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structure-based prediction of transcription
factor binding sites
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Abstract

Background: Gene expression is regulated by transcription factors binding to specific target DNA sites. Understanding
how and where transcription factors bind at genome scale represents an essential step toward our understanding of
gene regulation networks. Previously we developed a structure-based method for prediction of transcription factor
binding sites using an integrative energy function that combines a knowledge-based multibody potential and two
atomic energy terms. While the method performs well, it is not computationally efficient due to the exponential
increase in the number of binding sequences to be evaluated for longer binding sites. In this paper, we present an
efficient pentamer algorithm by splitting DNA binding sequences into overlapping fragments along with a simplified
integrative energy function for transcription factor binding site prediction.

Results: A DNA binding sequence is split into overlapping pentamers (5 base pairs) for calculating transcription
factor-pentamer interaction energy. To combine the results from overlapping pentamer scores, we developed
two methods, Kmer-Sum and PWM (Position Weight Matrix) stacking, for full-length binding motif prediction. Our
results show that both Kmer-Sum and PWM stacking in the new pentamer approach along with a simplified
integrative energy function improved transcription factor binding site prediction accuracy and dramatically
reduced computation time, especially for longer binding sites.

Conclusion: Our new fragment-based pentamer algorithm and simplified energy function improve both
efficiency and accuracy. To our knowledge, this is the first fragment-based method for structure-based
transcription factor binding sites prediction.

Keywords: Transcription factor binding site, Structure-based prediction, Binding motif, Integrative energy function,
Fragment-based method, Pentamer

Background
Transcription factors (TFs) interact with specific DNA
sequences, called transcription factor binding sites (TFBSs),
to regulate gene expression [1, 2]. Genome-wide TFBS
identification, a crucial step in deciphering transcription
regulatory networks and annotating genomic sequences,
remain a key challenge in post-genomics research. Both
high-throughput experimental methods and computa-
tional approaches have been developed to tackle this
problem. Each method has its unique advantages and
limitations [3].

Computational methods include sequence-based and
structure-based TFBS predictions. Structure-based predic-
tion methods take advantage of the increasing numbers of
TF-DNA complex structures in Protein Data Bank (PDB)
[4, 5]. Unlike sequence-based methods that rely on se-
quence conservation and usually are family based,
structure-based TFBS prediction methods consider the
physical interactions between a TF and candidate binding
sequences (Fig. 1). The advantage of structure-based TFBS
prediction methods lies in that they can explain the possible
mechanisms involved in specific TF-DNA binding and rec-
ognition, and help understand the effects of mutations on
gene expression since these methods mimic in vivo binding
and recognition events. A typical structure-based TFBS
prediction method evaluates each candidate DNA sequence
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by “threading” it onto the DNA structure of a known
TF-DNA complex and the binding affinity or binding
energy is then calculated using energy functions [3].
Virtually all structure-based methods for TFBS predic-
tion require a TF-DNA interaction model that can be
experimentally solved protein-DNA complex structures
[6–8] or high quality homologous TF-DNA models as
it has been demonstrated that transcription factors
from the same family, in general, interact with DNA in
a similar manner [9–11]. One issue in structure-based
TFBS prediction concerns the potential divergence of
DNA structures of different sequences for a transcription
factor since only one TF-DNA complex model is used for
evaluating different sequences. For this method to work,
TF-DNA binding modes and DNA structures should be
very similar. Our recent survey showed that the DNA
structures of different cognate binding sequences of a
transcription factor generally conserve well with smaller
root mean squared deviations (RMSDs), suggesting that
the interaction modes are conserved between the tran-
scription factor and its specific binding sequences even
though there are variations at certain positions of the
binding motif [3].
The binding affinities between TFs and their binding

sequences are evaluated using an energy function, which
can be knowledge-based, physics-based or a combination
of both [12]. Knowledge-based energy functions are
derived from statistical analysis of a set of known,
non-redundant protein-DNA complexes. Their reso-
lution varies from residue-level [13–16] to atom-level

potentials [17–20]. Physics-based energy functions, on
the other hand, perform atomic level physicochemical
calculations to quantify electrostatic interactions, van der
Waals (VDW) forces, solvation energy, and others [4].
Using physics-based energy can be computationally ex-
pensive and the method is sensitive to conformational
changes. This is important since x-ray structures represent
the majority of TF-DNA complexes in PDB, which are
snapshots of dynamic ensembles of many possible confor-
mations. Knowledge-based potentials, on the other hand,
are less sensitive to conformational changes because of
their relatively coarse-level and mean-force nature, and
are more computationally efficient. However these poten-
tials are “averaged” values among different types of inter-
actions and are less accurate for some amino acid types
due to low count problem [12].
To take advantage of the unique features of both

knowledge-based and physics-based potentials for
structure-based TFBS prediction, we recently developed
an integrative energy (IE) function that consists of three
terms, a residue-level knowledge-based multibody (MB)
potential, an explicit hydrogen bond (HB) energy, and
an electrostatic potential for π-interaction energy. Stud-
ies have shown that both hydrogen bonds and π-π in-
teractions play critical roles in specific protein-DNA
binding [12]. Even though the multibody potential impli-
citly captures biophysical interactions including hydrogen
bonds and π-interactions, the mean-force nature and the
typical low count problem limit its ability to capture the
key hydrogen bonds and π-interactions that contribute to
TF-DNA binding specificity [15]. The IE function im-
proved TFBS prediction accuracy over MB as well as
DDNA3, a knowledge-based atomic-level protein-DNA
interaction potential [12, 15, 18]. However, the algorithm
cannot scale well for prediction of longer TF binding sites,
especially for binding sites from TF dimers or tetramers.
As shown in Fig. 1, our previous prediction algorithm first
generates TF-DNA complexes consisting of a TF and
every possible permutation of its target sequence using
3DNA [21, 22]. The IE function is then applied to each
TF-DNA complex to calculate their binding energy and
subsequently predict their binding sites (Fig. 1) [12]. The
total number of TF-DNA complex energy calculations
is 4L, where L is the length of the binding motif. For
example, in our previous approach, we used a binding
sequence of length 8, which requires evaluating a total
of 65,536 TF-DNA complexes. As the size of the binding
sites increases, the time complexity increases exponentially.
Here we propose a new approach, called pentamer

algorithm, which splits the DNA binding sequence
into a series of overlapping subsequences/fragments of
length 5 base pairs (bps), for more efficient and accur-
ate TFBS prediction. Fragment-based methods have
shown their power in the field of protein structure

Fig. 1 Four major steps in structure-based prediction of transcription
factor binding sites
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prediction [23, 24]. Also in DNA shape studies, Rohs et al.
have developed a DNA pentamer model for predicting
DNA structural features [25–28]. In their model, DNA
shape features of a nucleotide are predicted from a penta-
mer sequence that takes sequence context, two on each
side, into consideration [28]. Even though we used the
same term “pentamer” for DNA fragments in this work,
the research problems are different. One uses a pentamer
model or a 5-bp sliding window to predict the shape fea-
tures of the center nucleotide [25–28]. Our approach, on
the other hand, calculates TF-DNA pentamer binding en-
ergy and the full-length binding sites are predicted by
combining the fragment scores in post-preocessing. To
the best of our knowledge, our method is the first attempt
to use DNA fragments for structure- or interaction-based
TF binding site prediction. In addition to the pentamer
algorithm, we modified our IE function to simplify the cal-
culation of the hydrogen bond energy and π-interaction
energy proposed in our previous method [12]. Results
show that our new approach not only dramatically im-
prove the prediction speed, it also helps improve pre-
diction accuracy, especially for TF dimers with longer
binding sites.

Methods
Modified integrative energy function
In our previous study, the IE function consisted of a
multibody potential, a hydrogen bond term and a π-
interaction term [12]. The knowledge-based multibody
potential utilizes structural environment for accurate as-
sessment of protein-DNA interactions as it uses DNA
tri-nucleotides, called triplets, as an interaction unit to
study interactions between TF and DNA [15]. The poten-
tial is distance dependent and the distance is calculated
between an amino acid’s β-carbon and the geometric cen-
ter of a nucleotide triplet. The position of a nucleotide is
represented by the N1 atom in pyrimidines or the N9
atom in purines [15]. The hydrogen bond energy was cal-
culated using FIRST, a third party program [12, 29], which
makes the calculation less efficient. Since electrostatic
interactions are involved in both hydrogen bond and π-
interactions, in this study, we combine the hydrogen
bond energy and π-interaction energy into one electro-
static energy term to reduce the complexity of energy
calculation. The modified integrative energy function is
shown in Eq. 1.

EIE ¼ WMBEMB þWEEE ð1Þ

where EIE is the new, simplified integrative energy score,
WMB and EMB are the weight and normalized energy
score for the multibody potential respectively, and WE

and EE are the weight and normalized score for the
electrostatic energy respectively. Each energy term is

normalized using the Min-Max normalization method
as we described in our previous study [12]. Since there
are only a limited number of non-redundant TF-DNA
complexes with known TFBSs, not enough to have a
separate training set for weight optimization, we used
weights of 1 and 0.5 for WMB and WE respectively. The
electrostatic term has smaller weight than WMB since
electrostatic interactions are already implicitly captured
in the multibody potential. The electrostatic potential
is calculated using a variation of coulombs law (Eq. 2)
where the partial charges of the atoms within inter-
action distance were determined using Marvinsketch,
from Chemaxon (Additional file 1: Table S1) [30].

Eab ¼ keNAqaqb
εd

ð2Þ

where Eab is the electrostatic energy between an atom a
of an amino acid and an atom b of a DNA base, ke is
Coulomb’s constant. NA is Avogadro’s number, qa and qb
are the charges of the two atoms. ε is the dielectric con-
stant and d is the distance between the point charges.
The charges, qa and qb, are determined by multiplying
the partial charge values with the charge of an electron
(1.6 × 10−19 coulombs). The electrostatic potential of
each atomic interaction is added together for the total
electrostatic energy between the TF and a specific DNA
sequence as shown in Eq. 3.

EE ¼
X
Nab

Eab ð3Þ

where EE is the total electrostatic energy between the TF
and a DNA binding site, Nab is the number of amino
acid-base interactions, Eab is the electrostatic energy be-
tween atom a of an amino acid and atom b of a base.
The interaction distance d for atoms involved in hydro-
gen bond interaction was set at between 1.5 Å and
2.9 Å, a typical distance between the hydrogen atom and
the hydrogen bond acceptor atom [21, 31–33]. We used
REDUCE to add hydrogen atoms to the TF-DNA com-
plex structures [34]. The cutoff distance for atoms in-
volved in a possible π-interaction between an aromatic
amino acid and a base was 4.5 Å based on previous
studies [35]. The sum of the charges found in the elec-
tron cloud of aromatic residues, were used as the charge
for the electrostatic energy calculation to account for the
delocalization of electrons in π-systems and their in-
volvement in π-π interaction [12, 36–38].
We have demonstrated that the original IE function

outperforms both residue- and atomic-level knowledge-
based potentials in structure-based prediction of TF
binding sites [12], therefore, in this study we only com-
pared prediction accuracy of our new pentamer algorithm
(with a simplified IE function) to the original IE function.
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Pentamer algorithm
Generation of TF-pentamer DNA complexes
The first step of the algorithm is to determine the bind-
ing sequence for a transcription factor. It can be based
on prior knowledge or automatically detected using the
TF-DNA complex structure. For automatic detection,
the TF-DNA complex is checked for the first and the
last base that are in contact with the TF using a distance
cutoff of 5 Å between heavy atoms. Though the non-
interacting flanking base pairs are less conserved, recent
studies have shown that these flanking bases contribute
to DNA binding specificity by affecting DNA shape and
stability [27, 39–43]. Therefore we added two bases on
each side of the binding sequence of length n, which re-
sulted in an n + 4 DNA sequence for the initial system
(Fig. 2). For example, a DNA binding sequence of 5 base
pairs becomes a 9 bp sequence after adding two flanking
base pairs on each side (Fig. 2). Energy minimization
was first performed on the TF-DNA complex using
UCSF Chimera 1.8 with the following parameters: 100
steepest descent steps with a step size of 0.02, 100 con-
jugate gradient steps with a step size of 0.02, and an up-
date interval of 10 as described in our previous study
[12, 33]. The DNA sequence was then split into a series

of overlapping 5 bp sequences by shifting one base pair
at a time. The DNA sequence in each TF-pentamer was
mutated to every possible permutation using 3DNA
[21, 22], which resulted 45 or 1024 TF-pentamer com-
plex structures for each original TF-pentamer. In total,
there are n*1024 TF-pentamer complex structures to
be evaluated, where n is the number of pentamer frag-
ments from the original DNA structure. The binding
energy for each TF-pentamer DNA complex was then
calculated (Eq. 1).

Binding motif prediction
To predict the TF binding motif from these TF-pentamer
interaction energies, we developed two different methods,
Kmer-Sum algorithm and position weight matrix (PWM)
stacking algorithm (Fig. 3). In the Kmer-Sum algorithm, the
IE score of a full-length binding sequence is the sum of the
interaction energy of overlapping pentamer sequences with
the TF and the score of each permutation of the full-length
binding sequence is calculated accordingly (Fig. 3a). The
statistically significant scores from the binding sequence IE
score distribution of all the full-length permutations were
determined and their corresponding DNA sequences were
used to generate a binding motif as described previously
(Fig. 3a) [12]. In this study, the critical value for statistical
significance in the Kmer-Sum algorithm was 0.01 normal-
ized by the length of the predicted motif. For the PWM
stacking algorithm (Fig. 3b), the binding sequence was
broken up into pentamer subsequences. The IE score of
each permutation of each pentamer sequence was calcu-
lated. For a given pentamer representing 5 contiguous bases
of the binding motif, a PWM representing the statistically
significant pentamer sequences was calculated from the dis-
tribution of IE scores of all possible pentamer permutations
(Fig. 3b). Each position (column) in a pentamer PWM rep-
resents a specific position (column) in the binding motif
PWM. All of the corresponding cells representing the fre-
quency of a particular nucleotide in a specific position were
added together to generate a position frequency matrix
(PFM) of the binding motif (Fig. 3b). The PFM was then
converted to a PWM and a motif logo using the method
described by Schneider and Stephens [44, 45].
The TF-pentamer energy calculation and binding

motif prediction were run on a cluster (a total of 708
computing cores) with dual Intel Xeon 2.93 GHz 6-core
processors–X5670 and 3GBs RAM per core. The CPU
time was recorded and the speed was compared with the
full-length prediction method using IE, MB and DDNA3
energy fucntions.

Dataset
The new method was tested on two non-redundant sets:
TF monomer-DNA complexes and TF dimer-DNA com-
plexes [12]. The dataset consisted of high quality X-ray

Fig. 2 The DNA sequence is split into overlapping fragments of
5 bps. The green bases are TF-DNA contact sequences of length
n = 5 bp and the red bases are the 2 flanking bases on each side. The
number of TF-pentamer complexes to be evaluated is 5*1024 = 5120
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crystal structures of TF-DNA complexes (resolution <3 Å,
and R-factor ≤ 0.3) in PDB with corresponding JASPAR
PWMs [46]. All TF monomer chains share no more than
35% sequence identity. The TF monomer dataset contains
27 non-redundant TF chain-DNA complexes representing
12 transcription factor families: helix loop helix, zinc fin-
gers, homeodomains, leucine zippers, STAT1, fork head,
ETS family, high mobility group (HMG), NFAT, SMAD,
P53 DNA binding domain, and runt domains. The dataset
include: 1 AM9:A, 1 BC8:C, 1BF5:A, 1DSZ:A, 1GU4:A,
1H9D:A, 1JNM:A, 1LLM:C, 1NKP:A, 1NKP:B, 1NLW:A,
1OZJ:A, 1P7H:L, 1PUF:A, 1PUF:B, 2A07:F, 2 AC0:A,
2DRP:A, 2QL2:A, 2QL2:B, 2UZK:A, 2YPA:B, 3F27:A,
3HDD:A, 4F6M:A, 4HN5:A, 4IQR:A.
For dimer binding site prediction, a non-redundant

set of eight TF dimer-DNA complex structures was
used: 1 AM9, 1GU4, 1JNM, 1NKP, 1NLW, 1OZJ, 2QL2,
and 2YPA.

Performance evaluation
Due to the differences in length of predicted binding
motifs and the heterogeneity of the TF domains that are
involved in experimental determination of TFBSs, we
calculated the Information Content weighted Pearson
Correlation Coefficient (IC-weighted PCC) values and

used the IC-weighted PCC values to determine the
number of correctly predicted positions in the aligned
PWMs between the predicted and reference motifs. IC-
weighted PCC is a PWM comparison method devel-
oped by Persikov and Singh to measure the similarity
of the corresponding columns between the predicted
and the reference PWMs of the same base positions in
the binding motif [47]. The information content was
calculated using Eq. 4:

IC mð Þ ¼ 2þ
X

B∈ A;C;G;Tf g
mB log mB ð4Þ

where the IC(m) is the information content function
for column m in a PWM, and B represents DNA base
frequencies in that column. The IC-weighted PCC was
then calculated using Eq. 5:

PCCIC
m:n ¼

P
b∈ A;C;G;Tf g mb−mð Þ nb−nð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

b∈ A;C;G;Tf g mb−mð Þ2•Pb∈ A;C;G;Tf g nb−nð Þ2
q � IC mð Þ

2

ð5Þ

where PCCIC
m;n is the IC-weighted PCC between the ref-

erence column m, and the predicted column n. mb and nb

Fig. 3 Algorithms for binding motif prediction based on TF-pentamer interaction energies. a In the Kmer-Sum algorithm, the IE score between a
TF and a full-length DNA sequence is a summation of all the IE scores of the TF-pentamer complex (top part). After all IE scores between the TF
and each permutation of the full-length DNA sequence are calculated, the binding motif is predicted based on the sequences with statistically
significant IE scores among all possible sequences (lower part). b The PWM stacking algorithm generates a distribution of IE scores based on the
sequence permutations for each pentamer of the original sequence. The PWM positions corresponding to the same position in the original
structure are added together to form a PFM representing the TF’s TFBS, which is then converted to a PWM and binding motif logo
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are the frequencies of the DNA bases b, found in the rows
of the corresponding reference and predicted PWM col-
umns respectively. m and n are the mean frequencies in
the reference and predicted columns respectively. A pre-
dicted column is considered a correct prediction when the
IC-weighted PCC between the corresponding predicted
and reference columns is at least 0.25 [47]. The advantage
of using IC-weighted PCC measure is that it takes into
consideration both the conservation of a base-position in
the reference binding motif (information content) and
how well it matches the predicted binding motif (Pearson’s
correlation coefficient). The statistical analysis was carried
out using Wilcoxon Signed-rank test to compare the num-
ber of correctly predicted columns in a dataset.
Averaged Kullback-Liebler (AKL) divergence was also

used to quantitatively measure the similarity between
the predicted and reference PWMs as shown in Eq. 6
[48, 49].

DAKL ¼
X
i

X
B∈ A;C;T ;Gf g

PiBlog PiB

QiB
þ QiBlog

QiB

PiB

� �

2
ð6Þ

where DAKL is the AKL divergence, i represents the corre-
sponding columns of the base positions being compared
in the predicted and reference matrices. B represents the
four bases A, C, G and T. PiB and QiB represent the fre-
quency of a particular base B in corresponding columns i
in the predicted and reference matrices respectively.

Results
In this work, in addition to the new pentamer algorithm,
we proposed a simplified IE function for more efficient
prediction over the previously developed IE function
that requires an external program to calculate hydrogen
bond energy (See Methods) [12]. To check if the new

simplified IE energy function has comparable perform-
ance to the original IE function, we compared their pre-
diction accuracy using the same prediction algorithm
(termed full-length algorithm in this study). Wilcoxon
Signed-rank test showed that there is no significant dif-
ference between the new IE and the original IE function
when tested on the non-redundant dataset of 27 TF-
DNA complex structures using the full-length prediction
algorithm [12]. The p-values in terms of AKL divergence
and the number of correctly predicted columns are 0.65
and 0.39 respectively for the null hypothesis: there is no
difference between the two IE functions. For individual
cases, one IE function may work better than the other
but overall there is no apparent difference between the
original IE function with explicit hydrogen bond and
π-interaction energy terms and the new IE function
even though the new IE function is much easier and
less computationally intensive to calculate (Additional
file 1: Figure S1).
The pentamer algorithms with the simplified IE func-

tion were tested on the multi-family non-redundant
dataset of 27 TF monomer-DNA and 8 TF dimer-DNA
complex structures. The performance of the new penta-
mer algorithm was compared with our previous full-
length algorithm in terms of both speed and prediction
accuracy. Computing time results on the monomer and
the dimer cases clearly show that the pentamer algo-
rithm is much faster than the full-length methods (Fig. 4
and Additional file 1: Table S2 for all the cases). In the
TF monomer-DNA cases, the new algorithm requires an
average of 4.66 (Kmer-Sum) and 4.61 (PWM stacking)
CPU hours for IE energy calculation (columns 4 and 5
respectively in Additional file 1: Table S2) while the full-
length IE method needs an average of 162 CPU hours
(column 6 in Additional file 1: Table S2), about 35 times
faster. Even though the pentamer algorithm requires a
post-processing step to predict the binding sites by

Fig. 4 Comparison of CPU time on the non-redundant monomer and dimer sets with different prediction algorithms: Kmer-Sum, PWM stacking
and full-length IE method, and with different energy functions: IE, MB, and DDNA3
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combining the pentamer energy in Kmer-Sum or PWM
stacking (Fig. 3), the time for post-processing is minimal
(data not shown). The DDNA3 and MB energy function
in the full-length method required less time than the IE
energy but they still used several fold (>3.7 for DDNA3
and >11 for MB) more time than the pentamer IE
method (Additional file 1: Table S2) and they are less ac-
curate than the IE function in TF binding site prediction
as we demonstrated previously [12].
When tested on the dataset of TF dimers with longer

DNA binding sites, the improvement in computing time
is even more significant. The pentamer algorithm per-
forms calculations at a linear time complexity for subse-
quences of the binding site, making prediction of longer
binding motifs much faster (Additional file 1: Table S3).
For example, the binding site for three TF dimers
(1 AM9:human SREBP-1, 1GU4:human C/EBPβ, and
1OZJ:human Smad3-MH1) has 12 base pairs. The full-
length algorithm needs to evaluate 412 = 16,777,216
TF-DNA interaction energies while the pentamer al-
gorithm only needs to calculate binding energy for
8*45 = 8192 TF-pentamer complexes. Not surprisingly,

the run-time (CPU hours) analysis showed that the
pentamer algorithm, including TF-pentamer energy
calculation and the Kmer-Sum post-processing time,
has about 644 (for 1GU4) to 1209 (for 1OZJ) fold im-
provement over the full-length IE method (Fig. 4 and
Additional file 1: Table S2). Another factor that affects
the running time is the protein size (Additional file 1:
Figure S2). It took longer for 1OZJ than that for 1GU4
since 1OZJ (288 amino acids) is about twice the size
of 1GU4 (156 amino acids). Even though MB and
DDNA3 energy calculations require less time than the
IE energy, the pentamer algorithm still showed on
average 143 times faster than full-length MB and 47.5
times faster than full-length DDNA3.
Not only does the pentamer algorithm run much fas-

ter due to the reduced total number of energy calcula-
tions, it also produced overall better results than the
original full-length method in terms of the number of
correctly predicted columns (Figs. 5 and 6). For example,
more columns are predicted correctly using either the
Kmer-Sum or the PWM stacking pentamer algorithm
for 1GU4:A and 1P7H:L (human NFAT1), which are also

Fig. 5 Comparison of TF binding site prediction. a Comparison of the number of correctly predicted columns (based on the IC-weighted PCC
scores) by the Kmer-Sum (blue), PWM stacking (red), and previous full-length (green) algorithms. b Examples of five binding motifs predicted using
different methods. c Examples of distributions of IC-weighted PCC values of correctly predicted columns by Kmer-Sum (blue squares), PWM
stacking (red circles), and full-length (green triangles) algorithms. d Binned distributions of IC-weighted PCC scores (≥0.25) in 27 cases by the
Kmer-Sum (blue), PWM stacking (red), and full-length (green) algorithms in the multi-family dataset
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reflected in the binding motifs (Fig. 5a and b). (See
Additional file 1: Figure S3 for all 27 predicted TF
monomer binding motifs). We performed statistical
analysis using Wilcoxon Signed-rank test to test the al-
ternative hypothesis that the pentamer algorithm gen-
erated a greater number of correctly predicted base
positions than the previous algorithm. The p-values are
0.0028 and 0.0029 for the Kmer-Sum and PWM stack-
ing algorithms respectively, suggesting that increases in
prediction accuracy are statistically significant for both
the Kmer-Sum and the PWM stacking methods over
the full-length method using the IE function.
In several cases, even though both the pentamer and

the full-length methods show similar results in terms of
the number of correctly predicted columns, the results
from the pentamer algorithm are actually better than the
previous method because of the broad definition of cor-
rectly predicted columns. The cutoff for correctly pre-
dicted columns is set at 0.25 (IC-weighted PCC value) as
proposed by Persikov and Singh [47], meaning there is a
large range, from 0.25 to 1, of IC-weighted PCC values
for the correctly predicted columns. A closer look at the
distributions of the IC-weighted PCC values revealed

that even though the correctly predicted columns are
comparable between the pentamer and the full-length al-
gorithms, including 2A07:F (human Foxp2), 1NLW:A
(human MAD protein), and 2DRP:A (Drosophila mela-
nogaster Cys2-His2 zinc finger), the actual IC-weighted
PCC values from the pentamer predictions are better
(closer to 1) than the IC-weighted PCC values from the
previous method (Fig. 5a and c). The distributions of the
IC-weighted PCC of all 27 cases shows a similar trend;
more data points are close to the perfect IC-weighted
PCC score in the pentamer algorithms than the full-
length method (Fig. 5d and Additional file 1: Figure S4).
While the pentamer method significantly reduces the

time for energy calculation for longer binding sites
(Fig. 4 and Additional file 1: Table S2), more importantly,
we found that it also improved the prediction accuracy
significantly. Six of the eight dimer cases showed much
improved TFBS predictions when compared to predictions
using the full-length method (Fig. 6a-c and Additional
file 1: Figure S5). Wilcoxon Signed-rank tests were per-
formed to test the alternative hypothesis that the penta-
mer algorithms have more correctly predicted columns,
which showed the differences are statistically significant

Fig. 6 Prediction of TF dimer binding sites. a Comparison of the number of correctly predicted columns in TF dimers by the Kmer-Sum (blue),
PWM stacking (red), and full-length (green) algorithms. b Comparison of TF binding motifs of TF dimers using the Kmer-Sum, PWM stacking, and
full-length algorithms. c Distribution of the IC-weighted PCC values above 0.25 from three different prediction algorithms. d Multi-domain TF
prediction of the Ubx-Exd TFBS
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with p-values of 0.0168 and 0.0165 for the Kmer-Sum
and PWM stacking pentamer algorithms respectively.
In addition to TF dimers with known TF-DNA complex

structures and corresponding JASPAR motifs, we also
made predictions for Hox proteins Extradenticle (Exd)
and Ultrabithorax (Ubx). Ubx and Exd form a dimer to
regulate gene expression [50, 51]. Though both Ubx and
Exd have annotated JASPAR PWMs separately, there are
no JASPAR binding motifs for the Ubx-Exd dimer. How-
ever, binding sites of Ubx-Exd dimer have been reported
in several studies [50, 52]. The predicted Ubx-Exd dimer
(PDB ID: 1B8I) binding sites are consistent with the
published data (Fig. 6d). Furthermore, the Drosophila
limb-promoting gene Distalless regulatory element, which
is in part regulated by Ubx-Exd interactions, also validates
the pentamer prediction results [53, 54].

Discussion
We have previously developed a structure-based method
using an IE function for improving TF binding site pre-
diction and demonstrated that it increased prediction
accuracy for different TF families as well as different
TFs within the homeodomain family [12]. The method
needed to evaluate nL TF-DNA complex structures
(where L is the length of the binding sequence). Since a
fixed sequence length (8 bps) was used for TF binding
site prediction for each single TF domain-DNA com-
plex, each prediction required energy calculations for
all 65,536 (48) possible permutations of the sequence,
which could be calculated in a reasonable time frame
[12]. However, as the length of the binding motif in-
creases, the number of energy calculations increases expo-
nentially, making it impractical for longer TF binding site
predictions even with the availability of large computer
clusters. There are many instances where we need to
evaluate longer binding sequences. For example, we need
to consider flanking sequences for binding site prediction
as it has been demonstrated that flanking bases contribute
to binding specificity even though these flanking se-
quences are not conserved [42]. Secondly, some binding
sites are regulated by dimers or tetramers of either the
same transcription factor (homo-) or different transcrip-
tion factors (hetero-), which are typically much longer
than 8 base pairs. Also in homology model based TF bind-
ing site prediction, it would be ideal to consider multiple
homology models to increase the conformational cover-
age, which demands more energy calculations.
We addressed the problem in this study by developing

a simplified IE function and a fragment-based pentamer
algorithm, which improve both the speed and prediction
accuracy, especially for longer binding sites (Figs. 4, 5
and 6 and Additional file 1: Table S2). The increase of
prediction speed is not surprising since we only need to
calculate energies of 1024 (45) TF-pentamer complexes

times the number of fragments (Fig. 2 and Additional
file 1: Table S3). The overall improvement of accuracy
may lie in the fact that the long-range interactions from
the coarse multibody function can introduce noise to
our previous full-length algorithm. In the pentamer algo-
rithm the noise level is reduced since it only considers a
short sequence environment. Another factor that may
affect the prediction accuracy is the weights for the two
energy terms in the simplified IE function. As mentioned
in the Methods section, training for an optimal set of
weights is not possible due to the limited availability of
cases. The weights, 1 for MB term and 0.5 for the elec-
trostatic energy term, were assigned based on our previ-
ous study and the characteristics of the energy terms
[12]. For example, knowledge-based multibody potential
already implicitly captured the electrostatic interactions
that are important for specific protein-DNA interactions,
including hydrogen bonds and π-interactions. To inves-
tigate the effects of weights on the prediction perform-
ance, we compared the prediction accuracy of different
weight ratios. Statistical analyses showed that the weight
combination in our study was among a small number of
combinations that produced better predictions and the
weights for the electrostatic energy term WE are between
0.25 (4−1) to 0.5 (2−1) (Additional file 1: Figure S6).
As a note, while the pentamer algorithm reduces the

time complexity by lowering the number of TF-DNA
complexes for energy calculation, calculating the final
binding motif using the Kmer-Sum algorithm requires
additional computing time especially for longer binding
sites as it requires calculation for all possible sequence
permutations for the full length binding site (Fig. 3a).
Nevertheless, the total time used by the pentamer algo-
rithm is significantly less than the full-length method with
better prediction accuracy. For dimer structures and
multi-domain TFs that have longer spacing (> = 4 bps) be-
tween two monomer binding sites, it may be more effi-
cient to calculate each of the binding sites individually and
then combine them to form one binding motif. Of the two
pentamer combination algorithms, PWM stacking is mar-
ginally faster as it does not need to calculate the individual
sequence binding energy while the Kmer-Sum algorithm
has slightly better prediction accuracy. In addition, the
Kmer-Sum method actually predicts energy scores for
each binding sequences while PWM stacking can only
produce a binding sequence profile.

Conclusion
We developed a fragment-based pentamer algorithm with a
simplified energy function that greatly speeds up the TFBS
prediction by reducing the number of energy calculations
and improves TFBS prediction accuracy. Two algorithms,
Kmer-Sum and PWM stacking, were used to combine
the TF-pentamer scores for binding motif prediction
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with overall better performance in terms of TFBS pre-
diction accuracy. Our results also show that the longer
the binding sites, the more speedup and accuracy can
be achieved. For future studies, we will test this new
approach for binding site prediction using TF-DNA
homology models.

Additional file

Additional file 1: Supplemental figures and tables. (PDF 3646 kb)
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