) -0.72808 -41.646 0

32 x69 T(GA) 1.0712 -31.065 0

33 x70 T(GC) 5.0709 -35.774 0

34 x71 T(GT) 12.661 -42.749 0

35 x73 T(TC) -1.7016 -57.268 0

36 x74 T(TG) -6.1194 -72.443 0

AIC Description L1 AIC BIC

1 x38 A(TG) 0 -72.981 0

2 x40 C(AG) 0 -8.7049 0

3 x41 C(AT) 0 -19.167 0

4 x49 C(TC) 0 -63.57 0

5 x72 T(TA) 0 -48.82 0

L1 Description L1 AIC BIC

1 x1 largest intensity 1.0896 0 0

2 x3 average of x1 -6.0558 0 0

3 x9 piecewise function of |x1-x2| 13.791 0 0

4 x19 inverse distance -2.0626 0 0

5 x21 indicators of the first 7th cycles -1.5148 0 0

6 x24 -2.5247 0 0

7 x27 A(AC) -0.59405 0 0

8 x30 A(CA) 11.7 0 0

9 x65 T(AT) 15.749 0 0

None Description L1 AIC BIC

1 x17 piecewise function of |x1-x2| 0 0 0

2 x22 indicators of the first 7th cycles 0 0 0

3 x23 0 0 0

4 x63 T(AC) 0 0 0

The contribution is defined by the t-score, namely the coefficient divides by its standard error. All 74 features are classified into different groups by the method it is selected

rates between 20 and 35, and underestimate the error rates
after 35.
The bias decreases as we increased the size of the train-

ing dataset to 5- and 50-folds, as shown in Fig. 2. But in
these two cases, only L1 regularization results are available
due to the computational complexity. Thus if we expect
more accurate estimates of error rates, thenwe need larger

training datasets and the L1 regularization training is the
computational choice.

Empirical discrimination power
As described in “Methods” section, a good quality scoring
method is expected to have high empirical discrimina-
tion power, especially in the high quality score range. We
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Fig. 2 The observed quality scores versus the predicted ones by
different methods and by different sizes of training sets. The predicted
scores, or equivalently, the predicted error rates of the test dataset
were calculated according to the model learned from the training
dataset, and the observed (aka. empirical) ones were calculated as
-10*log10 [(total mismatches)/(total bp in mapped reads)]. a The
logistic model for scoring were trained by the three methods:
backward deletion with either AIC or BIC, and L1 regularization using
a training data of 3 million bases. b The model for scoring were
obtained by L1 regularization with three different training sets, each
containing 1-, 5-, and 50-folds of 3 million bases, respectively

calculated the empirical discrimination power for each
method, based on the error status of the alignable bases in
the test sets.
The results are shown in Fig. 3, where the x-aixs is the

-log10(error rate) in the range between 3.3 to 3.7, and
the y-axis is the empirical discrimination power. If we

Fig. 3 Empirical discrimination powers for three methods: backward
deletion with either AIC or BIC, and L1 regularization. The x-axis is the
-log10 (error rate) in the range between 3.3 and 3.7. The y-axis is the
empirical discrimination power defined as the largest proportion of
bases whose empirical error rate is less than 10−x . L1 1x, 5x, 50x
indicates that the L1-regularized model is trained with 1-, 5-, 50-folds
of 3 million bases, respectively

took the 3 million bases training dataset, the BIC and the
L1 method show comparable discrimination powers, and
both outperform the AIC method by around 60% at the
error rate 3.58× 10−4. On average, the empirical discrim-
ination power of the BIC and the L1 method is 6% higher
than that of the AIC method.
Moreover, we compared the empirical discrimination

power of the L1 regularization method with different
training sets. As the size of training data goes up, higher
empirical discrimination power is achieved at almost any
error rate by the L1 regularization method. The 5-, 50-
folds data respectively gains 10 and 14% higher empirical
discrimination power than 1-fold data on average. This
implies that the L1 method could identify more highly
reliable bases with more training data.
We also used the concepts in classification such as

the ROC and the Precision-Recall curve to assess the
three methods. As shown in Fig. 4, the L1 regularization
achieves the highest precision in the range of high-quality
scores, and in most other cases the three methods per-
form similarly. The AUC scores of the ROC curve for
AIC, BIC, and L1 regularization were 0.9141, 0.9161, and
0.9175, respectively, which show no significant difference.
The detailed results of the elastic net model were

described in Additional file 1.

Comparison with the Illumina scoring method
To be clear, hereafter we refer to the Illumina base-calling
as Bustard, and the Illumina quality scoring method as
Lookup. Similarly, we refer to the new base calling method
[5] as 3Dec and the new quality scoring scheme as
Logistic.

Fig. 4 The ROC and Precision-Recall curve for the three methods. A
logistic model can be considered as a classifier if we set a threshold to
the Phred scores. The predicted condition of a base is positive/negative
if its Phred score is larger/smaller than the threshold. The true condition
of a base is obtained from the mapping of reads to the reference.
Consequently, bases will be divided into four categories: true positives,
false positive, true negatives, and false negatives. a The ROC curve on
the test set by the three methods: the backward deletionwith either AIC
or BIC, and the L1 regularization. b The corresponding precision-recall
curve
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In fact, we could exchange the use of Lookup and Logis-
tic with the two base calling methods Bustard and 3Dec.
We abbreviate these four schemes by Bustard+Lookup,
Bustard+Logistic, 3Dec+Lookup, 3Dec+Logistic respec-
tively, and the details are shown in Table 3. We note
that the training of logistic models here involves only L1
regularization with 100-folds data.
To have a systematic comparison of the scoring meth-

ods, we need to implement the four schemes in practice.
First, Bustard+Lookup is the default method of Illumina.
Second, we notice that the definition of quality scores
depends on the cluster intensity files but not on the
corresponding base calls. We have successfully extracted
cluster intensity files preprocessed by Bustard, and input
them into the Logistic scoring model. In this way, we
implemented Bustard+Logistic.
As to the remaining two schemes, the implementation

of 3Dec+Lookup is challenging because it is very hard
to separate the quality scoring module from the Illu-
mina systems. As a good approximation, we input the
cluster intensity files preprocessed by 3Dec into Bustard,
and consequently obtain the quality scores defined by
the Phred algorithm provided by Illumina. A subtle issue
needs to be explained here. The 3Dec preprocessing of
cluster intensity files in fact corrects the spatial crosstalk
as well as the phasing and color crosstalk effects. But the
Illumina system routinely estimates the effects of phasing
and color crosstalk and remove them even if it is unnec-
essary. Nevertheless, we found this extra step would make
little change on the cluster intensity signals. This is sup-
ported by the fact: taking the 3Dec preprocessed cluster
intensity files as input, the Illumina system outputs base
calls highly identical to those by 3Dec. The resulting qual-
ity scores are surrogates for those from the 3Dec+Lookup
scheme to a good extent. To make a fair comparison, we
also use the same cluster intensity signals that have been
preprocessed by both 3Dec and Bustard for the Logis-
tic scoring. The resulting quality scores are surrogates for
those from the 3Dec+Logistic scheme to a good extent.
We compare 3Dec+Logistic versus 3Dec+Lookup from

the two aspects: consistency and empirical discrimina-
tion power, as shown in Fig. 5. In terms of consistency,

Table 3 Four combinations of schemes between two
base-calling and two quality scoring methods

Quality scoring

L1-regularized
logistic regression

Lookup table
strategy

Base-calling Bustard Bustard+Logistic Bustard+Lookup
3Dec 3Dec+Logistic 3Dec+Lookup

We have two base calling methods: Bustard, the default method embedded in the
Illumina sequencers; 3Dec, our newly developed method. We also have two quality
scoring methods: Lookup, the lookup table strategy adopted by Illumina; Logistic,
the L1-regularized logistic regression model proposed in this study

Fig. 5 Comparisons of the Logistic quality scoring with the Illumina
(Lookup table) scoring method. Two kinds of fluorescence signals
preprocessed respectively by 3Dec and Bustard are used for comparisons.
There are four combinations of schemes: Bustard+Lookup, Bustard+
Logistic, 3Dec+Lookup, and 3Dec+Logistic. The first item is the
base-calling method and the second item is the quality scoring
method. The detailed implementations of these four schemes are
described in Results. We compared them in two aspects: consistency
and empirical discrimination power. a The consistency of four schemes.
Left: 3Dec+Logistic and 3Dec+Lookup; Right: Bustard+Logistic and
Bustard+Lookup. b The empirical discrimination powers of four
schemes

by and large, Logistic shows less bias than Lookup does,
especially when the scores are less than 25 or between 30
and 40. In terms of discrimination power, Logistic out-
performs Lookup across the board. Logistic achieves 25%
higher empirical discrimination power at the error rate
3.67×10−4, and 6% higher on average than Lookup does.
By the same token, we compare Bustard+Logistic ver-

sus Bustard+Lookup, see Fig. 5. In terms of consistency,
Logistic shows some bias at the high score end while
Lookup shows some bias at the low score end. In terms
of discrimination power, Logistic outperforms Lookup by
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14% at the error rate 3.62× 10−4. On average, the empiri-
cal discrimination power of Logistic increases by 6% than
that of Lookup.
Overall, Logistic defines better quality scores than

Lookup does, particularly in the sense that it identifies
more base calls of high quality.

Biological insights
The error patterns identified by the model selection
results provide insights into the error mechanism of the
sequencing technology. For example, the coefficients of
the 3-letter sequences “G(AT)”, “G(CT)”, and “G(GT)” (x53,
x56, and x59) are all negative across the three methods.
This implies that a nucleotide “T” after a “G” was more
likely to be miscalled. To verify this, we plotted the ker-
nel density of fluorescence intensities of “T” stratified
by the types of the preceding nucleotide bases. That is,
we read the corrected fluorescence signals and the called
sequences of the first tile. Then for each nucleotide type X
(X=“A”, “C”, “G”, or “T”), we found the sequence fragments
“XT” in Cycle 8-12 in all the sequences, and calculated the
kernel densities of the signals of “T” in these fragments,
respectively. As shown in Fig. 6, the signals of “T” after
“G” are lower than those after other types of nucleotide
bases. One factor that causes uneven fluorescence signals
is the quenching effect [17], due to short-range interac-
tions between the fluorophore and the nearby molecules.
The G-quenching factor was included in the quality score
definition of the Illumina base-calling [4]. In compari-
son, our sparse modeling of logistic regression suggested

Fig. 6 The density plots of “T” signals stratified by the preceding
nucleotide bases. First we read the corrected fuorescence signals and
the called sequences of the first tile. Then for each nucleotide type X
(X=“A”, “C”, “G”, or “T”), we found the sequence fragments “XT” in Cycle
8-12 in all the sequences, and draw the density curves of the signals
of “T” in these fragments, respectively. The curve was calculated using
the Gaussian kernel with a fixed width of 0.01. As shown in the figure,
the signals of “T” preceded by “G” are lower than those after other
nucleotide bases

that the most prominent quenching pattern in the current
chemistry of Illumina occurred at the dinucleotide “GT”.
Phasing is a phenomenon specific to the technique

of reversible terminators. In the presence of phasing, a
nucleotide has a larger chance to be miscalled as the pre-
ceding one. Interestingly, we found that in the BIC model,
only 7 coefficients are negative, of which 5 are corre-
sponding to the pattern “X(XY)” (x28, x29, x42, x44, and
x59). Similarly, we noticed that in the AIC and L1 regu-
larization model, most coefficients of the pattern “X(XY)”
are non-positive, except those when “X” represents “G”.
This implies that nucleotides were more likely to be mis-
called as the previous bases if the preceding ones were not
“G”. It suggested that the phasing effect of bases after “G”
was somewhat different from those after other nucleotide
types.

Conclusions
In the recent years, next-generation sequencing technol-
ogy has been greatly developed. However, the errors in the
both ends of reads are still very high, and low quality called
bases result in missing or wrong alignments that strongly
affect downstream analysis [27]. So a valid and accurate
method to estimate the quality scores is still essential and
indispensable. In this article, we applied logistic regres-
sion and sparse modeling to predict the quality scores
for Illumina sequencing technology. Both the Phred algo-
rithm and our method belong to the supervised learning,
since the labels of base-calling errors are obtained from
sequence alignment results. Meanwhile, our method has
some distinct merits that we explain as follows.
First, the logistic model can take many relevant fea-

tures. As shown in Fig. 7, the AUC of the L1 method

Fig. 7 The AUC of the ROC curve versus the number of features in the
initial model. In the logistic model, we sequentially include one more
feature starting from x0 to x74 in Table 1 (the number of features is
shown by the x-axis), and calculated each AUC (shown by the y-axis)
using the L1-regularized method
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increases monotonically as we put more features in the
model. Therefore, any features that are thought to be asso-
ciated with the error rates could be included in the initial
model. The possible overfitting problem is then overcome
by the L0 or L1 regularization.
Second, the L1-regularized logistic regression can be

solved in a short period of time, and it has improved per-
formance with more training data. Thus it can handle
large dataset and is efficient enough for daily sequenc-
ing. Compared to the L1 method, backward deletion with
either AIC or BIC takes a long training time, and it fails
to complete the training in a reasonable period of time for
the 50-folds dataset. However, the BIC method selects the
least number of features, which greatly helps for model
interpretation.
Third, our method can be easily modified to adjust

other base callers. The features we used are not software-
specific. As shown in Fig. 5, the L1 scoring method
outperforms the Illumina scoring method by a great mar-
gin in terms of the empirical discrimination power, based
on the fluorescence signals preprocessed either by 3Dec
or by Bustard. We note that the Illumina system does not
have an option that allows us to train it based on the same
dataset used by the Logistic method. In conclusion, we
recommend the logistic regression with L1 regularization
method to estimate the quality scores.
Fourth, the sparse modeling also helps us discover error

patterns that help the downstream analysis. One impor-
tant application of the sequencing technology is SNP
calling. Our results indicate that not only allele frequen-
cies, but also sequencing error patterns can help improve
the SNP calling accuracy. Using the logistic regression
methods, we further demonstrated the detailed pattern of
G-quenching effect including G-specific phasing and the
reduction of the T-signal following a G. Therefore, one
should take the preceding bases into consideration when
performing SNP calling.
Finally, the proposed training method is applicable

to sequencing data from any sequencing technique.
Meanwhile the resulting model including predictive fea-
tures and error patterns is specific to the correspond-
ing sequencing technique such as Illumina. Furthermore,
the training method is adaptive to the experimental
conditions.

Additional file

Additional file 1: Supplementary information about the elastic net
model. This file contains the following sections: S1 - Introduction to the
elastic net model and its advantages. S2 - Results of the elastic net mode
include training time, coefficients, consistency and empirical discrimination
power. Table S1 - The coefficients of 74 predicted features of the elastic
net model. Figure S1 - The consistency of the elastic net model with three
different training sets. Figure S2 - The empirical discrimination power of
the elastic net model with three different training sets. (PDF 164 kb)
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