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Abstract

Background: Researchers have previously developed a multitude of methods designed to identify biological pathways
associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation
of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their
performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well
characterized in advance. However, such ‘ground truths’ (or gold standards) are often unavailable. Furthermore, previous
evaluation strategies that have focused on defining ‘true answers’ are unable to systematically and objectively assess PA
methods under a wide range of conditions.

Results: In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either
established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination.
Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to
an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast,
discrimination measures specificity—the degree to which the perturbed pathways identified by a particular method to a
dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment.
We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the
common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed
the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the
performance evaluations of the six methods obtained by our strategy.

Conclusions: Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric
strategy does not rely on any ground truth, either established or assumed, of the pathways perturbed by a specific
clinical or experimental condition. As such, our strategy allows researchers to systematically and objectively evaluate
pathway analysis methods by employing any number of datasets for a variety of conditions.
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Background
Researchers commonly identify genes that are up- or
down-regulated under biological conditions of interest
to understand the molecular mechanisms underlying
biological processes. However, genes almost always act
cooperatively rather than independently. Consequently,
methods that analyze the functional contributions of
genes should properly take such interactions into account.

Biological pathways—the “wiring diagrams” describing the
interactions of gene products and other biomolecules
as well as their regulatory relationships corresponding
to certain biological processes—provide the means to
characterize this cooperative nature of gene expression.
Pathway analysis (PA) algorithms, combined with large
molecular interaction databases, allow for the processing
of high-throughput genomic (or proteomic) data, such as
those from gene expression microarray or RNA-seq exper-
iments, and the rank ordering of significantly perturbed
(up- or down-regulated) pathways associated with an
experimental (or clinical) condition [1, 2]. The resulting
list of ordered pathways may provide insights into the
underlying molecular mechanisms of the experimental
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condition and help generate testable hypotheses concern-
ing disease biomarkers or therapeutic targets [3].
Rapid technological advancements during the past dec-

ade in our ability to generate and collect high-throughput
genomic data have spurred the development of a large
number of PA methods. A review article in 2009 reported
68 such methods [4], and many more have been developed
since [2, 5, 6]. An important step that must precede the
use of these PA methods is to evaluate their performance
and reliability, using well-characterized datasets where the
pathways associated with the tested conditions, i.e., the
perturbed pathways, are known in advance. However, this
knowledge of ‘ground truths’ (or gold standards) is some-
times incomplete and often unclear [7, 8].
To address the lack of a gold standard, researchers

have developed numerous strategies, many of which are
centered on defining such ‘true answers.’ One approach
utilizes simulated gene expression data to create a hypo-
thetical gold standard [9–11], where a particular set of
pathways is assumed to be perturbed and the expression
levels of the constituent genes are changed accordingly.
The drawback of this approach, however, is that because
we do not know the individual and collective effects of
expression changes of constituent genes on the function
of a pathway, researchers have little guidance on how to
represent gene expression levels to reflect how a pathway
is actually perturbed. Simply altering the expression of a
fraction of constituent genes is thus questionable, given
the complexity of gene expression patterns in actual
biological processes and the largely unknown collective
effects of different genes within a pathway.
Another strategy uses well-characterized, experimental

gene expression data for a certain condition for which
specific pathways (i.e., ‘hallmark pathways’) are known to
be perturbed [8, 10, 11]. This approach assesses the per-
formance of an analysis method by its ability to correctly
assign high rankings to hallmark pathways from a list of
significant pathways. However, because hallmark path-
ways typically form only a small subset of the pathways
perturbed in an experimental condition, a method that
identifies more or assigns higher rankings to hallmark
pathways may not necessarily (even though it is quite
likely to) be superior to one that identifies more non-
hallmark pathways that are actually perturbed.
Yet another approach identifies perturbed pathways

via the consensus of multiple analysis methods applied
to the same dataset, on the assumption that the likeli-
hood of a pathway being a true positive is higher under
such a consensus [7]. This strategy, however, can yield
biased conclusions because similar methods tend to gener-
ate similar results. That is, a pathway can often be identified
concurrently by multiple methods, not because it is truly
perturbed but because the methods considered employ
similar approaches. Although reducing the weighting of

methods with highly correlated results partially alleviates
this issue, many datasets need to be analyzed to estimate
such correlations [7].
In light of these drawbacks, an approach to assess the

performance of PA methods without reference to unverified
gold standards is desirable. In this report, we propose a
new strategy that achieves this goal by introducing two
metrics, recall and discrimination, each of which reflects a
different aspect of what an effective PA method should
satisfy without recourse to uncontrolled assumptions. Re-
call is a measure of consistency: an effective method should
provide consistent results when applied to multiple datasets
corresponding to the same experimental condition, and
show increased consistency with increasing sample size.
Discrimination is a measure of the difference in results ob-
tained when a method is applied to datasets that originate
from sufficiently different experimental conditions. Because
the two metrics are based on comparing or contrasting
PA results, calculating recall and discrimination does
not require an unverified gold standard. The two metrics
are mutually complementary. A trivial or highly biased
method that preferentially identifies certain pathways
regardless of a change in experimental condition could
exhibit high recall, but by definition would also show low
discrimination. In contrast, a method that identifies dis-
tinct pathways for two conditions regardless of whether
they are the same or different would show high discrimin-
ation but low recall. A genuinely effective PA method
would need to score sufficiently high on both metrics.
Our strategy for calculating recall is to randomly resam-

ple one large dataset consisting of many samples to form a
group of smaller sub-datasets that represent the same
experimental condition. To calculate discrimination, we
use two large datasets from different conditions, resam-
pling each dataset as when calculating recall. The calcula-
tion of recall is in accord with the general procedure of
biomedical studies, in which a hypothesis is first generated
from an experiment by using a few samples, after which it
is validated in a replication that involves a large number of
samples. If we use a PA method with high recall to formu-
late a hypothesis, we expect that it will be validated in a
subsequent large-scale experiment. In addition, we expect
that a highly discriminating PA method is also more likely
to extract information that is specific to a particular ex-
perimental condition.
This resampling procedure allows us to compute recall

and discrimination for sub-datasets of different sizes and
to account for the effect of sample size, an issue not fully
addressed in previous studies. This is important because
most publicly available datasets have small sample sizes—a
situation that presents an additional challenge for assessing
pathway analyses. For example, a search in the Gene
Expression Omnibus (GEO) database [12] revealed that
33% of expression datasets deposited before 2016 contained
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6 samples or less, and that 56% contained 12 samples or
less. Importantly, the latter fraction was 64% for datasets
deposited in 2016 (as of October 2016; Fig. 1). The require-
ments for high recall and discrimination allow us to identify
methods that make the best use of limited sample sizes.
To test the proposed strategy, we implemented the

two metrics to assess the performance of six PA methods
in identifying significantly perturbed pathways in 10 gene
expression datasets. We also used 14 gene expression
datasets to further evaluate our strategy. We considered
three well-established methods—over-representation ana-
lysis (ORA) [5], gene set analysis (GSA) [13], and gene set
enrichment analysis (GSEA) [14]—as well as a method
formulated according to the general modular framework
proposed in [11], which we denote as the aggregate fold
change (AFC) method. By treating the two options for
GSEA and AFC as separate methods, we tested a total of
six methods. We systematically compared these methods
and showed that recall and discrimination help reveal
their strengths and weaknesses in more detail than previ-
ously observed.

Methods
We used our proposed metrics to evaluate PA methods,
with respect to a number of gene expression datasets
containing multiple samples from two cohorts (treat-
ment and control). Below, we describe the preparation
of these gene expression datasets, the pathway database,
the PA methods evaluated, the definitions of recall and
discrimination, and the computational evaluation of
these measures.

Pathway database and gene expression data
We downloaded the Molecular Signatures Database
(MsigDB) C2 collection of gene sets [14], provided by
the Broad Institute, Cambridge, MA [http://software.broa
dinstitute.org/gsea/msigdb], in January 2016. This database
contained pathway information curated from multiple
online databases, including the Kyoto Encyclopedia of
Genes and Genomes (KEGG), Reactome, and BioCarta.
By limiting the range of gene set sizes to 20–400, we
obtained a database of 892 pathways containing 8,791
human genes in total.
We selected publicly available human gene expression

microarray datasets obtained under a variety of experimental
conditions. Each dataset contained more than 60 samples,
was extracted from multiple tissue types (blood, diseased
tissues, and cell lines), and represented different types of
diseases. Of the datasets meeting these criteria, we randomly
selected 10 for our study (Table 1). They included eight
downloaded from the GEO repository (http://www.ncbi.
nlm.nih.gov/geo/) in February 2016 [studies of Alzheimer’s
disease (AD) [15], Parkinson’s disease (PD) [16, 17], Crohn’s
disease [18], influenza vaccination [19], breast cancer [20,
21], lung cancer [22, 23], burn injury [24], and trauma injury
[25], and two datasets downloaded at the same time from
the connectivity map project of the Broad Institute
(https://www.broadinstitute.org/cmap/) [breast cancer
cell line MCF7 and prostate cancer cell line PC3 after
drug treatment [26]. We normalized the raw gene expres-
sion data, which we downloaded separately for each dataset,
in the same way by using the Robust Multi-array Average
method implemented in the Bioconductor R-language suite
of bioinformatics tools [27].
In addition to the 10 datasets above, we also down-

loaded 14 gene expression microarray datasets from the
GEO repository in August 2017 to further evaluate our
strategy (Additional file 1: Table S1). These included
nine relatively large datasets (sample size > 20) and five
relatively small datasets (sample size < 20). The diseases
represented in these datasets included AD, PD, and influ-
enza infection, which were also represented in the original
10 datasets, and four new diseases, i.e., type I diabetes,
type II diabetes, systemic lupus erythematous (SLE), and
bacterial pneumonia.

PA methods
We tested four PA methods: over-representation analysis
(ORA) [5], gene set analysis (GSA) [13], gene set enrich-
ment analysis (GSEA) [14], and the aggregate fold change
(AFC) technique—a method formulated according to the
general modular framework proposed in [11]. For GSEA
and AFC, two options to obtain significant pathways are
available: gene-label permutation and sample-label permu-
tation. By treating these options as separate methods, we
formed six variations in total: ORA, GSA, GSEA (gene-

Fig. 1 Gene Expression Omnibus (GEO) dataset sample size
distribution. The majority of datasets deposited in GEO contain a
small number of samples. Over 34% of datasets deposited in GEO
before 2016 contain ≤6 samples, and over 57% of them contain ≤12
samples. This distribution remains mostly the same for datasets
added to GEO in 2016
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label permutation), GSEAs (sample-label permutation),
AFC (gene-label permutation), and AFCs (sample-label
permutation). Detailed descriptions of these methods can
be found in the original literature and many reviews
[11, 28]. Here, we describe them only briefly below.
ORA identifies significant pathways in two steps. It first

identifies genes that are differentially expressed between
two cohorts (e.g., treatment and control), as determined
by a statistical test such as Student’s t-test, where the
differential expression is considered significant if the t-test
P value is less than a cutoff. Subsequently, it counts the
number of differentially expressed genes in each pathway
and tests for over-representation of these genes in all
pathways, using a hypergeometric test. It considers a path-
way as significant if the over-representation P value is less
than a cutoff.
GSA, GSEA, and AFC, instead of identifying genes dif-

ferentially expressed between experimental and control
treatments within pathways, first compute a score for
each pathway by using the expression levels of all its
constituent genes. To calculate this score, GSA uses a
maxmean statistic that aggregates the signed scores of
individual genes, where the sign and magnitude repre-
sent the direction of regulation (up/down) and the
differential expression level, respectively, of a gene. For
each pathway, it computes a mean positive score and a
mean negative score, and selects the score with the larger
absolute value as the pathway score. GSEA uses a weighted
Kolmogorov-Smirnov test to calculate the pathway score,
ranking all genes by their significance and testing the
distribution of each pathway’s constituent genes along
the rank-ordered gene list. It then assigns a high score
to a pathway whose member genes along the list are
significantly clustered.
In AFC, we calculated the mean fold-change for

each gene, that is, the difference between the mean
log-transformed gene expression values for samples in

the treatment and control cohorts, and defined the
pathway score as the average mean fold-change of all
genes in the pathway. We then used the pathway scores of
gene expression datasets to perform null hypothesis tests
and estimated each pathway’s significance by its P value,
defined as the probability that the pathway score for a ran-
dom dataset is greater than the score from the actual data.
We considered a pathway as significant if its P value was
less than a designated cutoff (i.e., 0.05). We performed the
null hypothesis test by generating randomized datasets,
either with permutations of gene labels or sample labels.
We evaluated both approaches for GSEA and AFC. In
GSA, the two permutation methods were combined into a
single re-standardization procedure.
Different PA methods may identify different numbers

of significant pathways for the same P-value cutoff. To
eliminate variation in the number of significant path-
ways, we fixed the number for all methods. We used P
values to rank-order the pathways for each method, and
from each method we selected the top 20 and the top 50
most significantly up-regulated pathways, as well as the
top 20 and the top 50 most significantly down-regulated
pathways and used them to evaluate the performance of
a method.

Metrics for evaluating PA methods
Figure 2 illustrates the procedures we used to calculate
recall and discrimination. We assume that a gene ex-
pression dataset D contains N samples from two cohorts
(i.e., treatment and control). D is randomly resampled
without replacement to obtain a small sub-dataset d of n
samples (n < N). Because d is a subset of D and represents
the same experimental condition, a PA method should
ideally identify the same set of significant pathways for both
datasets. Moreover, because D contains a larger number of
samples than d, it should yield the most relevant set of
significant pathways. We thus evaluate a PA method by

Table 1 The 10 gene expression datasets used to assess the performance of pathway analysis methods

Dataset IDa Study Tissue Type Sample Size References

Treatment Control

GSE5281 Alzheimer’s disease Brain tissue 35 38 [15]

GSE20295 Parkinson’s disease Brain tissue 40 53 [16, 17]

GSE3365 Crohn’s disease Blood 59 42 [18]

GSE48018 Influenza vaccination Blood 110 111 [19]

GSE20194 Breast cancer Cancer tissue 222 56 [20, 21]

GSE4115 Lung cancer Bronchial epithelium 97 90 [22, 23]

GSE37069 Burn injury Blood 29 36 [24]

GSE36809 Trauma injury Blood 75 37 [25]

N/A Drug treatment of MCF7 cells Cell line 57 323 [26]

N/A Drug treatment of PC3 cells Cell line 32 184 [26]
aGene Expression Omnibus (GEO) database ID
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applying it to datasets D and d and identifying two sets of
significant pathways A and a, respectively. The recall, r, is
then defined as

r A; að Þ ¼ A∩ak k= Ak k ð1Þ

where ǁA∩aǁ represents the number of pathways con-
tained in both sets A and a, and ǁAǁ represents the
number of pathways in set A. Thus, r represents the
fraction of significant pathways identified from the
smaller sub-dataset among all significant pathways iden-
tified from the original dataset.
To examine the effect of sample size n on the per-

formance of each of the six methods, we randomly
resampled D without replacement to generate 500 sub-
datasets of size n (n = 6, 12, 24, 48) and calculated 500
recall values by using each method for each sub-dataset.
The mean and distribution of these recall values were then
compared across the six methods for each sample size.
The recall r, as defined by Equation (1), could be

biased by the sizes of sets A and a. Any pathway could
be identified as significant for both D and d by chance,
whose probability increases when a method identifies
more pathways as significant. This leads to an increase
in recall. Consequently, recall favors methods that iden-
tify a greater number of significant pathways. To reduce
such a bias, we fixed the number of pathways identified
by each method (e.g., only considering the top 20 or top
50 most significant pathways).
The discrimination metric s can be defined with respect

to two datasets D and D', each representing a different

experimental condition. From D and D', we create sub-
datasets d and d', respectively, as described above. By
using a PA method and our procedure, we obtain four sets
of significant pathways: A and A' from the original data-
sets D and D', respectively, and a and a' from the corre-
sponding sub-datasets d and d'. Because D and D'
represent different experimental conditions, A and A', as
well as a and a', are expected to contain both distinct and
shared pathways. The differences between A and A' and
between a and a' make it possible to correctly associate a
with A and a' with A'. We do this by computing recall and
associating a with A if r(A, a) > r(A', a) and a' with A' if
r(A', a') > r(A, a'). Correctly associating a and a' with A
and A′, respectively, becomes difficult when fewer distinct
pathways are identified. Hence, we define discrimination s,
which measures the ability of a method to identify distinct
pathways, as the number of sets a and a' that are correctly
associated with A and A', respectively, divided by the total
number of sets a and a':

s ¼ ai r A; aið Þ > r A0; aið Þjk k þ ai
0
r A0; ai

0
� ���� > r A; ai

0
� ����

���
h i

=2M:

ð2Þ
where pathway sets ai and ai', with i = 1, 2, …, M, are
computed for M randomly resampled sub-datasets di
and di', respectively.
Discrimination is close to 1 when a method identifies

more distinct significant pathways for datasets represent-
ing different experimental conditions. Conversely, if sets
A and A' or a and a' are nearly identical, discrimination
is close to zero. The concept of discrimination can also

Fig. 2 The procedure used to compute two metrics, (a) recall and (b) discrimination. Recall provides a measure of consistency of the overlap
between the pathways identified from the original dataset with those obtained from sub-datasets randomly sampled from the original dataset.
The computation of discrimination employs two datasets from different studies and multiple sub-datasets resampled from each of the two
datasets. Discrimination measures the fraction of sub-datasets that yield higher recall with the original dataset from which they were resampled
in comparison to the recall for another randomly selected dataset
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be extended to more than two datasets, each represent-
ing a different condition: r(A, ai) should be greater than
any other recall value r(B, ai), where B is a set of signifi-
cant pathways for datasets other than D.
Although discrimination depends on recall, the two

metrics are complementary: discrimination considers
only those pathways that are specific to particular experi-
mental conditions and does not directly reflect the overall
extent to which all significant pathways are sufficiently
represented in each condition. In contrast, recall considers
all significant pathways, both specific and non-specific. A
trivial method that yields the same result for any dataset
would show high recall but low discrimination. Taken
together, recall and discrimination can provide a balanced
and objective evaluation of PA methods.

Results
Recall of PA methods
We computed recall for each of the six PA methods that
were applied to each of the 10 gene expression datasets,
and evaluated their performance in identifying a fixed

number (20 or 50) of significantly up- or down-regulated
pathways for resampled sub-datasets of different sizes (6,
12, 24, and 48). Figure 3 shows the recall distributions for
the resampled PD datasets, illustrating the top 20 most
significantly up- or down-regulated pathways for each
method. The results for each of the 10 datasets, where each
method identified the top 20 or the top 50 significant path-
ways, can be found in Additional file 2: Figures S1–S10. For
clarity, we classified the methods into two groups (group 1:
ORA, GSA, GSEA, and AFC; group 2: GSEAs, GSEA,
AFCs, and AFC). The first group compared four different
methods, using gene-label permutation in testing the null
hypothesis. The second group compared GSEA and AFC,
using gene-label (GSEA, AFC) and sample-label (GSEAs,
AFCs) permutations. We also computed the average re-
call as a measure of the overall performance of each method
for the 10 datasets (Table 2). We did not use resampled sub-
datasets of size 6 in comparing the second group of methods
because the small sample size precluded a sufficient number
of sample-label permutations (only 10 distinct permutations
for a dataset of 3 treatment and 3 control samples).

Fig. 3 Comparison of recall values computed for the six pathway analysis methods, based on the top 20 most significantly up-regulated (a, b)
and top 20 most significantly down-regulated pathways (c, d), which each method identified for the Parkinson’s disease dataset. For each box-and-whisker
plot, the horizontal line, top and bottom sides of the box, and vertical line show the median, upper and lower quartiles, and range, respectively, of the
recall values. The comparisons are separated into two groups for clarity and to distinguish the two different permutation methods. a and c
compare methods ORA, GSA, GSEA, and AFC. b and d compare methods GSEAs, GSEA, AFCs, and AFC. The sample size corresponds to the
number of samples contained in the sub-datasets randomly resampled from the original datasets
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Figure 3 (and Additional file 2: Figures S1–S10) shows
that the recall of a method generally decreased as the sub-
dataset sample size decreased—a trend observed for all
ten datasets and different numbers of significantly up- or
down-regulated pathways. This observation reflects the
challenge in analyzing small datasets encountered with
any method. Compared with other methods, AFC almost
always produced the highest recall, whereas the other
three methods (ORA, GSA, and GSEA) often produced
low recall (Fig. 3a and c). Comparisons between GSEAs
and GSEA, and between AFCs and AFC, showed that
sample-label permutation often yielded lower recall than
did gene-label permutation (Fig. 3b and d). The average
recall values in Table 2 corroborated these findings. The
table shows the highest average recall values (in bold) for
AFC in identifying different numbers of significant path-
ways for sub-datasets of different size. GSEAs and AFCs
showed average recall values smaller than those of their

counterparts, GSEA, and AFC. Although the comparisons
of other methods were inconclusive, ORA consistently
produced the lowest average recall (underlined in Table 2)
in identifying the top 50 most up-regulated pathways,
whereas GSEAs often produced the lowest average recall
in identifying the top 50 most down-regulated pathways.
We note that recall for GSEA did not considerably increase
with sample size in the analysis of some datasets, for ex-
ample, the AD dataset (Additional file 2: Figure S1, plots C,
D, G, and H) and the burn injury dataset (Additional file 2:
Figure S7, plots A, B, E, and F). For these cases, the selec-
tion of sample-label permutation (i.e., GSEAs) considerably
improved recall, especially for datasets with a large number
of samples.

Discrimination of identified pathways
We computed the discrimination values of significantly
up- or down-regulated pathways identified by the six PA
methods. Figure 4 shows the comparative results, where
the top 20 (and the top 50) most significantly up- or
down-regulated pathways were identified by each method
for sub-datasets of different sizes. Similar to recall, discrim-
ination also generally decreased with decreasing sample
size, highlighting the greater difficulty of identifying path-
ways specific to experimental conditions with fewer sam-
ples. AFC performed better than all other methods when
applied to datasets with smaller sample sizes (6 and 12);
discrimination was 19% higher than that of the second best
method (GSEA) and 30% higher than that of ORA or GSA
for datasets of 6 samples. The difference in discrimination
between AFC and other methods decreased (or vanished)
for datasets with larger sample sizes (24 and 48). Neverthe-
less, AFC still outperformed other methods, except for
one case where GSA outperformed AFC. The comparison
between GSEAs and GSEA suggests that using sample-
label permutation instead of gene-label permutation consid-
erably improves discrimination and that the improvement is
more pronounced for larger sample sizes. However, we did
not observe a significant difference between AFCs and AFC.

Reproducibility of recall
We used 9 additional large datasets (Additional file 1:
Table S1) to test whether the relative performance of the
six methods assessed with the first 10 datasets would
still hold for other conditions. The results in all 9 data-
sets (Additional file 2: Figures S11–S19) corroborated
the original findings: recall decreased as the sub-dataset
sample size decreased; AFC almost always showed the
highest recall; and sample-label permutation (GSEAs
and AFCs) often showed lower recall than did gene-label
permutation (GSEA and AFC). As expected, the trends
for different datasets of the same disease were similar.
For example, recall for GSEA did not considerably in-
crease with sample size for the top 20 most significantly

Table 2 Average recall values for the six pathway analysis (PA)
methods, using the 10 gene expression datasets

Sample Size ORA GSA GSEA GSEAs AFC AFCs

Significantly up-regulated pathways

20 MSPa

6 0.19 0.13b 0.25 0.44c

12 0.28 0.31 0.30 0.23 0.54 0.31

24 0.38 0.45 0.34 0.35 0.64 0.45

48 0.51 0.58 0.40 0.48 0.74 0.60

50 MSP

6 0.23 0.27 0.39 0.50

12 0.33 0.43 0.46 0.35 0.59 0.42

24 0.42 0.55 0.52 0.46 0.68 0.55

48 0.55 0.68 0.60 0.59 0.78 0.68

Significantly down-regulated pathways

20 MSP

6 0.37 0.14 0.35 0.56

12 0.49 0.31 0.40 0.27 0.64 0.34

24 0.58 0.43 0.45 0.38 0.72 0.46

48 0.68 0.55 0.49 0.51 0.80 0.60

50 MSP

6 0.39 0.29 0.48 0.59

12 0.51 0.45 0.54 0.41 0.66 0.47

24 0.60 0.56 0.60 0.51 0.73 0.59

48 0.70 0.68 0.65 0.63 0.81 0.70
aMSP most significant pathway
bUnderlined text indicates the minimal value in a row
cBold text indicates the maximal value in a row
The computations are based on each method’s identification of the top 20 or
50 most significantly up- or down-regulated pathways for all datasets (and 500
randomly resampled sub-datasets for each original dataset). The sample size
corresponds to the number of samples contained in the sub-datasets. A higher
average recall reflects a more consistent PA method
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down-regulated pathways in the three AD datasets
(Additional file 2: Figures S1, S11, and S12, plots C and
D). Importantly, the six methods’ rank order in recall was
almost identical for the three AD datasets and the three PD
datasets (Additional file 2: Figures S2, S13, and S14).

Comparison of small and large datasets of the same disease
In our initial analysis, we resampled an original large
dataset to form small sub-datasets in order to investigate
the effect of sample size. Because sample sizes for most
gene expression datasets in public databases, such as
GEO, are small, we further tested the ability of our strat-
egy to assess PA methods by directly using small datasets
of the same disease. We employed the six PA methods to
predict significant pathways for five small datasets (sample
size < 20) and compared the results with those for five
large datasets of the same disease (sample size > 20,
Additional file 1: Table S1). We computed the propor-
tion of overlapping pathways of the top 50 significant
pathways separately identified for the small and large
datasets, which is equivalent to the recall computed by

re-sampling a large dataset. Therefore, we superimposed
these proportions onto the box-and-whisker plots of recall
for the large datasets (Additional file 2: Figures S11–S14,
S17). For most comparisons, this proportion was much
smaller than the corresponding recall for a large number of
resampled sub-datasets (Additional file 2: Figures S20–22).
This is not unexpected because potential differences in
studies (e.g., experimental design, technical procedure) are
accentuated for small sample sizes. Such effects could be
study- or disease-specific, which may have caused the very
low proportions for the two small PD datasets regardless of
PA method (Additional file 2: Figure S21). For the two
small AD datasets (Additional file 2: Figure S20) and one
small influenza infection dataset (Additional file 2:
Figure S22), this proportion and recall showed similar
trends. The ranks of the six methods ordered by this pro-
portion were generally similar to those ordered by recall.

Discussion
In this work, we proposed a novel strategy for evaluating
PA methods without reference to gold standards. The

Fig. 4 Comparison of discrimination values computed for the six pathway analysis methods, based on the top 20 most significantly up-regulated
(a, b) and top 20 most significantly down-regulated pathways (c, d), which each method identified for the 10 gene expression datasets. The sample
size corresponds to the number of samples contained in the sub-datasets randomly resampled from the 10 datasets
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strategy consists of two mutually complementary metrics,
recall and discrimination, and a resampling procedure that
generates multiple small sub-datasets of a specific size from
two or more large datasets. These metrics address two
different desired aspects of a high-performing PA method.
In typical biomedical data-driven inferences, we aim to for-
mulate hypotheses by analyzing samples of limited size, and
attempt to replicate the initial analysis by using additional
independent samples. By calculating recall, we can critically
assess the performance of a method in this context in terms
of its consistency in identifying significantly perturbed path-
ways in randomly resampled small sub-datasets. The higher
the recall, the more likely it is that pathways identified from
small datasets will also be found in larger datasets. Typic-
ally, we also expect to find distinct pathways reflecting spe-
cific experimental conditions in different studies—a feature
not necessarily shared by analysis tools that exhibit only
high recall. By calculating discrimination, we can measure
the extent to which a PA tool yields different pathways
from two unrelated datasets.
We demonstrated our proposed strategy by assessing

the performance of six PA methods. Because there is no
verified gold standard to directly assess the exact per-
formance of PA methods, we assessed our strategy by 1)
analyzing changes in recall and discrimination for multiple
datasets comprising different conditions, 2) comparing
our pathway performance evaluation results with previous
comparative studies of PA methods, and 3) comparing
overlapping significant pathways predicted for a pair of
datasets of the same disease.
Our performance comparisons for the six PA methods

highlighted the common challenge in reliably identifying
significant pathways from small datasets. Decreasing the
sample size steadily decreased both recall and discrimin-
ation. This trend was common for all six methods across
all 10 analyzed datasets, with only a few exceptions ob-
served for GSEA (but not GSEAs). Although each method
attained different recall values for different datasets
(Additional file 2: Figures S1–S10), which presumably
reflects the disparate biological processes represented
in each dataset, ranking the six methods by recall across
the 10 datasets yielded similar results: AFC was always
ranked highest, whereas ORA and GSA tied for a low rank
for small datasets (size 6 or 12) and GSEA (or GSEAs) fell
to a low rank for large datasets (size 48), as seen in Fig. 3
and Table 2. The consistency of performance rankings for
the 10 datasets representing different experimental condi-
tions suggests that our proposed metrics can potentially
assess the inherent capability of different PA methods,
with a limited number of datasets.
The recall- and discrimination-based rankings of the

six PA methods, and in particular the low ranking of
ORA, can be explained by the simplified assumptions
adopted by the methods. ORA only uses genes deemed

statistically significant by an arbitrary cutoff to identify
perturbed pathways. From a systems biology perspective,
a pathway may be significantly perturbed by multiple
genes with statistically insignificant (marginal) changes
in expression. By only counting significant genes, ORA
risks neglecting the collective effects of many marginally
associated genes. Sample sizes that are inadequate for
effective application of Student’s t-test in determining
significant genes may further deteriorate the performance
of ORA in analyzing small datasets. In contrast, AFC
(AFCs), GSEA (GSEAs), and GSA use measurements for
all genes that show differential expression in a pathway.
Consistent with this view, the recall- and discrimination-
based evaluation indicated that ORA performed worse
than AFC (and AFCs) in all comparisons, worse than
GSEA in six out of eight comparisons of recall and three
out of four comparisons of discrimination with respect to
small datasets (size 6 and 12), and worse than GSA in
seven out of eight comparisons of discrimination. For the
remaining comparisons, the performance of ORA was
comparable to that of GSA. Comparisons of ORA and
GSEA in analyzing large datasets (size 24 and 48) were
inconclusive.
Neither GSEA nor GSA consistently outperformed ORA

in any recall- and discrimination-based comparison. This
suggests potential issues with the GSEA and GSA methods.
For GSEA, one problem may be the weighted Kolmogorov-
Smirnov test, which has been criticized as lacking sensitivity
[29]. As for GSA, we speculate that its maxmean statistic,
which presumably reflects the effects of either up- or
down-regulated genes on a given pathway, does not
consider the possibility of a pathway being affected by
both up- and down-regulated genes simultaneously. The
inability to account for the effects of all genes may thus im-
pair the performance of GSA, especially for small datasets.
Our strategy arguably assessed the two methods more ap-
propriately than a previous comparative study that ranked
both GSEA and GRA lower than ORA [8].
Our strategy clearly showed differences between the

two null hypothesis tests employed in AFC and GSEA,
sample-label permutation and gene-label permutation,
which have been extensively discussed [30, 31]. Sample-
label permutation is believed to be able to reduce the false
positive rate by eliminating the effects of co-expressed
genes in a pathway. It is thus superior to gene-label per-
mutation in identifying pathways that are more specifically
associated with given experimental conditions [31]. How-
ever, sample size is a major constraint in applying sample-
label permutations. This constraint was reflected in the
substantial recall reduction for AFCs and GSEAs (relative
to AFC and GSEA) with decreasing sample size (Table 2).
For a sample size of 48, in particular, the recall reduction
was 13–29% for AFCs (relative to AFC) and no more than
3% for GSEAs (relative to GSEA), whereas for a sample
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size of 12, the recall reduction increased to 29–42% for
AFCs and 23–33% for GSEAs. Discrimination clearly
showed the advantage of using sample-label permutation
for GSEA, especially for large datasets. With sample sizes
of 24 and 48, the discrimination improvement by using
sample-label permutation rather than gene-label permuta-
tion was greater than 20% (Fig. 4b and d). This notable
improvement is consistent with previous studies by the
authors of GSEA and the strong recommendations given
by independent researchers to adopt GSEA with sample-
labeled permutation (i.e., GSEAs) [14, 31]. We did not
observe a similar improvement for AFCs, presumably
because the performance level of AFC was already high.
Our comparisons of the proportion of significant path-

ways that one method predicted for a small dataset and
those it predicted for a large dataset of the same disease
showed that for some diseases (e.g., AD and influenza
infection), the ranks of the six PA methods ordered by this
proportion were nearly identical to those ordered by recall
(Additional file 2: Figures S20, S22). This suggests that our
strategy is able to determine methods that are suitable in
analyzing datasets from certain small studies and provid-
ing results that are likely to be verified in a separate large
study. However, the variability of small samples may also
preclude any method from producing reproducible re-
sults, as we observed for small PD datasets (Additional
file 2: Figure S21). In such cases, our evaluation strat-
egy offers little guidance.
Our study focused on developing a strategy to evaluate

PA methods. We evaluated the performance of six PA
methods to demonstrate our strategy. Their relative per-
formance on additional 9 large datasets was largely con-
sistent. However, the performance of PA methods could
be data-dependent. It is possible for a method to achieve
better performance on one dataset but worse performance
on another. By design, our strategy provides the opportun-
ity to evaluate a method on a large dataset from any study
where the perturbed pathways are unknown.
Our strategy requires relatively large datasets to generate

multiple sub-datasets through re-sampling. This could be a
limitation when users need a method for a particular study
that involves only small datasets. In addition, users should
be cautious in choosing large datasets from studies where
covariates are of concern. In such cases, the distribution of
covariates (e.g., sex ratio) in the original dataset needs to be
preserved in the sub-datasets. In general, this is achieved by
generating a large enough number of re-sampled sub-
datasets. In this case, the majority of the sub-datasets will
then retain the same distribution of covariates as the
original dataset. However, this may not be achieved when
the size of a sub-dataset is too small or the incidence of a
covariate in the original dataset is extremely low.
We used microarray data in our demonstration be-

cause, while enormous amounts of such data have

been accumulated, the data are considered noisy and
thus present challenges for PA methods to produce
meaningful results. We emphasize that our strategy
can also use any other bio-molecular data suitable for
pathway analysis (e.g., RNAseq data) to evaluate PA
methods.
In summary, we have demonstrated a newly developed

dual-metric strategy that evaluates the performance of
PA methods. Our strategy allows us to employ any number
of datasets for various conditions because we need not
know the truly perturbed pathways associated with
each condition. In addition, it is applicable not only to
PA methods that do not take into account interactions
between genes, but also to more advanced methods
that consider such topological information [6].

Additional files

Additional file 1: Table S1. The 14 additional gene expression datasets
used to further assess the performance of pathway analysis methods.
(DOCX 41 kb)

Additional file 2: Figure S1–S22. Additional comparison of recall
values computed for the six pathway analysis methods using different
datasets. (PPTX 6592 kb)
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