
Riemenschneider et al. BMC Bioinformatics (2017) 18:371
DOI 10.1186/s12859-017-1783-9

SOFTWARE Open Access

eccCL: parallelized GPU implementation
of Ensemble Classifier Chains
Mona Riemenschneider1, Alexander Herbst2, Ari Rasch2, Sergei Gorlatch2 and Dominik Heider1,3,4*

Abstract

Background: Multi-label classification has recently gained great attention in diverse fields of research, e.g., in
biomedical application such as protein function prediction or drug resistance testing in HIV. In this context, the
concept of Classifier Chains has been shown to improve prediction accuracy, especially when applied as Ensemble
Classifier Chains. However, these techniques lack computational efficiency when applied on large amounts of data,
e.g., derived from next-generation sequencing experiments. By adapting algorithms for the use of graphics
processing units, computational efficiency can be greatly improved due to parallelization of computations.

Results: Here, we provide a parallelized and optimized graphics processing unit implementation (eccCL) of
Classifier Chains and Ensemble Classifier Chains. Additionally to the OpenCL implementation, we provide an
R-Package with an easy to use R-interface for parallelized graphics processing unit usage.

Conclusion: eccCL is a handy implementation of Classifier Chains on GPUs, which is able to process up to over
25,000 instances per second, and thus can be used efficiently in high-throughput experiments. The software is
available at http://www.heiderlab.de.

Keywords: Classifier chains, Multi label classification, High performance computing

Background
Multi-label classification (MLC) has gained significant
attention in recent years in diverse fields of research,
e.g., in protein function prediction [1] and text catego-
rization [2], as well as in biomedical research [3–5]. For
instance, in recent work the MLC concept of classifier
chaining was applied to the problem of drug resistance
prediction in HIV [6].
The concept of Classifier Chains (CC) is a generalization

of binary classification. In MLC each instance is
associated with a set of labels instead of one single label
as in binary classification. Formally, let L = {l1, . . . , lm} be
a set of class labels and Y the power set of labels defin-
ing the possible label combinations of L. Let X be the
input space, where each vector x represents an instance,
e.g., a protein sequence, which is associated with labels
of Y. The idea of CC is to generate a single classifier for

*Correspondence: d.heider@wz-straubing.de
1Department of Bioinformatics, Straubing Center of Science, Petersgasse 18,
94315 Straubing, Germany
3Wissenschaftszentrum Weihenstephan, Technische Universität München,
Alte Akademie 8, 85354 Freising, Germany
Full list of author information is available at the end of the article

each l ∈ L and to link the single classifiers along a chain.
The general concept of classifier chaining is exemplarily
shown for three labels in Fig. 1. One major advantage in
classifier chaining is that interdependencies between class
labels can be modeled, e.g., in the case of drug resistance
prediction, where resistance to one drug type might also
be indicative of resistance against another drug. However,
the order in CC may have an influence on the accuracy
of prediction due to error propagation [7]. An extension
to overcome these effects are Ensemble Classifier Chains
(ECC) [8]. In this approach k classifier chains are trained
with each chain in random order and with different sub-
sets of training data. The prediction outcome is then
combined by a voting scheme, e.g., by thresholding the
prediction of each label and chain. Overall, the concept of
classifier chaining has been shown to improve prediction
accuracy, particularly when applied as ECC [9, 10].
However, today it is necessary to process large amounts

of data which typically comes with big data problems,
e.g., in biomedical research the usage of data generated
by next-generation sequencing technologies or functional

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1783-9&domain=pdf
http://www.heiderlab.de
mailto: d.heider@wz-straubing.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Riemenschneider et al. BMC Bioinformatics (2017) 18:371 Page 2 of 4

Fig. 1 General concept of classifier chanining. In general, classifier Ci
knows the labels L0, ..., Li−1 of classifiers C0, ..., Ci−1 in training process
and in classification process the results of classifiers C0, ..., Ci−1. Here,
the concept of classifier chaining is depicted for three class labels

magnetic resonance imaging [11, 12] is still challenging
as current available implementations lack computational
efficiency. Therefore, parallelized architectures, especially
graphics processing unit (GPU) implementations might
provide remedy in regards of expensive computing time
[13, 14]. For example, Olejnik et al. [15] recently published
a GPU implementation to predict the co-receptor usage in
HIV. Whereas the CPU implementation [16] was able to
classify only few instances per second, the parallelized and
optimized GPU version processes a significantly increased
amount of instances per second.
Here, we provide a parallelized implementation of CC

and ECC optimized for parallelized GPU usage. Our
implementation is able to classify over 25,000 instances
per second, whereas the sequential implementation on
the CPU provided by the Mulan library (http://mulan.
sourceforge.net) is able to classify only 360 instances per
second.

Implementation
Our software is implemented in Java using the
Lightweight Java Game Library (LWJGL) (http://www.
lwjgl.org) enabling the development of parallel computing
applications based on OpenCL. The software can be used
in Java as library or CLI-application or with R (http://
www.r-project.org) by installing the R package eccCL.
For the communication between R and Java the rJava
package is used. As a base classifier, we implemented
random forests for GPU usage.
A random forest [17] is an ensemble learning method

for classification and regression. A random forest trains
several decision trees on a subset of the original dataset.
Major advantages of random forests are the control of
overfitting and the improved prediction accuracy which

is achieved by the combination of prediction results of
each individual tree to a final decision. Parallelization is
achieved in two ways: First, each decision tree within a
random forest is built in a concurrent task in the training
phase. Second, in the classification phase each instance is
classified in a concurrent task. In contrast to the Mulan
library, eccCL is able to use OpenCL. This implicates that
the subsets for each node in training are not dynamically
created as this is not possible in OpenCL, compared to
Mulan. Furthermore, each tree has the exact same number
of nodes and the exact same depth, thus the classifiers can
be stored in a single array and the position of each node
can be calculated. Additionally, all instances are stored in
a single buffer. Furthermore, instead of generating random
subsets dynamically in the training phase, the index posi-
tions of the instances are stored in a separate array and
reordered in a randomized manner for each node, due to
the fact that all arrays in OpenCL need to have a fixed size
at compile time.

Results and discussion
We developed a GPU framework for modeling CC and
ECC. The software was evaluated on an Intel Xeon E5-
1620 with 4 cores and an NVIDIA Tesla K20c with 2496
streaming processors. The data sets for the evaluation of
our implementation were taken from different research
areas. The NNRTI and PI dataset are from the realm of
drug resistance prediction [18] in HIV. The data sets emo-
tions [19], scene [20], and yeast [21] are received from the
Mulan project (http://mulan.sourceforge.net) which pro-
vides an implementation for the usage of CC and ECC,
however, implemented in a non-parallelized manner.
The software can be used via Java on command

line with parameter settings or in R by installing the
R package eccCL. The software can be downloaded
at the authors homepage (http://www.heiderlab.de).
After downloading, the R package can be installed
using the R command within the R command
line: install.packages(‘/path/to/package/
eccCL.tar.gz’, repos=‘NULL’). In the following
we demonstrate how to build an ECC with an ensemble
size of 20 chains and a forest size of 64 within R:
library(eccCL)
Load file (.arff and .xml format
must be available)
data <- eccCLloadWekaFile
(‘home/temp/example’)
Build classifier
ecc <- eccCLbuildFromObject(data,
ensembleSize=20, forestSize=64)
Classify data
out <- eccCLclassifyObject(ecc, data)
Get classification results
res <- eccCLgetResults(out)

http://mulan.sourceforge.net
http://mulan.sourceforge.net
http://www.lwjgl.org
http://www.lwjgl.org
http://www.r-project.org
http://www.r-project.org
http://mulan.sourceforge.net
http://www.heiderlab.de

Riemenschneider et al. BMC Bioinformatics (2017) 18:371 Page 3 of 4

Save and load classifier
eccCLstore(ecc,
‘/home/temp/classifier.stored’) ecc
<- eccCLload(‘/home/temp/classifier.
stored’)
The data format should be in .arff and .xml format

according to the Mulan library. The files must be available
in the given path. In the building process of the classifier,
the ensemble size and forest size can be set individually.
The classifier can be saved and loaded again for later clas-
sification tasks. Equivally, the following line represents the
usage with Java as a shell command using the jar-file:
java -jar EccCL.jar -inpData

/path/to/dataset/NNRTI -eccES 20 -eccFS
64 -evalAllLabels
The classifier will be trained and a classification will be

performed. A classification task without a training process
on a trained and saved classifier can be executed with the
command:
java -jar EccCL.jar -inpData

/path/to/dataset/NNRTI -classOnly
/path/to/trainedClassifier
Table 1 provides a speed-up comparison between our

GPU implementation and the Mulan framework with
the usage of 20 ECC and 64 trees per random for-
est. Additionally, Table 2 demonstrates the number of
instances classified per second with eccCL compared
to the Mulan framework with respect to an increasing
number of instances. Overall, our GPU implementation
shows a speed-up of an order of magnitude in computa-
tion times. The prediction accuracy shows no difference
between the GPU implementation and the models of the
Mulan framework, however, slightly dependent on the
parameter settings.
Our software can be used on standard desktop PCs

and with OpenCL-ready graphics cards, whereas in gen-
eral currently available GPUs of almost all manufacturers
support OpenCL. eccCL needs Java (version 8.0) and
OpenCL (version 1.2) installed. Furthermore, R (version
3.0) and the rJava package (version 3.2) have to be installed

Table 1 Comparison between our GPU implementation and the
non-parallelized Mulan framework for the classification of
instances based on different data sets with different counts of
instances and labels

#Instances Mulan GPU Speed-up

NNRTI 715 1563.7 109 14x

PI 662 1998.6 128.2 15x

Emotions 593 1577.3 157.7 10x

Scene 2407 8920.3 300.9 29x

Yeast 2417 270736.2 379.2 71x

The runtimes are shown in milliseconds

Table 2 Instances classified per second with increasing number
of bootstrapped instances exemplarily shown for the PI dataset

#Instances Mulan GPU

1000 357 2,516

10,000 342 11,510

100,000 352 25,851

1,000,000 362 26,266

in advance for the usage of eccCL with R interface.
Dependent on the platform, the OpenCL implementation
can be used and in case OpenCL is not installed a par-
allelized Java implementation can be executed, however,
on the CPU. eccCL runs on Linux and Mac OS. Over-
all, the software is easy to handle and no special hardware,
i.e., a cluster or high-end server is needed. Currently, the
eccCL package provides the random forest classifier in a
parallelizedmanner. Random forests can be used as a clas-
sifier chain classifier and as an ensemble classifier chain
classifier. In the future, we will work on further classifier
implementations and will make them available within our
package.

Conclusion
We provide an R-package and a Java version of a paral-
lelized and optimized GPU implementation of Classifier
Chains and Ensemble Classifier Chains. The software is
able to classify up to over 25,000 instances per second and
thus can efficiently speed up the classification process in
high-throughput experiments.

Availability and requirements
Project name: eccCL
Project home page: http://heiderlab.de
Operating system(s): Linux, Mac OS
Programming language: Java (≥ 8.0), R (≥ 3.0),
(optional) OpenCL (≥ 1.2)
License: GPL (≥ 2)
Any restrictions to use by non-academics: none

Abbreviations
CC: Classifier chains; CLI-application: Command-line interface application;
CPU: Central processing unit; ECC: Ensemble classifier chains; GPU: Graphics
processing unit; HIV: Human immunodeficiency virus; MLC: Multi-label
classification; NNRTI: Non-nucleoside reverse transcriptase inhibitor; PI:
Protease inhibitor

Acknowledgments
Not applicable.

Funding
This work was supported by the Straubing Center of Science, the CiM Cluster
of Excellence at the University of Münster, the German Research Foundation
(DFG) and the Technische Universität München within the funding
programme Open Access Publishing. None of the funding bodies have played
any part in the design of the study, in the collection, analysis, and
interpretation of the data, or in the writing of the manuscript.

http://heiderlab.de

Riemenschneider et al. BMC Bioinformatics (2017) 18:371 Page 4 of 4

Authors’ contributions
Conceived and designed the experiments: SG, DH. Performed the
experiments: MR, AH. Interpreted results: MR, AH, AR, SG, DH. Wrote the paper:
MR, AR, DH. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Bioinformatics, Straubing Center of Science, Petersgasse 18,
94315 Straubing, Germany. 2Institute of Computer Science, University of
Münster, Einsteinstr. 62, 48149 Münster, Germany. 3Wissenschaftszentrum
Weihenstephan, Technische Universität München, Alte Akademie 8, 85354
Freising, Germany. 4Present Address: Department of Mathematics and
Computer Science, University of Marburg, Hans-Meerwein-Str. 6, 35032
Marburg, Germany.

Received: 2 November 2016 Accepted: 8 August 2017

References
1. Yu G, Domeniconi C, Rangwala H, Zhang G, Yu Z. Transductive

multi-label ensemble classification for protein function prediction.
In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’12. New York: ACM; 2012.
p. 1077–85.

2. Zhang BB-F, Xu X, Su J. An Ensemble Method for Multi-class and
Multi-label Text Categorization. In: Proceedings of the International
Conference on Intelligent System and Knowledge Engineering (ISKE).
Chengdu: Atlantis Press; 2007. p. 1345–50.

3. Cerri R, Barros RC, PLF de Carvalho AC, Jin Y. Reduction strategies for
hierarchical multi-label classification in protein function prediction. BMC
Bioinforma. 2016;17:373.

4. Xu YY, Yang F, Shen HB. Incorporating organelle correlations into
semi-supervised learning for protein subcellular localization prediction.
Bioinformatics. 2016;32(14):2184–92.

5. Lin W, Xu D. Imbalanced Multi-label Learning for Identifying Antimicrobial
Peptides and Their Functional Types. Bioinformatics. 2016;32(24):3745–52.

6. Heider D, Senge R, Cheng W, Hüllermeier E. Multilabel classification for
exploiting cross-resistance information in HIV-1 drug resistance
prediction. Bioinformatics. 2013;29(16):1946–52.

7. Senge R, del Coz JJ, Hüllermeier E. On the Problem of Error Propagation
in Classifier Chains for Multi-label Classification In: Spiliopoulou M,
Schmidt-Thieme L, Janning R, editors. Data Analysis, Machine Learning
and Knowledge Discovery. Cham: Springer International Publishing; 2014.
p. 163–70.

8. Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multi-label
classification. Mach Learn. 2011;85(3):333–59.

9. Tsoumakas G, Vlahavas I. Random k-labelsets: An Ensemble Method for
Multilabel Classification. In: European Conference on Machine Learning.
Heidelberg: Springer Berlin; 2007. p. 406–17.

10. Read J, Pfahringer B, Holmes G. Multi-label classification using
ensembles of pruned sets. In: IEEE International Conference on Data
Mining (ICDM). Pisa: IEEE Computer Society; 2008. p. 995–1000.

11. Pyka M, Hahn T, Heider D, Krug A, Sommer J, Kircher T, Jansen A.
Baseline activity predicts working memory load of preceding task
condition. Hum Brain Mapp. 2013;34(11):3010–22.

12. Hahn T, Kircher T, Straube B, Wittchen HU, Konrad C, Ströhle A,
Wittmann A, Pfleiderer B, Reif A, Arolt V, Lueken U. Predicting Treatment
Response to Cognitive Behavioral Therapy in Panic Disorder With

Agoraphobia by Integrating Local Neural Information. JAMA Psychiatry.
2015;72(1):68–74.

13. Manconi A, Orro A, Manca E, Armano G, Milanesi L. A tool for mapping
Single Nucleotide Polymorphisms using Graphics Processing Units. BMC
bioinforma. 2014;15(1):10.

14. Larsen SJ, Alkærsig FG, Ditzel HJ, Jurisica I, Alcaraz N, Baumbach J. A
Simulated Annealing Algorithm for Maximum Common Edge Subgraph
Detection in Biological Networks. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 16). New York: ACM; 2016.
p. 341–8.

15. Olejnik M, Steuwer M, Gorlatch S, Heider D. gCUP: rapid GPU-based
HIV-1 co-receptor usage prediction for next-generation sequencing.
Bioinformatics. 2014;30(22):3272–3.

16. Heider D, Dybowski JN, Wilms C, Hoffmann D. A simple structure-based
model for the prediction of HIV-1 co-receptor tropism. BioData Min.
2014;7:14.

17. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
18. Riemenschneider M, Senge R, Neumann U, Hüllermeier E, Heider D.

Exploiting HIV-1 protease and reverse transcriptase cross-resistance
information for improved drug resistance prediction by means of
multi-label classification. BioData Min. 2016;9:10.

19. Trohidis K, Kalliris G. Multi-Label Classification of Music Into Emotion. J
Audio Speech Music Process. 2011;2011:4.

20. Boutell MR, Luo J, Shen X, Brown CM. Learning multi-label scene
classification. Pattern Recogn. 2004;37(9):1757–71.

21. Elisseeff A, Weston J. A kernel method for multi-labelled classification.
Adv Neural Inf Process Syst. 2001;14:681–7.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	Results and discussion
	Conclusion
	Availability and requirements
	Abbreviations
	Acknowledgments
	Funding
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

