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Abstract

Background: LINCS L1000 is a high-throughput technology that allows gene expression measurement in a large
number of assays. However, to fit the measurements of ~1000 genes in the ~500 color channels of LINCS L1000,
every two landmark genes are designed to share a single channel. Thus, a deconvolution step is required to infer
the expression values of each gene. Any errors in this step can be propagated adversely to the downstream
analyses.

Results: We presented a LINCS L1000 data peak calling R package l1kdeconv based on a new outlier detection
method and an aggregate Gaussian mixture model (AGMM). Upon the remove of outliers and the borrowing
information among similar samples, l1kdeconv showed more stable and better performance than methods
commonly used in LINCS L1000 data deconvolution.

Conclusions: Based on the benchmark using both simulated data and real data, the l1kdeconv package achieved
more stable results than the commonly used LINCS L1000 data deconvolution methods.

Background
The NIH Common Fund’s Library of Integrated
Network-based Cellular Signatures (LINCS) is a rich
collection of gene expression data from a variety of
human cell lines perturbed with a large battery of
drugs and small molecules [7, 12]. So far, data gene-
rated by LINCS L1000 technology comprise over
1,000,000 gene expression profiles from 42,553 pertur-
bagens applied to as many as 77 cell lines. A total of
19,811 of the perturbagens (including over 2000 FDA
approved & clinical trial drugs) are small molecule
compounds applied at different time points and doses.
The other perturbagens are genetic perturbations,
including knockdown and overexpression of well-
selected 4372 genes. In general, triplicated (or more)
measurements were performed for each perturbergen,
leading to a total of over 400,000 gene expression
signatures generated by this technology [11]. Different
from other genome wide expression measurement
technologies such as microarray and RNA-Seq, L1000

is used in LINCS and only measures about 1000 se-
lected “landmark” genes with only about 500 distinct
bead colors [3] so that every two “landmark” genes
share a color. Despite this reduction greatly increasing
the throughput of the perturbed assays that can be
performed simultaneously and driving down the
experimental cost, it induces an additional deconvolu-
tion analysis step that is crucial for the accuracy of
the measure of the gene expression levels [8, 9].
This peak deconvolution step is necessary because each

bead color is associated with two genes rather than one.
For each color, deconvolution is supposed to yield a distri-
bution that generally consists of two peaks. The default
approach provided by LINCS is the k-medians clustering
algorithm which partitions all the data into two distinct
components, and the median expression values are
assigned as the expression value of the two gene of a color.
Liu et al. [8, 9] proposed another deconvolution approach
that was based on naïve Gaussian mixture model (GMM)
with only two components, and the expression values
were inferred from the component means. However, al-
though the two genes with the same color were selected
so that their intensity differences are as much as possible,
there still exist many cases in which the expressions of a
pair of genes are intermixed, making it difficult to infer
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the expression values by either k-medians or naïve GMM
[4]. Thus, it is critical to develop a new method to im-
prove the deconvolution accuracy.
Here, we presented an R package, l1kdeconv, that

implements a new peak-calling algorithm based on an
aggregate Gaussian mixture model (AGMM) along
with an outlier detection method for improving the
robustness of AGMM. AGMM is based on the Gaus-
sian mixture model and borrows information from
the samples of the same condition to improve the
peaking calling accuracy.

Implementation
Outlier detection in LINCS L1000 data
Gaussian mixture models based on clustering analysis
methods in general are sensitive to outliers [10]. To
improve the clustering accuracy, we first developed an
outlier detection method to remove the outliers before
peak calling.
Given the bead intensities of a color, we first esti-

mated the kernel density of the bead intensities using
the R function density(). When the estimated density
is less than the threshold dy_thr (0.0001 as the de-
fault), the corresponding regions are recognized as
data free gaps. Using these data free gaps, the beads
are split into different clusters, as shown in Fig. 1.
Finally, if the size of a cluster is less than the thresh-
old clustersize_thr (3 as the default), the beads in it
will be identified as outliers. See Fig. 2 for the flow-
chart of the outlier detection.

Aggregate Gaussian mixture model
To accurately detect the expression values of a pair of
genes, we introduced a novel peak calling method to
borrow the information of the samples at the same con-
dition (e.g., the same cell line, the same perturbation and
the same treatment duration). This method is an exten-
sion of naïve GMM with a constraint that the order of
the gene expression values of two genes of the same
color is consistent across these similar samples.
After the outliers were removed in the outlier-detection

step, the two peaks of the pair of genes of a given color
can be computed in the following way. We assumed the
color intensities X of the beads measuring any given gene
follow a Gaussian distribution N μ; σ2ð Þ , with μ and σ2 as
the mean and variance of bead intensities of the gene.
Since each bead of a color can come from any of the two
genes of the color, a two-component Gaussian mixture
model was used to estimate the mean intensity of each
gene. Due to the limited number of beads of each color, in
order to have robust estimates of the intensity variance of
each gene of a color, a common variance σ2 was assumed.
Therefore, the probability density function of the bead
intensities for a given color in a sample is.

P xjμ1; μ2; σð Þ ¼ λf x; μ1; σð Þ þ 1−λð Þf x; μ2; σð Þ:
with the probability density function of a Gaussian
distribution

f x; μ; σð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

x−μð Þ2
2σ2

where λ is the proportion of the beads of the first gene

Fig. 1 The overview of the outlier detection method in LINCS L1000 data. The curve represents the density function of the bead intensities of a
color in a sample. The region in the red circle is a region in which there are no data points. This region splits the data into two regions. The
region on the left contains too few data points, and the blue points circled in the brown eclipse are considered outliers as they degrade the
performance of a 2-component Gaussian mixture model
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and 1 − λ is the proportion of the beads of the second
gene, μ1and μ2 are the mean intensities of the first and
second genes respectively.
Because the two genes assigned to a color were selected

in a way such that their intensity difference was
maximized [8, 9], this difference between the two genes
can be assumed to be in the same direction across the
similar samples. In other words, of any given color, the
mean intensity of one gene was always greater than the
mean intensity of the other gene. This assumption
suggested that the information borrowing among the
similar samples will make the mean intensity estimates
more robust.
The detailed method was described as below using an

aggregate Gaussian mixture model (AGMM). Supposing
there are m similar samples, we define the aggregate in-
tensity vectors of a given color as {x1, x2, … , xm}, where
each xi ¼ xi;1;…; ; xi;ni

� �
is a bead intensity vector of the

color in the i-th sample and ni is the number of beads.
The log-likelihood of the AGMM is:

L μ1;μ2; σ; λj x1; ; x2;…; ; xmf gð Þ

¼
Xm
i¼1

Xni
j¼1

log λf xi;j jμ1;i; σ
� �

þ 1−λð Þf xi;j jμ2;i; σ
� �n o

where λ is the proportion of the beads of the gene with
a higher gene expression and 1 − λ is the proportion of
the beads of the gene with a lower gene expression, μ1

= {μ1 , 1, … , μ1 ,m} and μ2 = {μ2 , 1, … , μ2 ,m} are the vec-
tors of the two mean intensities in the m samples with
the given color, and σ is the standard deviation across
these m samples with the given color. The maximum
likelihood method can be used to estimate the parame-
ters (μ1, μ2, σ and λ) by optimizing the log-likelihood
function of the AGMM. To enforce the differences
between μ1and μ2 of the same colors across similar
samples having the same sign, we reparametrize the log-
likelihood as follows so that box constraint optimization
can be used:

L δ;μ; σ; λj x1; ; x2;…; ; xmf gð Þ
¼ L μ1;μ2; σ; λj x1; ; x2;…; ; xmf gð Þ;

where δ and μ are defined as

δ ¼ μ1−μ2

and

μ ¼ μ1 þ μ2

2
:

Brief overview of the package
The l1kdeconv package contains a novel peak calling al-
gorithm for LINCS L1000 data, using aggregate Gaussian
mixture model, an extension of the naïve GMM. Rather

Fig. 2 The implementation framework of l1kdeconv that includes the outlier detection and the aggregate Gaussian mixture model
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than fitting the bead intensities of each color in a single
sample using two-component Gaussian mixture model
separately, AGMM calls the two peaks of each color
across similar samples simultaneously. In addition, the
outlier detection method included in l1kdeconv can also
enhance the clustering performance of AGMM. Figure 2
shows the framework of the outlier detection and AGMM
approach.
The parameters of AGMM can be estimated using

the R function optim() by the method of maximum
likelihood. The L-BFGS-B method [1, 13] is used to
add box constrains. To ensure the convergence of the
optimization, k-means is used to compute the rough
estimates of the mean intensities, which are used as
initial values for the optimization. To make the pack-
age user-friendly, detailed help pages and running
examples are provided in the package.

Results
The construction of simulation dataset
To make a realistic evaluation of the performance of
l1kdeconv, a simulated dataset was created with the key
characteristics of LINCS L1000 data using a hierarchical
model as described below. First, the empirical true
expression values of each pair of genes were extracted
by k-medians using the LINCS L1000 data of the A375
cell line treated with luciferase. Since the differences and
averages of the empirical true expression values approxi-
mately followed a Gamma distribution and a Gaussian

distribution respectively, these two distributions were
used to resample the differences and the averages of the
mean expression values of the two genes of any color.
These differences and averages were then converted to
the mean expression values of each pair of genes. The
bead intensities were simulated from a two-
component Gaussian mixture model with these mean
expression values as the center of each Gaussian
component. Then outliers were added to each color
using a uniform distribution, and the number of
outliers was generated from a Poisson distribution.
Ten samples were created so that AGMM can borrow
information across them. In each sample, there were
500 colors. In each color, there were roughly 60 beads
and the ratio of the number of the beads for each
gene in a color was 2:1.

a b

c d

Fig. 3 The comparison of the hexbin scatter plots of the intensity values of the true peaks and the predicted peaks among several methods. a
k-medians, b naïve GMM, c AGMM without outlier detection and d AGMM with outlier detection. The darkness of the color of the hexagon
indicates the number of points in it. The more points around y = x means the more accurate the prediction. AGMM with outlier detection
outperforms k-medians, naïve GMM and AGMM without outlier detection

Table 1 The number of the true predictions and mean absolute
error of k-medians, naïve GMM, AGMM without the outlier
detection and AGMM with the outlier detection. AGMM with
the outlier detection made more true predictions, and its
predictions have the least mean absolute error

k-medians naïve GMM AGMM without
the outlier
detection

AGMM with
the outlier
detection

# of true
predictions

614 1040 1342 1416

Mean absolute
error

0.8412 0.4818 0.2797 0.2545
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Comparison of l1kdeconv with k-medians and naïve GMM
on the simulated dataset
Using the simulated data, a series of comparisons were
conducted among k-medians, naïve GMM and AGMM
with outlier detection in the l1kdeconv package. To
have a fair comparison, we compared our AGMM with
k-medians and naïve GMM that are also used in the
standard LINCS L1000 deconvolution method. Figure 3
shows the hexplot between true peaks and predicted
peaks of each method. AGMM with outlier detection (d)
is more accurate than k-medians (a) and naïve GMM
(b). The Pearson Correlation Coefficients (PCC) are
0.76, 0.89 and 0.97 for k-medians, naïve GMM and
AGMM with outlier detection, respectively. Then a test
of significance for the difference between the two corre-
lations based on dependent groups is conducted. The
Williams’s Test [2, 5] between the correlations shows
that the PCC of AGMM with outlier detection is more
significant than k-medians and naïve GMM with the p-
value less than 1 × 10−20.
Comparisons were made among these methods with

respected to the true prediction which is defined a pre-
diction whose difference from the real value is less than
0.05. Table 1 shows the number of the true predictions
of each method and the corresponding mean absolute
error [6]. According to the numbers of true predictions,

Fig. 4 The boxplot of the numbers of flippings in each color across
similar samples of k-medians, naïve GMM and AGMM with outlier
detection. AGMM with outlier detection produces no flipping in this
simulated dataset. The last method significantly outperforms the first
two methods (**** means p < 0.0001)

a b c

d e f

g h i

Fig. 5 The performance comparison of k-medians, naïve GMM and AGMM with outlier detection. Subfigures a-i show the intensity histograms of
a color of A375 cell line samples treated with luciferase. The blue curves and red curves represent the density functions estimated by naïve GMM
and AGMM, respectively. The two cluster centers are indicated by the green, blue and red shapes above the histogram learned by k-medians,
naïve GMM and AGMM with outlier detection, respectively. The bigger/smaller shapes indicate the cluster with more/less beads
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AGMM with the outlier detection resulted in 131% and
36% improvements compared with k-medians and naïve
GMM, respectively. In addition, AGMM without outlier
detection results in a reduction of 6%, indicating the
importance of the outlier detection as a filtering step
before calling AGMM.
To further benchmark the accuracy of the three

methods, we compared whether the order of the predicted
two peaks were flipped. Figure 4 shows that AGMM with
outlier detection indeed greatly improves the performance
with respect to the flipping errors because of its ability to
borrow information across similar samples. In contrast, k-
medians and naïve GMM lack this ability, thus they
produced many flipping cases.

Comparison of l1kdeconv with k-medians and naïve GMM
on a real dataset
The comparison using the simulated data confirmed that
AGMM with outlier detection is more stable and more
accurate than k-medians and naïve GMM. To demon-
strate the performance improvement of l1kdeconv on
real data, we used a dataset of A375 cells treated with
luciferase from LINCS L1000 Phase II data (GSE70138).
Eleven replicates were used to borrow information
across these replicates. Unlike calling the peaks of each
replicate separately by k-medians and naïve GMM,
AGMM filters the outlier of each sample, and then
deconvolutes them in one group. Figure 5 shows nine
representative samples from a color in this real dataset.
k-medians (a and c) and naïve GMM (b) were unable to
identify the two peaks correctly as the order of the two
peaks are flipped. However, AGMM with outlier
detection can identify the two peaks correctly because
the information in the easy cases of d - i can be used to
help with the deconvolution of the difficult ones (a, b
and c). In the cases d, e and f, although the results from

k-medians and naïve GMM are not flipped, AGMM with
the outlier detection can fit the real data better. The
peak coordinates predicted by k-medians, naïve GMM
and AGMM with outlier detection in Fig. 5 are shown in
Table 2.

Conclusions
The l1kdeconv package provides a stable and accurate de-
convolution algorithm for LINCS L1000 data. Because the
deconvolution is the first step of the analysis of LINCS
L1000 data, any significant improvement in this step will
have a critical impact on the downstream analyses. The
l1kdeconv package has two components — the outlier
detection and aggregated Gaussian mixture model. By
filtering the outliers and borrowing information from
similar samples, l1kdeconv outperforms k-medians and
naïve Gaussian mixture model using the limited number
of intensity values.
The package also provides detailed help pages, which

makes it user friendly. Furthermore, we standardize the
distribution, installation and maintenance of this
package. It is available on the Comprehensive R Archive
Network (CRAN) at http://cran.r-project.org.
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