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Abstract

Background: Multi-label classification has recently gained great attention in diverse fields of research, e.g., in
biomedical application such as protein function prediction or drug resistance testing in HIV. In this context, the
concept of Classifier Chains has been shown to improve prediction accuracy, especially when applied as Ensemble
Classifier Chains. However, these techniques lack computational efficiency when applied on large amounts of data,
e.g., derived from next-generation sequencing experiments. By adapting algorithms for the use of graphics
processing units, computational efficiency can be greatly improved due to parallelization of computations.

Results: Here, we provide a parallelized and optimized graphics processing unit implementation (eccCL) of
Classifier Chains and Ensemble Classifier Chains. Additionally to the OpenCL implementation, we provide an
R-Package with an easy to use R-interface for parallelized graphics processing unit usage.

Conclusion: eccCL is a handy implementation of Classifier Chains on GPUs, which is able to process up to over
25,000 instances per second, and thus can be used efficiently in high-throughput experiments. The software is
available at http://www.heiderlab.de.
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Background
Multi-label classification (MLC) has gained significant
attention in recent years in diverse fields of research,
e.g., in protein function prediction [1] and text catego-
rization [2], as well as in biomedical research [3–5]. For
instance, in recent work the MLC concept of classifier
chaining was applied to the problem of drug resistance
prediction in HIV [6].
The concept of Classifier Chains (CC) is a generalization

of binary classification. In MLC each instance is
associated with a set of labels instead of one single label
as in binary classification. Formally, let L = {l1, . . . , lm} be
a set of class labels and Y the power set of labels defin-
ing the possible label combinations of L. Let X be the
input space, where each vector x represents an instance,
e.g., a protein sequence, which is associated with labels
of Y. The idea of CC is to generate a single classifier for
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each l ∈ L and to link the single classifiers along a chain.
The general concept of classifier chaining is exemplarily
shown for three labels in Fig. 1. One major advantage in
classifier chaining is that interdependencies between class
labels can be modeled, e.g., in the case of drug resistance
prediction, where resistance to one drug type might also
be indicative of resistance against another drug. However,
the order in CC may have an influence on the accuracy
of prediction due to error propagation [7]. An extension
to overcome these effects are Ensemble Classifier Chains
(ECC) [8]. In this approach k classifier chains are trained
with each chain in random order and with different sub-
sets of training data. The prediction outcome is then
combined by a voting scheme, e.g., by thresholding the
prediction of each label and chain. Overall, the concept of
classifier chaining has been shown to improve prediction
accuracy, particularly when applied as ECC [9, 10].
However, today it is necessary to process large amounts

of data which typically comes with big data problems,
e.g., in biomedical research the usage of data generated
by next-generation sequencing technologies or functional
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Fig. 1 General concept of classifier chanining. In general, classifier Ci
knows the labels L0, ..., Li−1 of classifiers C0, ..., Ci−1 in training process
and in classification process the results of classifiers C0, ..., Ci−1. Here,
the concept of classifier chaining is depicted for three class labels

magnetic resonance imaging [11, 12] is still challenging
as current available implementations lack computational
efficiency. Therefore, parallelized architectures, especially
graphics processing unit (GPU) implementations might
provide remedy in regards of expensive computing time
[13, 14]. For example, Olejnik et al. [15] recently published
a GPU implementation to predict the co-receptor usage in
HIV. Whereas the CPU implementation [16] was able to
classify only few instances per second, the parallelized and
optimized GPU version processes a significantly increased
amount of instances per second.
Here, we provide a parallelized implementation of CC

and ECC optimized for parallelized GPU usage. Our
implementation is able to classify over 25,000 instances
per second, whereas the sequential implementation on
the CPU provided by the Mulan library (http://mulan.
sourceforge.net) is able to classify only 360 instances per
second.

Implementation
Our software is implemented in Java using the
Lightweight Java Game Library (LWJGL) (http://www.
lwjgl.org) enabling the development of parallel computing
applications based on OpenCL. The software can be used
in Java as library or CLI-application or with R (http://
www.r-project.org) by installing the R package eccCL.
For the communication between R and Java the rJava
package is used. As a base classifier, we implemented
random forests for GPU usage.
A random forest [17] is an ensemble learning method

for classification and regression. A random forest trains
several decision trees on a subset of the original dataset.
Major advantages of random forests are the control of
overfitting and the improved prediction accuracy which

is achieved by the combination of prediction results of
each individual tree to a final decision. Parallelization is
achieved in two ways: First, each decision tree within a
random forest is built in a concurrent task in the training
phase. Second, in the classification phase each instance is
classified in a concurrent task. In contrast to the Mulan
library, eccCL is able to use OpenCL. This implicates that
the subsets for each node in training are not dynamically
created as this is not possible in OpenCL, compared to
Mulan. Furthermore, each tree has the exact same number
of nodes and the exact same depth, thus the classifiers can
be stored in a single array and the position of each node
can be calculated. Additionally, all instances are stored in
a single buffer. Furthermore, instead of generating random
subsets dynamically in the training phase, the index posi-
tions of the instances are stored in a separate array and
reordered in a randomized manner for each node, due to
the fact that all arrays in OpenCL need to have a fixed size
at compile time.

Results and discussion
We developed a GPU framework for modeling CC and
ECC. The software was evaluated on an Intel Xeon E5-
1620 with 4 cores and an NVIDIA Tesla K20c with 2496
streaming processors. The data sets for the evaluation of
our implementation were taken from different research
areas. The NNRTI and PI dataset are from the realm of
drug resistance prediction [18] in HIV. The data sets emo-
tions [19], scene [20], and yeast [21] are received from the
Mulan project (http://mulan.sourceforge.net) which pro-
vides an implementation for the usage of CC and ECC,
however, implemented in a non-parallelized manner.
The software can be used via Java on command

line with parameter settings or in R by installing the
R package eccCL. The software can be downloaded
at the authors homepage (http://www.heiderlab.de).
After downloading, the R package can be installed
using the R command within the R command
line: install.packages(‘/path/to/package/
eccCL.tar.gz’, repos=‘NULL’). In the following
we demonstrate how to build an ECC with an ensemble
size of 20 chains and a forest size of 64 within R:
library(eccCL)
# Load file (.arff and .xml format
must be available)
data <- eccCLloadWekaFile
(‘home/temp/example’)
# Build classifier
ecc <- eccCLbuildFromObject(data,
ensembleSize=20, forestSize=64)
# Classify data
out <- eccCLclassifyObject(ecc, data)
# Get classification results
res <- eccCLgetResults(out)

http://mulan.sourceforge.net
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# Save and load classifier
eccCLstore(ecc,
‘/home/temp/classifier.stored’) ecc
<- eccCLload(‘/home/temp/classifier.
stored’)
The data format should be in .arff and .xml format

according to the Mulan library. The files must be available
in the given path. In the building process of the classifier,
the ensemble size and forest size can be set individually.
The classifier can be saved and loaded again for later clas-
sification tasks. Equivally, the following line represents the
usage with Java as a shell command using the jar-file:
java -jar EccCL.jar -inpData

/path/to/dataset/NNRTI -eccES 20 -eccFS
64 -evalAllLabels
The classifier will be trained and a classification will be

performed. A classification task without a training process
on a trained and saved classifier can be executed with the
command:
java -jar EccCL.jar -inpData

/path/to/dataset/NNRTI -classOnly
/path/to/trainedClassifier
Table 1 provides a speed-up comparison between our

GPU implementation and the Mulan framework with
the usage of 20 ECC and 64 trees per random for-
est. Additionally, Table 2 demonstrates the number of
instances classified per second with eccCL compared
to the Mulan framework with respect to an increasing
number of instances. Overall, our GPU implementation
shows a speed-up of an order of magnitude in computa-
tion times. The prediction accuracy shows no difference
between the GPU implementation and the models of the
Mulan framework, however, slightly dependent on the
parameter settings.
Our software can be used on standard desktop PCs

and with OpenCL-ready graphics cards, whereas in gen-
eral currently available GPUs of almost all manufacturers
support OpenCL. eccCL needs Java (version 8.0) and
OpenCL (version 1.2) installed. Furthermore, R (version
3.0) and the rJava package (version 3.2) have to be installed

Table 1 Comparison between our GPU implementation and the
non-parallelized Mulan framework for the classification of
instances based on different data sets with different counts of
instances and labels

#Instances Mulan GPU Speed-up

NNRTI 715 1563.7 109 14x

PI 662 1998.6 128.2 15x

Emotions 593 1577.3 157.7 10x

Scene 2407 8920.3 300.9 29x

Yeast 2417 270736.2 379.2 71x

The runtimes are shown in milliseconds

Table 2 Instances classified per second with increasing number
of bootstrapped instances exemplarily shown for the PI dataset

#Instances Mulan GPU

1000 357 2,516

10,000 342 11,510

100,000 352 25,851

1,000,000 362 26,266

in advance for the usage of eccCL with R interface.
Dependent on the platform, the OpenCL implementation
can be used and in case OpenCL is not installed a par-
allelized Java implementation can be executed, however,
on the CPU. eccCL runs on Linux and Mac OS. Over-
all, the software is easy to handle and no special hardware,
i.e., a cluster or high-end server is needed. Currently, the
eccCL package provides the random forest classifier in a
parallelizedmanner. Random forests can be used as a clas-
sifier chain classifier and as an ensemble classifier chain
classifier. In the future, we will work on further classifier
implementations and will make them available within our
package.

Conclusion
We provide an R-package and a Java version of a paral-
lelized and optimized GPU implementation of Classifier
Chains and Ensemble Classifier Chains. The software is
able to classify up to over 25,000 instances per second and
thus can efficiently speed up the classification process in
high-throughput experiments.

Availability and requirements
Project name: eccCL
Project home page: http://heiderlab.de
Operating system(s): Linux, Mac OS
Programming language: Java (≥ 8.0), R (≥ 3.0),
(optional) OpenCL (≥ 1.2)
License: GPL (≥ 2)
Any restrictions to use by non-academics: none

Abbreviations
CC: Classifier chains; CLI-application: Command-line interface application;
CPU: Central processing unit; ECC: Ensemble classifier chains; GPU: Graphics
processing unit; HIV: Human immunodeficiency virus; MLC: Multi-label
classification; NNRTI: Non-nucleoside reverse transcriptase inhibitor; PI:
Protease inhibitor
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