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Abstract

Background: Much effort has been devoted to the discovery of specific mechanisms between drugs and single
targets to date. However, as biological systems maintain homeostasis at the level of functional networks robustly
controlling the internal environment, such networks commonly contain multiple redundant mechanisms designed
to counteract loss or perturbation of a single member of the network. As such, investigation of therapeutics that
target dysregulated pathways or processes, rather than single targets, may identify agents that function at a level
of the biological organization more relevant to the pathology of complex diseases such as Parkinson’s Disease (PD).
Genome-wide association studies (GWAS) in PD have identified common variants underlying disease susceptibility,
while gene expression microarray data provide genome-wide transcriptional profiles. These genomic studies can
illustrate upstream perturbations causing the dysfunction in signaling pathways and downstream biochemical
mechanisms leading to the PD phenotype. We hypothesize that drugs acting at the level of a gene expression
module specific to PD can overcome the lack of efficacy associated with targeting a single gene in polygenic
diseases. Thus, this approach represents a promising new direction for module-based drug discovery in human
diseases such as PD.

Results: We built a framework that integrates GWAS data with gene co-expression modules from tissues representing
three brain regions—the frontal gyrus, the lateral substantia, and the medial substantia in PD patients. Using weighted
gene correlation network analysis (WGCNA) software package in R, we conducted enrichment analysis of data from a
GWAS of PD. This led to the identification of two over-represented PD-specific gene co-expression network modules:
the Brown Module (Br) containing 449 genes and the Turquoise module (T) containing 905 genes. Further enrichment
analysis identified four functional pathways within the Br module (cellular respiration, intracellular transport, energy
coupled proton transport against the electrochemical gradient, and microtubule-based movement), and one functional
pathway within the T module (M-phase). Next, we utilized drug-protein regulatory relationship databases (DMAP) and
developed a Drug Effect Sum Score (DESS) to evaluate all candidate drugs that might restore gene expression to normal
level across the Br and T modules. Among the drugs with the 12 highest DESS scores, 5 had been reported as potential
treatments for PD and 6 hold potential repositioning applications.
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Conclusion: In this study, we present a systems pharmacology framework which draws on genetic data from GWAS

and gene expression microarray data to reposition drugs for PD. Our innovative approach integrates gene co-expression
modules with biomolecular interaction network analysis to identify network modules critical to the PD pathway and
disease mechanism. We quantify the positive effects of drugs in a DESS score that is based on known drug-target activity
profiles. Our results illustrate that this modular approach is promising for repositioning drugs for use in polygenic diseases
such as PD, and is capable of addressing challenges of the hindered gene target in drug repositioning approaches to date.

Background
Parkinson’s Disease (PD) is a disorder characterized by
depletion of dopamine in the basal ganglia, including the
substantia nigra. While the exact etiology of PD is un-
known, major advances have been made in understand-
ing underlying disease mechanisms through technologies
in genetics, transcriptomics, epigenetics, proteomics and
imaging [1]. These advances have increased recognition
of the heterogeneity and etiological complexity of PD as a
disease. Nevertheless, there is hope for broad-spectrum
therapeutic intervention, as even distinct disease subtypes
implicate genes intersecting in common pathways [2]. Re-
cently described “Network Medicine” [3] approaches
offer a platform to study the molecular complexity of
a particular disease systematically. These approaches
are well-suited to the identification of disease modules
and pathways as well as the molecular relationships be-
tween apparently distinct phenotypes [4]. Despite progress
towards the understanding of genetic factors that contrib-
ute to the etiology of PD, current treatments are aimed at
clinically apparent PD — after patients are suffering from
the onset of neurodegeneration. While, preventative drugs
aim at treatment before or during the pre-clinical stage of
PD are lacking, as are curative drugs aimed at the under-
lying molecular mechanisms have had limited success [5].
The associations discovered in GWAS of PD allow for
the identification of disease-specific modules playing a
role in triggering the disease. Similarly, gene expression
microarray data provides a gross overview of gene ex-
pression changes that are associated with diseases like
PD. However, future studies of complex diseases will
need to move beyond the analysis of single genes and in-
clude analysis of interactions between genes or proteins,
in order to better understand how functional pathways
and networks become dysfunctional [6]. For in-
stance, network-based approaches have already been
used to examine various disease molecular mechanisms,
e.g., type-2 diabetes [7], cancer [8], and neuronal degen-
eration specifically [9]. Bioinformatics techniques to
characterize network topology and functional modules
have been developed recently for functional genomics
[10]. The identification of disease modules involving
specific mutated genes and the molecular pathways to
which they belong will provide new targets for drug

development. GWAS and whole exome profiling data
are combined in systems biology to illustrate upstream
perturbations causing dysfunction in pathways and
mechanisms leading to the disease phenotype. Therefore,
we introduce the approach of discovering disease-
specific modules to reveal the etiology of PD.

In this study, we hypothesize that study of PD GWAS
[11] and co-expression data [12] will enable identifica-
tion of disease-specific modules caused by a variation in
multiple components of a functional pathway or net-
work. Thus, we propose using a network-based approach
called Weighted Gene Co-expression Network Analysis
(WGCNA) [13] to detect modules of co-expressed gene
networks associated with PD. We then integrate these
co-expression clusters with gene regulatory network
information and perform enrichment analysis to find
PD-specific modules. This method, in combination with
functional enrichment and network topology measures,
will be used to identify potential targets. This is done by
selecting drugs that reverse the altered gene expression
signatures found within the PD modules.

PD modules which show significant perturbation is
identified by comparing global co-expression networks in
PD to regulatory networks identified using GWAS ‘hits".
After selecting the PD-specific modules for further ana-
lysis, we find significantly enriched Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways and Gene Ontol-
ogy terms associated with PD modules. Afterward, we use
knowledge of these functional pathways as the basis for
“modular drug discovery”—the discovery of drugs that act
on many nodes within the disease-specific module. This is
accomplished through our innovative Drug Effect Sum
Score (DESS) system and then cross-validated through
rigorous analysis of published literature.

Methods

An overview of the framework

The pipeline is divided into two color-coded sections as
shown in Fig. 1. The first section (colored red) contains
steps for construction of PD modules, and the second
section (colored green) contains steps to perform modu-
lar drug repositioning. The construction of PD modules
was carried out in 6 steps: 1) We filtered genes with sig-
nificant expression changes between the case vs. control
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Fig. 1 The pipeline for mining the PD-specific gene modules and for ranking candidate drugs for drug repositioning. The left frames are the source of
the input data, the middle frames are the processes of data, and the left frames are the output of the process. The red frames relate to mining
PD-specific modules, while those in green relate to the drug repositioning process
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samples (with the False Discovery Rate set to 0.05), using
a Bayesian inference technique available in the limma
package in R [14]. 2). We performed WGCNA, which
yields clusters (modules) of highly correlated genes hav-
ing significant changes across three tissues. 3) We com-
piled PD-specific GWAS candidate genes and performed
one layer extension to generate a gene regulatory net-
work by retrieving the gene-gene regulatory relationship
from the PAGER database [15]. 4) We performed en-
richment analysis by finding overlapping genes shared
between co-expression clusters and GWAS candidate
genes, extracting these enriched clusters as PD-specific
modules. 5) We constructed PD-specific network mod-
ule by retrieving the gene-gene interactions for the genes
in PD-specific modules from the HAPPI-2 database [16].
6) Finally, we annotated PD-specific modules with func-
tional groups using ClueGO [17].

The Drug repositioning section (green) was comprised of
four steps. First, we calculated a P-score, which is an intui-
tive pharmacology score that combines the probability for

each interaction and the weight of the drug-target inter-
action using data from the DMAP database (see details in
Methods). Second, we calculated the RP-score, which is a
measure of Relevant Protein importance in the PD mod-
ules network (see details in Methods). Third, we calcu-
lated the Drug Effect Score (DES) of each module. Finally,
the DESS was calculated across all modules. Using these
steps, we obtained a ranked “modular drug list” consisting
of candidate treatments based on PD-specific modules.

Preparation of PD-specific omics, gene-gene interaction,
and drug-protein regulation data

Datasets from whole genome expression transcriptional
profiling (on the GSE8397-GPL-96 array) were retrieved
from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GS
E8397). In the gene expression profile, 47 samples from
PD patients and controls were used in three brain re-
gions: the Frontal Gyrus (FG: 8 tissue samples), Lateral
Substantia (LS: 16 tissue samples) and Medial Substantia
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(MS: 23 tissue samples) [12]. SNP data was obtained from
a PD paper [11], in which a GWAS was carried out. We
mapped probe IDs to gene symbols using the NCBI
microarray toolkit and assigned gene expression scores by
the averaging probe expression values after adjustment
and trimming of background noises by using the standard
deviation of the mean values from all samples. Since the
standard deviation of the mean values were small enough
(0.02 in this study), no samples had been trimmed. After
performing probe transformation and synonymous gene
merging on data from the Affymetrix Human Genome
U133A Array [HG-U133A] and Affymetrix Human Gen-
ome UI33B Array [HG-U133B], 12,995 genes were
mapped by 22,283 probes in the merged matrix from the
two arrays. In the prior study, 54 genes were reported as
having had significant enrichment [11] in GWAS. The
PAGER database [15] was used to obtain gene-gene regu-
latory relationships (22,127 pairs curated from 645,385 in
total). The HAPPI-2 database [16] was used to obtain
protein-protein interaction (PPI) data. This integrated
protein interaction database comprehensively integrates
weighted human protein-protein interaction data from a
wide variety of protein-protein database sources. After
mapping the proteins to genes using UniProt IDs, we
obtained 2,658,799 gene-gene interactions. The drug-
target regulatory relationships data was from the DMAP
database [18], which consisted of curated 438,004 drug-
protein regulatory relationships.
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PD-specific network module identifications
Whole-genome expression data on 12,995 genes was
filtered down to 2895 candidate genes, based on a multi-
group empirical Bayesian (eBayes) moderated t-test with
p-value < 0.05. Next, we performed WGCNA to cluster
these genes based on their co-expression. To do this, we
first performed our pipeline steps to identify excessive
missing values and outlier microarray samples. The
detection of the outlier was performed by trimming the
hierarchy tree of average Euclidean distance method
using cutoff tree height of 100. Second, we chose an
exponent for soft thresholding based on analysis of
network topology, to further reduce noise and amplify
stronger connections in the scale-free topological model.
Third, we performed one-step network construction and
module detection using hierarchy tree of unsigned
TOM-based dissimilarity distance. Fourth, we visualized
the genes in modules in a hierarchy tree based on
average linkage clustering [13]. Fifth, we analyzed the
cluster (Principal Components) and sample (expression
data) correlation using Pearson correlation and asymp-
totic p-value.

An initial regulatory relational network was seeded
using the 54 candidate genes identified by Moran et al.
and expanded using the gene-gene regulatory relation-
ship data. The resulting expanded regulatory relational
network consists of 288 genes and 1983 gene-gene regu-
latory relationships. Subsequently, we performed the

[
[
module m;
Symbol 1 2 3 4 5 6 7 8 9 10
Expression -
Drug action
Drug effect = + + - + + - + + + ||
Drug Effect Score calculation for module m;
Symbol 1 2 3 4 5 6 7 8 9 10
Exp. 0.37 0.36 0.4 -1.65 0.43 0.5 -0.83 1.87 0.58 0.54
RP-score | 2.45 6.81 14.09 2.65 4321 | 4241 15.72 12.92 8.5 18.24
P 0.25 0.25 0.5 0.25 05 0.25 0.5 0.25 0.5 0.25
P-score | 0.51 4224 | 6311 | -455 | -1113 | -102.09 | -45.19 | -36.68 | -1042 | -6.66
Action Sti Inh Inh Inh Inh Inh Inh Inh Inh Inh
DES 0 3.74 11.41 -0.77 18.47 9.02 -10.93 4.80 5.22 2.86
Effect Neg Pos Pos Neg Pos Pos Neg Pos Pos Pos
Drug Effect Sum Score calculation
Drug d module m; | module m, | module ms
DES(d,m) 439 13.1 27.8
Module f{ptx) 0.94 0.86 0.9
DESS(d,M) 77.55
Fig. 2 An example of calculating the DESS for PD-specific gene expression modules. Green indicates increased gene expression, red indicates a
decrease. Note that the drug action acts to reverse the direction of gene expression found in the pathological state. Exp. stands for expression value,
RP-score stands for the protein relevant score, p. stands for the priority score, P-score stands for the intuitive pharmacology score, DES stands for the
Drug Effect Score, module f(ptx) stands for the enrichment score, and the DESS stands for Drug Effect Sum Score




Yue et al. BVIC Bioinformatics 2017, 18(Suppl 14):532 Page 21 of 169

enrichment testing of the genes in the expanded regula-  over-representation in the expanded regulatory relational
tory relational network to measure enrichment in the network. PD-specific modules were defined as the over-
co-expression clusters using the hypergeometric test and  represented co-expression clusters. We then generated

assigned the f{pts) score using the formula: the network of PD-specific modules by applying high-
confidence gene-gene interactions (as indicated by 3-star

£(pts) — sign (E ~ 1_() % log (1) (=5 1 above in the HAPPI-2 database).
™) In the final step, we performed ClueGO analysis to elu-

cidate mechanisms involved in the PD-specific modules.
where N is the total number of the genes in co- We applied Bonferroni correction and selected those with
expression clusters, K is the number of overlapping post-correction p-value < 0.05 and Kappa score = 0.5
genes between co-expression clusters and genetic candi-  (moderate network strength or stronger) [17].
date genes, n is the number of the genes in the co-
expression cluster selected, and k is the overlap genes  Modular drug repositioning
between selected co-expression cluster and the genetic ~DESS was calculated using the P-score from the DMAP
candidate genes. A positive value for f{pts) indicates the  database, the RP-score from the PD modules, and the
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Fig. 3 The expanded regulatory relational network generated. The color of the nodes indicates the direction of change of expression; red nodes
indicate the up-regulated genes, while green nodes stand for the down-regulated genes. Nodes in gray were not assayed by our whole-genome
transcriptional profiling. The color scale measures the expression changes accumulated from the three brain regions
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module enrichment score f{pts) from the PD modules.
We calculated a P-score, an intuitive pharmacology score
in the DMAP database, via a probability-weighted sum-
mary of all the evidence mined from literature or other
drug target databases to determine an overall mechan-
ism of “edge action” for each specific chemical-protein
interaction using conf{d,p):

conf(d, p) = Zil(pmbi(a’,p) x sign,) (2)

where d and p are specific drugs and proteins, respect-
ively. N is the number of types of evidence for the inter-
action between d and p. prob(d, p) is confidence in each
type of evidence i with a value within the range of [0,1].
sign; has a value of 1 if the evidence i suggests activation
and a value of -1 if the evidence i suggests inhibition.
Afterwards, to rank each interaction, we used the algo-
rithm in HAPPI [19] by assigning a weight(p) for the
proteins interacting with each drug using the following
formula adapted from [20].

weight(p) = k X In (Zp,quETconf(p, q)) -In (Zp.qugTN(P’ q))
(3)

Here, p and ¢ are proteins in the protein interaction net-
work, k is an empirical constant (k = 2 in this study),
conflp,q) is the confidence score of interaction between pro-
tein p and ¢ assigned by HAPPI-2, and N(p, q) holds the
value of 1 if protein p interacts with g or the value of 0 if
protein p does not interact with g. Thus, the foregoing prob-
abilities and weights for each interaction were combined
into P-score(d,p), which includes both information on each
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drug’s effects on interacting proteins and the importance of
the protein in the protein-protein interaction network:

P-score(d,p) = conf (p, q) x weight(p) (4)

We applied each gene’s RP-score calculation in a man-
ner similar to formula (3) in PD-specific modules using
the formula:

RP-score = ekX In <Zp.qe/wodulez\r£rm"f (p,q)) -ln <Zp.qunduleNETN(p"q>)
(5)

where p and g are the indexes of proteins from the se-
lected module, k is a constant (k = 2 in this study). The
term conf(p, gq) is the interaction confidence score
assigned by HAPPI-2, where conf{p, q) € [0,1].

Further, we calculated a DES(d,m) by using the drug
weight score and the module gene RP-score according to
the formula:

DES(d,m) = Z:;Mod“rgez[signd x log, (p-score(d, i))
x log, (RP-score(d, i)) x p,]

(6)

where m is the module, i is the index of the proteins in
the PD-specific module, sign, is the direction of the effect
drug d on protein expression, and P-score(d, i) is the
pharmacology score of the drug d to target i. p; is the pri-
ority score which indicates the source of the candidate.
We assigned a value of p;=1/2° when the candidates were
from GWAS, pi=1/2' when the candidates were from
regulatory one-layer extension of GWAS, and p;=1/2?
when the other candidates were from the same module.

Cluster Dendrogram
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functional pathway identification

Fig. 4 The WGCNA analysis of the five co-expression modules - Brown (Br), Yellow (Y), Blue (Bl), Green (G), and Turquoise (T). The dendrogram
illustrates the degree similarity using hierarchy tree of TOM-based dissimilarity distance in each module cluster, which forms the basis for subsequent
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Table 1 The 5 co-expression module enrichment based on
GWAS results

Module Genes Candidate Module  Module flpts) Rank
in all candidate

Turquoise 2895 50 1190 21 0.94 1

Brown 2895 50 544 10 0.86 2

Green 2895 50 116 2 -055 3

Yellow 2895 50 199 3 -065 4

Blue 2895 50 821 13 -092 5

The DESS(d,M) was calculated by integrating all PD-
specific modules according to the expression:
DES(d,m) x f,,(pts)  (7)
where M is the module set of module m, f,,(pts) is prob-
ability mass function (pmf) transform score of the
PD-specific module m. An example of how the DESS
score is calculated for a drug is shown in Fig. 2. Based on
the total DESS, modular drugs (drugs selected based on
their predicted effect at a module level) and their targets
in the modules were collected. We pulled out modular
drugs or drugs selected based on their predicted effect at a
module level alongside their associated targets. Finally, we
applied a single regulatory layer expansion and retrieved
drug-target regulatory relationships (DMAP database) and
protein-protein interactions (HAPPI-2 database) to gener-
ate the “extended modular drug-target network”.

DESS(d, M) =S "

meModule

Results

Construction of PD genetic association networks

The PD genetic association network was constructed
using the neighborhood extension method. Starting from
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the original 54 genes identified using GWAS (described
in Materials and Methods, above), we obtained PD gen-
etic association networks consisting of a total of 288
genes and 1983 regulatory relationships. The candidates
of significant expression change (eBayes moderates t-test
p-value < 0.05) are colored in the PD genetic association
networks provided in Fig. 3.

PD-specific network modules identified

The details of the gene co-expression network construc-
tion with WGCNA have been previously described [13].
By applying the steps described above in Materials and
Methods, 5 co-expression modules were identified. We
color-coded these as the Brown (Br) module, the Yellow
(Y) module, the Blue (Bl) module, the Green (G) mod-
ule and the Turquoise (T) module, all of which are
shown in Fig. 4. The number of genes in each module is
as follows: the Br module containing 544 genes, the Y
module containing 199 genes, the Bl module containing
821 genes, the G module containing 116 genes, and the
Turquoise containing 1190 genes.

Enrichment analysis results of two PD-specific network
modules

Based on the enrichment analysis, we identified two PD-
specific modules (the T module and the Br module)
shown in Table 1 and Fig. 4. The genes in these modules
as displayed in the dendrogram are grouped tightly
enough to be susceptible to a modular drug (a drug that
acts on many members of the PD-specific module rather
than on one target). 2895 genes are included in the gene
co-expression modules. 50 of these genes in the co-
expression modules overlapped with genes identified from
our analysis of genetic data. These 50 genes are distributed
among the modules as follows: 21 in the T module, 10 in

Module-t

rait relationships

case VS control is 0.03, Br module frontal gyrus case VS control is 0.04, latera;
is 1.2x107°
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Fig. 5 Phenotypes corresponding to each module. The color scale indicates the Pearson correlation between the samples and the modules. The
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Fig. 7 Gene Ontology - biological processes (GO-BP) relating to each PD-specific module as identified by ClueGO analysis. a. The GO-BP and KEGG
pathways associated with the Br module. b. The GO-BP associated with the T module

the Br module, 2 in the G module, 3 in the Y module, and

13 in the Bl module. Using the hypergeometric test, we  Table 2 Gene Ontology - biological processes (GO-BP) relating

identified two PD-specific modules (modules having posi- 1o the two PD-specific modules

tive flpts), see Methods) the T module, which had ) que

fipts) = 094 and the Br module, which had fipts) = 0.86. Br module KEGG  Oxidative phosphorylation ~ Group1 25

Figure 5 illustrates the correlation of gene expression to  pathway

case-control status. Specifically, the Pearson correlation

coefficient for the expression level of the genes belonging

to each module was reported for each sample. Overall, energy coupled proton  Group0 10
L transport, against

cases and controls are well discriminated by the gene electrochemical gradient

expression signature of the genes in the module. For in-

Function Groups  Gene numbers

Synaptic vesicle cycle Group0 23
Br module GO-BP  cellular respiration Group3 35

. .- intracellular transport Group2 104
stance, in the Br module, control samples have a positive . P P
correlation with modular gene expression, while disease gggxggtle-based Groupl 17
samples are negatively correlated with gene expression of

T module GO-BP M phase Group0 94

genes found in each module. The remaining relationships
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are illustrated in Fig. 5. There are 2 comparisons (lateral
control VS lateral case in both T-module and Br module)
significantly different with p-value < 0.001 in the stu-
dent t-test.

The Br network module (Fig. 6) contains 449 genes
and 2373 gene-gene interactions, of which 94 genes are
up-regulated and 355 genes are down-regulated. The T
network module contains 905 genes and 5156 gene-gene
interactions, of which 221 genes are down-regulated and

684 genes are up-regulated.

ClueGO analysis of PD-specific modules

The ClueGO analysis of the Br modules identified 4 GO
biological processes, which are shown in Fig. 7 and
Table 2. These are cellular respiration, intracellular
transport, energy-coupled proton transport, and
microtubule-based movement. Furthermore, we identi-
fied two KEGG [21] pathways, “synaptic vesicle cyc-
ling” and “oxidative phosphorylation”. The ClueGO
analysis of the T module identified one GO biological

process “M phase”.

Identifying drugs with predicted therapeutic effects on

the Br and T modules

We generated a ranked list of the drugs based on their
DESS scores. While there were 1246 (1201 unique drug-
bankID) candidate drugs for drug repositioning that tar-
geted one or more genes in the gene co-expression
module in Additional file 1: Table S1, we selected only
12 (the top 1% according to DESS) candidate drugs as
potential treatments (Fig. 8). The components of DESS
and number of the drug targets for each drug in the T

module and Br module are shown in Fig. 9.
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Fig. 8 Distribution of Drug Effect Sum Score (DESS). The top 1% of
the drugs were validated using the literature. The red line indicates
the cutoff value of the DESS 1% drugs

Furthermore, the drugs are listed in Table 3 and are dis-
cussed below. The Br and T modules’ network diagrams
for the extended network illustrating which disordered
genes are stimulated and inhibited by these 12 drugs
is provided in Fig. 10, Additional file 2: Table S2

and Additional file 3: Table S3.

Conclusions and discussion
In this work, we present a framework that identified

candidate drugs for repositioning based on analysis of
GWAS and gene expression microarray data. Starting
with genes identified through a standard GWAS, we ex-
tended the analysis to one-layer extension by gene-gene
regulatory relationship and built an extended regulatory
network. Significant results based on an enrichment ana-
lysis were then used to generate PD modules. We im-
proved gene co-expression module cohesion by
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Table 3 Compound IDs for the 12 most highly ranked modular drug candidates

Compound ID Compound Name Score Drugbank DrugName Class

CID5757 CID5757 2903 DB00783 Estradiol Steroids and steroid derivatives
CID445154 SAMO001246888 2539 DB02709 Resveratrol Stilbenes

ClD444795 Retinoic Acid 2489 DB00523 Alitretinoin Prenol lipids

CID5538 Accutane Roche 246.3 DB00755 Tretinoin Lipids and lipid-like molecules
CID5282379 Isotretinoin (USP) 246.3 DB00982 Isotretinoin Prenol lipids

CID5280961 NCGC00025005-02 2443 DBO1645 Genistein Isoflavonoids

CID5460439 Rapamune 2249 DB00877 Sirolimus Macrolide lactams

CID6436030 Perceiva 2249 DB00877 Sirolimus Macrolide lactams

ClD667476 follidiene 199 DB00890 Dienestrol Phenylpropanoids and polyketides
CID448537 oekolp 199 DB00255 Diethylstilbestrol Phenylpropanoids and polyketides
CID6010 component of Tylosterone 199 DB06710 Methyltestosterone Lipids and lipid-like molecules
CID2756 C4522_SIGMA 1982 DB00501 Cimetidine Organoheterocyclic compounds

removing isolated or weakly connected genes. PD net-
work modules were then further informed by the inte-
gration of data from Protein-Protein interaction
databases.

Using this approach, we initially identified over 1201
candidates for drug repurposing. We trimmed this to 12
modular drug candidates based on their DESS. There
were three important characteristics of finding within
these 12 modular drugs. First, they are noteworthy in
that they target PD at the level of the gene co-
expression module as opposed to a specific target.
Second, most of the genes on the list belong to drug
families, which should be expected if data relating to
drug target efficacy are accurate and internally consist-
ent. Third, there are general 4 drug families found
(steroids and steroid derivatives, lipids and lipid-like
molecules, phenylpropanoids and polyketides, and other
small molecules), and each family of drugs identified has
been previously studied in relation to neurodegenera-
tive disease, suggesting the external validity of our
findings as well.

The top candidate drug was estradiol, a steroidal estro-
gen critical in the regulation of the menstrual cycle. It is
currently used pharmaceutically in hormone replace-
ment therapies for menopause and hypogonadism.
Several studies support a role for the use of estradiol in
PD. It has been shown to protect dopaminergic neurons
in an MPP+ Parkinson’s disease model [22], and a study
of postmenopausal women found it to be associated with
a reduced risk of PD in women [23]. Further, it is well-
established that estrogen deprivation leads to the death
of dopaminergic neurons. Of note, many clinical reports
also suggest an anti-dopaminergic effect of estrogens on
symptoms of PD. It is likely that the timing and dosage
of estrogen influence the results in these discrepant
findings. Our ninth, tenth and eleventh-ranked drugs
(dienestrol, diethylstilbestrol, and methyltestosterone

respectively) are isomers relating to diethylstilbestrol
(also known as follidiene). Diethylstilbestrol is a syn-
thetic non-steroidal estrogen previously used to treat
menopausal and postmenopausal disorders. However, it is
now known to have teratogenic and carcinogenic proper-
ties [24]. Although these compounds may be contraindi-
cated for use in humans, their high prioritization might
prompt us to look for similar compounds without car-
cinogenic side effects. Methyltestosterone, which had the
tenth highest DESS, is a synthetic orally active
androgenic-anabolic steroid with relatively high estrogeni-
city. Methyltestosterone is currently used to treat males
with androgen deficiency. Interestingly, testosterone defi-
ciency has previously been reported in patients with PD,
and PD itself is seen more commonly in men than women
[25]. However, clinical trials have shown no improve-
ment in male PD patients when given exogenous tes-
tosterone therapy [26]. Finally, our sixth most highly
ranked drug was genistein, an estrogen-like isoflavone
compound found exclusively in legumes. Genistein is
known to act as an angiogenesis inhibitor and was pre-
viously shown to have neuroprotective effects on dopamin-
ergic neurons in mouse models of PD [27].

Resveratrol had the second highest DESS. It is a poly-
phenolic anti-oxidant stilbenoid compound found in
food include the skin of grapes, blueberries, raspberries
and mulberries, currently under preclinical investigation
as a potential pharmaceutical treatment in treating early
onset PD patients. Resveratrol was previously studied in
a phase-II clinical trial for individuals with mild to mod-
erate Alzheimer’s disease and was found to reduce
plasma levels of some AD biomarkers [28—30].

The third drug alitretinoin, fourth drug tretinoin, and
fifth drug isotretinoin are most highly ranked candidates
also belonging to a single family of compounds, reti-
noids. The first is retinoic acid, a retinoid morphogen
crucial to the embryonic development of the anterior-
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posterior axis in vertebrates, as well as differentiation
and maintenance of neural cell lineage. Currently, in-
vivo animal studies suggest the possibility of therapeutic
applications of retinoic acid for PD through nanoparticle
delivery [31]. Isotretinoin, trademarked under the name
Accutane, is prescribed as a treatment for severe acne
vulgaris. Although isotretinoin is a known teratogen
[32], it might be well-suited to treatment of PD given its
typical later age of onset.

Our seventh and eighth hits, Sirolimus (Rapamune)
and Sirolimus (Perceiva), are again related. Perceiva is an
ocular formulation of the macrolide compound sirolimus
(commonly known as rapamycin) and was developed to
treat neovascular age-related macular degeneration.
Sirolimus is used for the treatment of Lymphangioleio-
myomatosis, as well as in prevention of organ transplant
rejection. Interestingly, sirolimus has been shown to im-
prove cognitive deficits in mouse model of Alzheimer’s
Diseases through inhibition of the mTOR signaling path-
way, a pathway which is thought to protect against neur-
onal death in mouse models of PD [33].

In addition to these twelve candidates, our ClueGO
analysis suggests that investigation of two additional bio-
logical processes may be profitable. Our analysis of
KEGG pathways in relation to the T module implicated
mitochondrial respiration as a potential disease mechan-
ism [34]. Interestingly, it has previously been reported
that defects in mitochondrial respiration are etiologically
related to the pathogenesis of PD. Thus, preservation
and restoration of mitochondrial function may hold
promise as a potential therapeutic intervention to halt
the progression of dopaminergic neurodegeneration in
PD. Secondly, in PD, neuronal cells undergo mitotic ca-
tastrophe and endoreduplication prior to cell death. It
has previously been shown [35] that overexpression of
DNA poly B was involved in the rotenone-mediated
pathology of cellular and animal models of PD. In a cell
culture model, increased levels of DNA poly  promoted
rotenone-mediated endoreduplication. Selective injury
to dopaminergic neurons by rotenone resulted in the
upregulation of DNA poly B as the neuronal cell cycle
was reactivated.

In summary, we perform drug repositioning by inte-
grating weighted drug-protein regulations on all genes,
using our novel DESS to quantitate drug effects on en-
tire co-expression networks. As biological systems use
functional pathways and networks to maintain homeo-
stasis, by selecting drugs that act at the level of a gene
module we were able to target a level of the biological
organization more relevant to the disease pathologies of
complex disorders such as PD. Although this approach
is still in its infancy, our results suggest that it may cir-
cumvent issues associated with single-gene targeting in
polygenic diseases like PD. Our analysis has identified
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several families of related drug candidates, all of which
have previously been investigated in relation to PD and
other neurodegenerative diseases. As such, we believe
our framework gives internally and externally valid
results and may be extended to provide complementary
insights to other disease-module findings and drug-
repositioning projects.

The significance of our work should be considered in
light of its limitations. First, several of the classes of
drugs mentioned have already studied in relation to PD
and related phenotypes, as described above. However,
members of the families of drugs identified have not re-
sulted in a clinically efficacious treatment for PD to date.
As such, a future direction for this line of research is to
include a mechanism to account for both additive and
potentially non-additive interaction effects between drugs
on a disease-specific module. In addition, many of the
most highly ranked modular drugs we identified show
much promise, but have known adverse effects. Future
research will include a method of incorporation of drug
side effects into the final priority score.
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