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Abstract

Background: Themajor histocompatibility complex (MHC) region of the human genome, and specifically the human
leukocyte antigen (HLA) genes, play a major role in numerous human diseases. With the recent progress of sequencing
methods (eg, Next-Generation Sequencing, NGS), the accurate genotyping of this region has become possible but
remains relatively costly. In order to obtain the HLA information for the millions of samples already genotyped by
chips in the past ten years, efficient bioinformatics tools, such as SNP2HLA or HIBAG, have been developed that infer
HLA information from the linkage disequilibrium existing between HLA alleles and SNP markers in the MHC region.

Results: In this study, we first used ShapeIT and Impute2 to implement an imputation method akin to SNP2HLA and
found a comparable quality of imputation on a European dataset. More importantly, we developed a new tool,
HLA-check, that allows for the detection of aberrant HLA allele calling with regard to the SNP genotypes in the region.
Adding this tool to the HLA imputation software increases dramatically their accuracy, especially for HLA class I genes.

Conclusion: Overall, HLA-check was able to identify a limited number of implausible HLA typings (less than 10%) in a
population, and these samples can then either be removed or be retyped by NGS for HLA association analysis.
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Background
Human Leukocyte Antigen (HLA) genes are coding for
cell surface antigen proteins responsible for a major func-
tion of the immune system, the detection of foreign or
abnormal antigens [1]. These genes are located on the
short arm of chromosome 6, in a region known as the
major histocompatibility complex (MHC). They play a
ubiquitous role in medicine, most notably in autoimmune
diseases [2, 3], infectious diseases [4, 5], and transplant
medicine [6].
The MHC is among the most polymorphic regions in

the human genome, with up to 4000 known alleles for each
class I gene, and up to 2000 alleles for class II HLA genes
(case of HLA-DRB1) [7]. Furthermore, there is a strong
impact of natural selection in the evolutionary history
of the MHC that creates long-range linkage disequilib-
rium observed between many if not most variants in this
region [8], that further complicates the task of widely-used
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genomic tools such as imputation algorithms. Imputation
algorithms typically use a reference panel to infer statisti-
cal patterns from linkage disequilibrium, that allows them
to impute missing data in other datasets, usually using
Hidden Markov Models on haplotypes [9].
The HLA typing technologies have evolved in the

past few years from Sequence-Specific Primers (SSP)
and Sequence-Specific Oligonucleotide Probes (SSOP) to
Next-Generation Sequencing (NGS) [10]. SSP and SSOP
were until fairly recently the best way to detect varia-
tions in the MHC but required known constant primers
which could fail in the HLA region since some genes
can have almost all of their nucleotides display polymor-
phisms (Single Nucleotide Polymorphism, hereafter SNP)
[11]. These old methods also focused mostly on exons 2
and 3 for class I HLA genes (which code for the bind-
ing site), or just exon 2 in class II HLA genes, so many
recorded HLA alleles are only known from these exons.
NGSmethods have now become robust enough to be used
routinely [12], but are still too expensive formany research
groups to afford: the order of magnitude of an HLA typ-
ing by sequencing is today 15 euros per allele typing, so
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120 euros per individual for all 8 class I and class II loci.
For panels consisting of thousands of people, this amounts
to hundred of thousand euros for a typing by sequencing,
while imputation methods and HLA-check allow to use
already generated SNP data at no additional cost.
When typingHLA, the level of precision is usually called

one-field (previously “2-digit”), two-field (or “4-digit”), or
more. The first field indicates the serological antigen car-
ried by an allotype, and the next ones the unique protein
sequence. The next fields (not used in this study) indicate
synonymous genetic polymorphisms. We’ll for instance
denote an allele of the HLA-A gene at the one-field level
as HLA-A*02 and at the two-field level as HLA-A*02:01.
Thanks to the availability of large reference panels

being genotyped both by genotyping chips (Illumina,
Affymetrix, other) and by NGS in the HLA region, sev-
eral imputation methods have been developed in the past
few years: SNP2HLA [13] (modeling HLA alleles as binary
SNPs when running imputation software beagle), HIBAG
[14] (R package using attribute bagging), or HLA*IMP
[15] (Web service now discontinued). They exhibit a fairly
good imputation accuracy level in the tests performed,
ranging from 90 to 97% according to the HLA gene at
stake [13]. Of course, this performance may greatly vary
with the reference panel provided, as some studies have
shown for instance that using a European panel for a
Finnish population may lead to poor results [16]. It is also
worth noting that these range of results do not allow any
use of these methods in clinical settings, where the costs
of HLA typing outlined above are minor compared to the
medical consequences of a mistyping.
As discussed in previously published works, there are

two important limitations for imputation methods: first,
the diversity of the reference panel is crucial for the quality
of imputation, and the possibility of errors in the reference
panels due to failures in gold-standard typing methods
may limit the imputation accuracy.
In the present work, we have developed a new tool

which aims at limiting these sources of errors by evalu-
ating the plausibility of the HLA alleles attributed to an
individual given his SNP genotypes in the HLA region.
With this tool, we could at the same time find errors in ref-
erence panels, and also evaluate the soundness of imputed
HLA types obtained by any imputation tool. We show that
we manage to drastically improve imputation, reaching
99% accuracy for some HLA genes while only eliminating
a few individuals, and discuss the possible consequences
of these observations.

Implementation
Data material
We primarily used the T1DGC (Type 1 Diabetes Genetics
Consortium) cohort as our reference panel [17, 18] of 5225
European unrelated individuals. Genotype data included

7135 SNPs within the MHC region obtained with the
Illumina Immunochip platform, and classical HLA allele
typing for HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-
DQB1, HLA-DPA1, HLA-DPB1 and HLA-DRB1 at a two-
field resolution. The T1DGC reference panel can be
obtained from the NIDDK repository at https://www.
niddkrepository.org/niddk/home.do. This panel was the
reference also used in previous studies [13], and it will
allow for an easier comparison with state-of-the-art tools.
We used this panel as provided originally with the
SNP2HLA package.
As a testing panel for our imputation method, we

used the British 1958 Birth Cohort (1958BC) [19] com-
posed of 2434 individuals genotyped on Illumina Human-
Hap550 and also typed by gold-standard methods at
two-field or one-field levels for HLA-A, HLA-B, HLA-C,
HLA-DQB1 and HLA-DRB1. Access to this data was
obtained through the Wellcome Trust Case Control Con-
sortium Data Access Committee and could be done
from the European Genome-phenome Archive (EGA) at
https://www.ebi.ac.uk/ega/. 1958BC was also used as a
testing panel in previous studies [13].
These panels cover a variety of existing common

alleles in European population: for 1958BC and T1DGC
respectively, we have 25 and 51 alleles for HLA-A, 44
and 98 for HLA-B, 21 and 34 for HLA-C, 34 and 52 for
HLA-DRB1, and 18 and 19 for HLA-DQB1. The method
used in these panels to attribute HLA alleles has since
their publication been shown to cause some systematic
errors, for instance HLA-DRB1*14:54 vs DRB1*14:01:01
in [20].
We have also used the panel of 5008 haplotypes from

various origins [21], assembled by the 1000 Genomes
project in which the SNP/indels were phased thanks
to the ShapeIT software [22]. This panel was required
to extend (by imputation with IMPUTE2 [23]) the
SNP coverage of genotypes obtained by chips into the
HLA exonic regions, since this step is needed for
HLA-check.
We also used the HLA reference database, called

IPD-IMGT/HLA Database (http://hla.alleles.org/), ver-
sion 3.22 (Oct 2015). This database defines at all levels
(protein, cDNA, and gDNA) all the known HLA alleles.

HLA typing by imputation
To impute HLA from SNP data, we included all HLA
alleles, each of which was represented as a biallelic
SNP marker: present or absent. We used the ShapeIT
software to phase haplotypes, and IMPUTE2 software
to impute the HLA alleles. Then, we kept only alleles
with a post-probability dosage of more than 0.5, thus
defining the individuals for which HLA was “called”.
In 99.9% of the cases this indeed gave us exactly
two alleles.
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Measure of the accuracy of HLA imputation
HLA-check checks if an HLA allele attribution is com-
patible with the given SNP genotype of an individual.
To assess the accuracy of HLA-check and to measure its
efficiency, we imputed the HLA of 2434 individuals in
the testing panel (1958BC) with ShapeIT and Impute2
as described above. We measured accuracy as the frac-
tion of correctly assigned HLA allele over all called alleles
(i.e., discarding alleles with post-probability dosage less
than 0.5). We used such a measure keeping in mind the
potential applications: indeed, if we impute HLA alleles
for an individual, we will be first interested in seeing if
there is a called result, second in knowing if this result is
actually correct.

HLA-check: the approach
The principle of the method is to compare the SNP geno-
types of an individual obtained by any experimental (i.e.
chip) or computational method (i.e. imputation) with the
SNP genotypes defined by all the known combinations of
HLA alleles from the IPD-IMGT/HLA Database (http://
hla.alleles.org). We then check if the attributed HLA allele
pair is among the best matches by computing a discrep-
ancy measure D.
Our approach is straightforward: we first try to impute

as many SNPs as possible in the HLA exonic regions,
using the best reference set at our disposal. As of today,
the 1000 genomes project has the best coverage of SNPs
with a large panel of already phased genotypes from
various populations all over the genome, but similar
results will likely be obtained with the Haplotype Ref-
erence Consortium [24] in the near future. This SNP
extension phase needs to be done as precisely as possi-
ble, in order to get a coverage as precise and as com-
plete as possible in the exonic sequences of the HLA
genes.
For an individual, for each SNP in the exonic seg-

ments of a given HLA gene, we then compare the
post-probabilities genotype obtained after its imputation
with the genotypes from all possible allele pairs derived
from the HLA reference genome, obtained through
the available exonic HLA cDNA sequences of IPD-
IMGT/HLA Database (http://hla.alleles.org). We do a
per-SNP evaluation of the discrepancy measure where
D, for a pair of HLA alleles, at a given SNP marker,
is the probability of this HLA pair to be incorrect.
For instance, take rs41541913. If in the HLA definition,
HLA-A*01:01 has a guanine (G nucleotide) and HLA-
A*80:01 has an cytosine (C nucleotide), and the poste-
rior probabilities for the tested individual are 10%CC,
25%GG and 65%CG, we consider that the imputa-
tion post-probabilities indicate s = 0.35 of disagree-
ment with the (HLA-A*01:01, HLA-A*80:01) HLA allele
pair.

Then, D obtained for an HLA allele combination for a
given individual is simply obtained by summing it for all
SNP markers available in the gene1:

D(genome,HLA1,HLA2) =
∑

rs
D(rs)

After computing D for all the pairs of HLA alleles of the
IPD-IMGT/HLA Database, we compare the discrepancy
measure of the attributed HLA of an individual with the
best one obtained among all HLA pairs tested: the final
D we compute is simply the difference between those. A
difference of 0 indicates that we reached the least possible
discrepancy for the attributed HLA allele pair, making us
highly confident in the validity of this HLA typing, while
a high discrepancy indicates a mismatch between the best
possible HLA fitting with the genotype and the attributed
HLA, suggesting that these HLA alleles are unlikely to be
well attributed.
Interestingly, our approach depends mainly on the def-

initions of the HLA alleles from the IPD-IMGT/HLA
Database. All HLA allele combinations are tested, and
only the quality of imputation in the HLA exons and the
SNP coverage will have an impact.

Results
Replication of SNP2HLA results with ShapeIT and IMPUTE2
We first replicated the SNP2HLA method for imputation
of HLA alleles, by phasing the same reference panel with
the ShapeIT [22] software developed by our group and by
imputing SNPs and HLA in the region with the IMPUTE2
software. The results were quite similar to those obtained
by SNP2HLA for the quality of imputation (Table 1).

HLA-check: detection of spurious alleles
We also developed a tool, HLA-check, to detect spuri-
ous attributed HLA alleles, as described in Material and
Methods. This tool relies both on the precise SNP imputa-
tion in the exonic parts of HLA genes currently using the
1000 genome reference panel and on the genetic descrip-
tion in the exonic regions of all known HLA allele pairs
using the HLA reference database (see pipeline Fig. 1).
We first evaluated the soundness of HLA-check

on the T1DGC reference panel that contains 5225
individuals typed at a two-field resolution, who were

Table 1 Comparison of imputation scores using vanilla SNP2HLA
vs our method: the results are quite similar

HLA (two-field) Test population D (ShapeIT/Impute2) D (SNP2HLA)

HLA-A 865 97.6 97.1

HLA-B 1495 96 94.9

HLA-C 813 95.8 95.9

HLA-DRB1 800 87.9 87.8

HLA-DQB1 974 94.8 96.4

http://hla.alleles.org
http://hla.alleles.org
http://hla.alleles.org
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Fig. 1 HLA-check pipeline: We start by augmenting the panel to test
to get more SNP using an imputation phase with the 1000genomes
data, then we compare those SNP alleles with their theoretical values
for all possible HLA allele pairs

also genotyped using an Illumina chip. For that, we
compared the discrepancy measures given by HLA-
check for the HLA alleles attributed to the T1DGC
individuals with those obtained in randomized tests
in which the HLA assignments were shuffled between
individuals. Figure 2 presents the curves obtained for
HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DPA1, HLA-
DPB1, HLA-DQA1, HLA-DQB1 in the original and in
the shuffled T1DGC population. Several randomizations
of the T1DGC population were tested with identical
results.
As expected, we observed a clear-cut difference between

the distribution of D for randomized HLA types and the
distribution of D for the real population at almost all
loci, except for DRB1. In DRB1, the genotyping by chip
is likely of poorer quality since there are several paralo-
gous sequences in the neighborhood (genes DRB3, DRB4,
DRB5 and pseudo-genes DRB2, DRB6, DRB7, DRB8,
DRB9) and there are also fewer SNPs in the exonic parts
of the gene (3 times less than for HLA class 1 genes
for instance, cf Table 2). This has also been observed in
other works, for instance in HLA*PRG [25] that takes
into account paralogous sequences to reach a decent HLA
typing rate (from NGS sequences) while observing high
similarity between HLA-DRB1,DRB3,DRB4 and DRB5, or
in [26].
This precludes the use of HLA-check for HLA-DRB1

and explains the unsatisfactory overlap observed in D dis-
tributions. In HLA-DQA1, the small numbers of bars is
due to the very small number of alleles. To choose the

cutoff value, we modeled the distribution of D attributed
to random HLA alleles as a normal distribution and dis-
carded those inferior to μ+ 2σ where μ is the mean value
and σ the standard deviation. The chosen values for the
cutoff were then rounded to 2 for HLA-A and HLA-C,
and to 7 for HLA-B. This result shows it is possible
to discriminate discrepancy measures likely correspond-
ing to a plausible HLA allele attribution from the ones
corresponding to an aberrant one.

Impact of the cleaning of the reference panel on
imputation quality
We first thought it was possible to identify aberrant
HLA attribution from reference panels and delete them
for future HLA imputation studies. We indeed tried this
approach on 1958BC using T1DGC as the reference panel,
but observed no measurable improvement of the HLA
imputation accuracy, likely due to the small numbers of
removed individuals at stake. Alternatively, using 1958BC
as a reference panel, we see that only in the case ofHLA-C,
which had around 5% of dubious HLA typings (a much
higher rate than for other HLA genes), we were able to sig-
nificantly improve the imputation rate of HLA imputation
in the T1DGC panel.

Trading cohort size for precision in HLA imputation
We then used HLA-check to evaluate the credibility of
imputed HLA alleles, our goal being to detect and elim-
inate subjects whose imputed HLA alleles were deemed
unlikely, hence improving the accuracy of the HLA
imputation.
The first step was to remove from the test population

(1958BC) the few individuals for whom D on the real
(typed) HLA allele was deemed too high, thus eliminat-
ing potential badly typed people from our study. These
individuals could have shown up as not imputed prop-
erly in the following steps. The number of individuals
removed following this initial step are provided for the
HLA-A, HLA-B, and HLA-C typed at one-field and two-
field (Table 3). HLA-B is known to be more difficult to
impute and type due to its greater polymorphism and
heterogeneity, and we also mirror this observation here
by having worse results with it than with other class I
loci. We also provide our results for HLA-DQB1, even
if it does not compare well with the class I HLA genes.
We have seen that our approach is not relevant for
HLA-DRB1.
We then imputed the HLA alleles at one-field and

two-field of the 1958BC population using the reference
cohort (T1DGC) two-field HLA alleles, and computed
D obtained on the imputed HLA. People with too high
discrepancy were suspected of having a wrong HLA
obtained by the imputation, and were labeled as such.
This group was indeed very enriched in wrongly imputed
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Fig. 2 Histogram of HLA-check distance (D) distribution obtained for each HLA locus (A, B, C, DRB, DPA, DPB, DQA, DQB) comparing the actual T1DGC
HLA types (blue) with a randomized set of HLA types from T1DGC (red). In the x-axis, the D value, in the y-axis, the number of subjects (genotypes)
obtaining this value. For each SNP genotype, D was computed as described in the Material and Methods. One can see the clear-cut difference
between the two distributions for class I HLA genes

HLA alleles (as compared with their HLA attributed by
genotyping), and by categorizing them “dubious” we were
able to greatly increase the success rate on the remain-
ing test subjects (Table 4). In that table we also give
the error rate (rightly typed individuals filtered out by
our method).

Discussion
We have developed a simple method to detect aber-
rant HLA attribution in individuals knowing their SNP
genotype in the MHC region. This method is useful for
experimentally typed HLA as well as imputed data. In the
experimentally typed cohorts, we found very few obvious

Table 2 Number of SNP markers used for each HLA gene (exonic SNPs that can be imputed from 1000genomes)

HLA HLA-A HLA-B HLA-C HLA-DRB1 HLA-DPA1 HLA-DPB1 HLA-DQA1 HLA-DQB1

#snps 118 118 110 41 46 42 71 74
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Table 3 Test subjects eliminated a priori from the 1958BC test
dataset

HLA HLA-A HLA-B HLA-C HLA-DQB1

1958BC (two-field) 18/865 60/1495 77/813 28/974

1958BC (one-field) 35/1669 61/1562 99/1291 103/1701

errors of allele attribution for all HLA genes in T1DGC
(less than 1%), significantly more in 1958BC (Table 3).
This difference may be explained by the improvement
of typing methods between those two cohorts (T1DGC
is much more recent). However, after HLA imputation,
we could detect several individuals with falsely attributed
HLA, and when removing them thanks to HLA-check,
we achieved a score of accuracy around 99% for HLA-A,
HLA-B, andHLA-C at two-field on the test group 1958BC.
These results are quite satisfactory for class I gene alleles
since we gain more than 2.5 points of accuracy compared
to the use of SNP2HLA alone (Table 4). HLA-check did
not yield as good results for class II HLA genes with only a
small improvement of accuracy forHLA-DQB1 (from 94%
to 96%) and no improvement at all for HLA-DRB1. This
latter gene is known to be difficult for genotyping. HLA-
DPA1 and HLA-DPB1 data were not available for testing
(no data in the testing panel). As expected, the results for
1-field typing are even higher, with at least 99.2% accuracy.
Even if we are able to categorize a group of people

containing a higher proportion of wrongly imputed, and
found possible to identify precisely extreme individuals
with clearly false typing, it is still difficult to detect in the
people we remove those with false typing from the others
(correct people outlined in Table 4), and thus to provide a
general model for the detected discrepancies.
There are other tools for HLA imputation such as

HIBAG which exhibited quite good performances [14].
We also tried our method on HIBAG for two-field class I

HLA genes, and it gave similar results and improvements
(Table 5). Note that this is not directly comparable to the
other imputation method since we used a pre-built ref-
erence file (this tool gives HLA imputation results much
faster than other methods, but the reference data for a
given chip needs to be computed and is a very time-
consuming process), so we could not control the reference
panel or use the same as with SNP2HLA.

Conclusion
In the last decade, millions of individuals have been typed
through genotyping chips for genetic association stud-
ies and the current accuracy of imputation software such
as SNP2HLA may limit the statistical power for finding
new associations on HLA genes. The use of HLA-check
would certainly remove a small proportion of individuals,
but could allow a higher accuracy in association detec-
tion justifying its use for research purposes. Moreover,
these removed individuals could be individually retyped if
needed (they are about 5% of typings). To this end, HLA-
check can be downloaded for its local use. HLA-check
performs very quickly (on a personal computer): only a
few seconds per tested individual are needed to obtain
the final comparison value for a given HLA. This method
should not have a direct impact on HLA typing for med-
ical purposes since current sequencing methods already
reach 100% of accuracy at G group [27] level (exons 2 and
3 for class I and exon 2 for class II).

Availability and requirements
HLA-check is available under the MIT license at url
https://github.com/mclegrand/HLA-check/. This license
expressly allows for any use or modification for one’s own
needs. It is available as a platform-independent C++11
source code, and can be compiled with openMP to enable
threading.

Table 4 Imputation accuracy without any processing, then with the filtering applied with our scoring method

Gene Test population Base imputation People removed Sub-population imputation

HLA (two-field)

HLA-A 865 97.6 30 (40% correct) 99.6

HLA-B 1495 96 112 (65% correct) 98.5

HLA-C 813 95.8 81 (60% correct) 99.5

HLA-DQB1 974 94.8 40 (60% correct) 96.1

HLA (one-field)

HLA-A 1669 97.8 62 (40% correct) 99.9

HLA-B 1562 97.1 119 (70% correct) 99.5

HLA-C 1291 95.8 125 (60% correct) 99.9

HLA-DQB1 1701 98.2 175 (90% correct) 99.2

T1DGC was used as our reference panel and 1958BC as our test panel. We also precise the percentage of correct imputations that were removed

https://github.com/mclegrand/HLA-check/
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Table 5 Imputation accuracy for HIBAG. Unlike SNP2HLA, we did not use T1DGC as a reference panel but a precomputed model due
to the way HIBAG works. Nevertheless, our results are very similar to those obtained with SNP2HLA

HLA (two-field) Test population Base imputation People removed Sub-population imputation

HLA-A 865 97 36 99.5

HLA-B 1495 95 84 97.3

HLA-C 813 95 83 99.7

Endnote
1We also tried to compute the sum the log of (1-s) to

obtain the combined probability of all markers, but this
approach gave a considerable importance to imputation
errors and ended up with more imprecise results than the
simple sum.
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