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Abstract

Background: Quantification and identification of microbial genomes based on next-generation sequencing data is
a challenging problem in metagenomics. Although current methods have mostly focused on analyzing bacteria
whose genomes have been sequenced, such analyses are, however, complicated by the presence of unknown
bacteria or bacteria whose genomes have not been sequence.

Results: We propose a method for detecting unknown bacteria in environmental samples. Our approach is unique in
its utilization of short reads only from 16S rRNA genes, not from entire genomes. We show that short reads from 16S
rRNA genes retain sufficient information for detecting unknown bacteria in oral microbial communities.

Conclusion: In our experimentation with bacterial genomes from the Human Oral Microbiome Database, we found
that this method made accurate and robust predictions at different read coverages and percentages of unknown
bacteria. Advantages of this approach include not only a reduction in experimental and computational costs but also
a potentially high accuracy across environmental samples due to the strong conservation of the 16S rRNA gene.
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Background
In these profiling microbial communities, the main objec-
tive is to identify which bacteria and how much they
are present in the environments. Most microbial profil-
ing methods focus on the identification and quantification
of bacteria with already sequenced genomes. Fur-
ther, most methods utilize information obtained from
entire genomes. Homology-based methods such as [1–4]
classify sequences by detecting homology in reads belong-
ing to either an entire genome or only a small set of marker
genes. Composition-based methods generally use con-
served compositional features of genomes for classifica-
tion and as such they utilize less computational resources.
Taxy [5] uses k-mer distribution in reference genomes
and metagenomes and a mixture model to identify the
organisms. RAIphy [6] uses k-mers to build relative
abundance index, classification metric and the iterative
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algorithm to refine the model and estimate the abun-
dance. Composition-based method have been proven to
be efficient for the analysis of metagenomes, but its accu-
racy depends on the selection of informative reference
genomes, which are used to find sequence character-
istics. CLARK [7] uses target-specific or discriminative
k-mers, which are genomic regions that uniquely char-
acterize each genome. Then, reads are assigned to the
genome based on the highest number of matches of the
reads’ k-mers to a target-specific k-mer set.
Although the main objective of metagenomics analy-

sis focuses on profiling known bacteria, it is complicated
by the presence of unknown bacteria (or those without
sequenced genomes). To the best of our knowledge, only
MicrobeGPS [8] provides a basic analysis of unknown
bacteria in how they are similar to known bacteria. It
does not address the scenario where unknown bacte-
rial genomes are vastly different from already-sequenced
reference genomes.
To address this challenge, this work focuses on iden-

tifying and quantifying unknown bacteria in microbial
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communities. In this context, unknown bacteria are those
whose genomes have not been sequenced. Given short
reads from a microbial community that contain genomic
materials from known and unknown bacteria, the method
works by (i) first separating reads from known bacteria
and unknown bacteria, and then (ii) clustering reads from
unknown bacteria into multiple clusters; each cluster rep-
resents a hypothetical unknown bacterium. Importantly,
the method utilizes only reads from 16S rRNA genes as a
means to accomplish these tasks. Due to its high conser-
vation, historically, the 16S rRNA gene has been used as a
marker for taxonomic and phylogenetic analyses ([9, 10]).
In the context of metagenomics, whose analyses depend
on only short reads and not entire genes, the 16S rRNA
gene was recently used as a means to construct functional
profiles of microbial communities [11].
Using the 16S rRNA gene instead of whole genome

information is not only computational efficient but also
economical; Illumina indicated that targeted sequencing
of a focused region of interest reduces sequencing costs
and enables deep sequencing, compared to whole-genome
sequencing. On the other hand, as observed by [8], by
focusing exclusively on one gene, one might lose essential
information for advanced analyses. We, however, will pro-
vide an analysis that demonstrates that at least in the con-
text of oral microbial communities, the 16S rRNA gene
retains sufficient information to allow us detect unknown
bacteria.

Methods
Overview
Our method for identifying unknown bacteria from short
reads that come from 16S rRNA genes of all bacteria
(including known and unknown bacteria) in an environ-
mental sample works as follows:

1. Reads are first roughly assigned to known bacteria.
This is done by aligning those reads to the collection
of already-sequenced 16S rRNA genes of known
bacteria. The alignment process can be done using a
good aligners such as Bowtie2 [12], BWA-MEM [13],
Soap2 [14], RandAL [15]. We used Bowtie2 due to
the efficiency and flexibility of the software package.
The aligner works by creating an indexR of
reference 16S rRNA genes, which come from known
(already-sequenced) bacterial genomes.

2. Reads that are not mapped toR are presumed to
belong to 16S rRNA genes of unknown bacteria. We
used SAMtools [10, 16] to collect unmapped reads
from the results of Bowtie2. At this point, it is possible
and actually expected that (i) some reads that belong
to unknown bacteria have been mistakenly mapped
toR, and (ii) some reads that belong to the 16S
rRNA gene of some known bacteria are mistakenly

not mapped toR. Thus, the set of unmapped reads,
U , contain both false positives and false negatives.

3. The unmapped reads, U , are then clustered into
distinct clusters. Each cluster represents a
hypothetical unknown bacterium. An additional
post-processing step can be applied to (i) remove
clusters with too few reads as they do not possess
sufficient information and (ii) split large clusters that
might contain reads belong to more than one
bacteria. At this point, it is possible that (i) multiple
clusters can represent the same unknown bacterium
and (ii) an unknown bacterium is not represented at
all by any cluster. Both cases are not desirable and
they both affect the accuracy of predicting the
number of unknown bacteria.

Uniqueness of the 16S rRNA gene in the human oral
microbiome
Using the 16S rRNA gene as marker instead of the whole
genome for identification and profiling bacterial commu-
nities potentially can lose a lot of information. On the
other hand, this gene is highly conserved, which means
that using it as the marker is more advantageous than
using the whole genome since the reference gene in our
database is less likely to be different than the gene in bac-
teria collected from environmental samples. Our analysis
with a dataset that consists of 889 bacteria in the Human
OralMicrobiome database suggests that the use of the 16S
rRNA gene as marker is justified because there is a suffi-
cient amount of information in this gene among different
bacteria to help distinguish these bacteria. Consequently,
the use of the 16S rRNA gene asmarker to distinguish bac-
teria enjoys both the advantageous characteristics of the
gene and having sufficient information required for the
task.
To analyze the effectiveness of using the 16S rRNA gene

as marker, we quantify the uniqueness of the gene among
the set of 16S rRNA genes in bacteria of interest. To be
precise, let G = {g1, g2, · · · , gn} be the set of 16S rRNA
genes of bacteria of interest. Define U(k, gi, gj) to be the
number of k-mers in gi that are not in gj or grcj divided by
|gi|−k+1, where grcj is the reverse complement of gj. Note
that 0 ≤ U(k, gi, gj) ≤ 1. In particular, U(k, gi, gj) being 1
means that all k-mers in gi do not occur in gj or grcj . Thus,
when U(k, gi, gj) = 1, it is likely that reads much longer
than k coming from gi will not be mistakenly mapped to
gj. Further, for each gi, define

U(k, gi) = min
1≤j≤n,j �=i

U(k, gi, gj)

Thus, the uniqueness score, U(k, gi), is a conservative
measure of uniqueness of gi in the whole set G. The
closer U(k, gi) is to 1, the more unique it is, and the more
likely that reads much longer than k from gi will not be
mistakenly mapped to any other gene gj in G.
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Figure 1 shows, for different values of k, the distribu-
tions ofU(k, gi) of 889 16S rRNA genes obtained from the
Human Oral Microbiome database. We can see that the
distribution of U(6, ki) peaks at around 0.58; i.e. around
88 genes have uniqueness scores at approximately 0.58.
When k = 8, most genes have uniqueness scores at
around 0.97. When k = 16, most genes have uniqueness
scores at 1. When k ≥ 18, we observed that all genes have
uniqueness score of 1. This means for each gene in G, we
can distinguish it with other genes using 18-mers. It also
means that given reads produced by current technologies
(e.g.≥ 10), it is likely that reads that come from some gene
gi will not bemistakenly mapped to any gene other than gi.

Clustering unmapped reads
The clustering procedure described in Step 3 of Section
Overview is a critical component of this method. Tech-
nically, each cluster is a collection of reads that cover a
contiguous genomic region. In other words, if one was
to align these reads to the correct genomic region of a
16S rRNA that contains these reads, they would form a
contiguous sequence. See Fig. 2.
We employ the data structure that is similar to a Union-

Find data structure [17] to partition unmapped reads in
U into a disjoint set of subsets. Each subset or cluster
would represent a contiguous genomic region. This data
structure C has following methods:

• MakeSet(x), which creates a singleton set containing
the element x.

• Union(x, y), which unions the two disjoint sets that
contain, respectively, x and y.

• Find(x), which finds the set that contains x.
• Clusters(), which returns all disjoint subsets that C

maintains.

Algorithm 1 Placing reads into disjoint clusters of over-
lapping reads
1: C ← UnionFind()
2: for each x in U do
3: C.MakeSet(x)
4: for each x in U do
5: for each y in U do
6: if C.Find(x) �= C.Find(y) and Overlap(x, y) then
7: C.Union(x, y)
8: return C.Clusters()

These methods can be encapsulated in data structure
that is similar to the Union-Find data structure. Given the
set of unmapped reads, U , the clustering procedure (as
described in Step 3, Section Overview ) can be described
in Algorithm 1, which is described in an inefficient man-
ner to help understandability; our actual implementation
is more efficient. Essentially, the procedure looks at all
pairs of unmapped reads and – if they overlap – merges
the contigs to which they belong. Since reads can be
in either the primary or the complementary strand, the
determination of overlapping of two reads must account

Fig. 1 Distributions of U(k, gi) of 16S rRNA genes suggest that k-mers longer than 16 can effectively be used to distinguish bacteria in the human
oral microbiome
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Fig. 2 Reads mapped to a contiguous region of a 16S rRNA gene

for this fact. First, given two sequences, define O(a, b) =
HAM(pre(a, k), suf (b, k)), where pre(a, k) is the k-prefix
of a; suf (b, k) is the k-suffix of b; and HAM is the Ham-
ming distance function. Then, the overlapping of two
reads x and y is determined as follows: Overlap(x, y) is
True and only if

max(O(x, y),O(xrc, y),O(x, yrc),O(xrc, yrc))
min(|x|, |y|) ≥ τ

where |x| is the length of x; xrc is the reverse complement
of x; and τ is an empirically determined parameter.

Post clustering processing
Clusters produced by Algorithm 1 are predicted raw rep-
resentations of different bacteria. Additional processing
can be done to improve prediction accuracy. In particular,
two heuristics can be employed. First, clusters containing
too few reads should be removed as they do not pos-
sess enough information to give sufficient confidence in
prediction. Second, clusters with too many reads might
contain reads that belong to more than one bacteria.
We consider heuristics that decompose graphs into large
disjoint clusters representing different bacteria. One of
such heuristics is based on a well-studied problem in
network analysis: decomposition of graphs into dense sub-
graphs [18]. To adopt this strategy, we represent the set
of unmapped reads in cluster i as a graph, Gi, in which
vertices represent reads and edges represent overlapping
of read pairs. Specifically, there is an edge (u, v), if and
only if Overlap(u, v) is true. As defined in Section Cluster-
ing Unmapped Reads , the function Overlap examines the
overlapping of reads as well their reverse complements.
With this representation, reads within each cluster that
belong to different bacteria tend to form dense subgraphs
of Gi. These subgraphs are connected with each other
by edges that represent the overlapping of similar reads
belonging to different bacteria.

Method evaluation
As clusters returned by Algorithm 1 represent predicted
species, the quality of prediction can be quantified in
terms of how closely the clusters resemble the set of bac-
teria that reads belong to. Let T = {T1, · · · ,Tn} be the
set of bacteria that unmapped reads belong to and C =
{C1, · · · ,Cm} be the set of clusters that ourmethod assigns
the reads to. Although there are many different ways

the accuracy of clusterings can be evaluated, we chose
four different metrics that evaluate clustering quality in
different meaningful and complementary ways.
Mutual information is an information-theoretic mea-

sure of how similar two joint distributions are. In the
context of clustering, themutual information between two
clusterings T and C is defined as

MI(T ,C) =
n∑

i=1

m∑

j=1
P(i, j) log

P(i, j)
P(i)P(j)

where P(i, j) is the probability that a read belongs to both
Ti and Cj; P(i) is the probability that a read belongs to
Ti; P(j) is the probability that a read belongs to Cj. The
Adjusted Mutual Information (AMI) [19] of two cluster-
ings is an adjustment of mutual information to account for
chance and is defined as follows:

AMI(T ,C) = MI(T ,C) − E(MI(T ,C))

max(H(T),H(C)) − E(MI(T ,C))

where E(MI(T ,C)) is the expected mutual information of
two random clusterings and H(T) is the entropy of the
clustering T. An AMI value of 0 occurs when the two clus-
terings are random, whereas a value of 1 occurs when C
and T are identical.
Rand Index is a commonmeasure in classification prob-

lems, where the measure takes into account directly the
number of correctly and incorrectly classified items.

RI(T ,C) = 2(a + b)
n(n − 1)

where a is the number of pairs of reads that are in the same
cluster in T and C; and b is the number of pairs of reads
that are in different clusters in T and C. The Adjusted
Rand Index (ARI) was introduced to take into account
when the Rand Index of two random clusterings is not a
constant value [20]. An ARI value of 0 occurs when two C
and T are independent, whereas a value of 1 means C and
T are identical.
In addition to AMI and ARI, we also considered two

complementary metrics, introduced by [21]: homogene-
ity and completeness. A clustering is homogenous if each
cluster Cj contains only reads that come from some bac-
terium Ti. A clustering is complete if all reads that belong
to any bacterium Ti are placed into some cluster Cj. These
two metrics are opposing in that it is often hard to achieve
high scores on both homogeneity and completeness. A
few examples might help understand this intuition:

• T = C if and only if both homogeneity are
completeness scores are 1. T being identical to C only
occurs when reads in each Ti are placed in exactly one
Cj, and all reads in each Cj come only from one Ti.

• SupposeT = {{r1, r2}, {r3, r4}} andC={{r1, r2, r3, r4}}.
Then, the completeness score is 1, because all reads
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that belong to T1 (and respectively to T2) are placed
in the same cluster in C. On the other hand, the
homogeneity score is 0, because reads in the only
cluster in C come from different bacteria in T.

• Suppose T = {{r1, r2}, {r3, r4}} and C = {{r1, r3},
{r2, r4}}. Then, both completeness and homogeneity
scores are 0.

Results and discussion
In this section, we report experimental results that show
various aspects of accuracy and robustness of thismethod.
Accuracy is measured by four different metrics Adjusted
Mutual Information (AMI), Adjusted Rand Index (ARI),
Homogeneity and Completeness.

Mockmicrobial communities
Experiments were conducted on 16S rRNA genes
obtained from 889 sequences cataloged by the Human
Oral Microbiome Database. The lengths of genes vary
between 1,323 to 1,656 bases. We simulated mock micro-
bial communities at various settings in order to be able
to compare ground truths and predicted values and ascer-
tain the accuracy of the method. Each mock community
consists of (A) known bacteria, whose 16S rRNA genes
were used to filter out known bacteria, and (B) unknown

bacteria, whose 16S rRNA genes must be identified and
separated into different clusters representing different
unknown bacteria.
These mock communities were synthetically created to

evaluate various aspects of our method. In our experi-
ments, short reads from 16S rRNA genes were generated
using Grinder [22] using parameters for the Illumina
sequencing platform. Mean read length was 150 with a
standard deviation of 20. Read coverage was between 10x
to 100x and the percentage of unknown bacteria varied
from 1 to 16%. To study how one parameter affects the
accuracy of the method, we used mock communities in
which only that parameter varied while the others were
kept constant.

The affect of coverage on prediction accuracy
First, we examined how the method’s accuracy (in terms
of completeness, homogeneity, mutual information and
Rand index) varied at increasing read coverages. We
expected that having more reads means having more
information and that would result in an observed increase
in accuracy. In this experiment, read coverage in mock
communities varied from 10x to 100x. The percentage
of unknown bacteria in these communities were kept
constant at 8%.

Fig. 3 Accuracy of predicting unknown bacteria (measured by 4 different metrics) at read coverage ranging from 10x to 100x
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Figure 3 shows accuracies measured by 4 different
metrics. As expected, prediction accuracy was higher at
higher coverage for 3 of the measures. Additionally, accu-
racy values measured by AMI are generally higher than
ARI. AMI tells us about the degree of randomness of a
predicted clustering compared to the ground-truth clus-
tering, whereas ARI attempts to quantify the item pairs
that are in the same and different subsets. Our interpre-
tation of this observation is that while predictions are
not random, there are still structural information among
clusters or within clusters that our method has not fully
exploited.
Further, predictions were homogeneous than complete.

This means that (i) a cluster more likely contains only
reads that belong to some bacterium, and (ii) reads
belonging to a bacterium could be placed in multiple clus-
ters. Observation (i) confirmed that themethod worked as
it should. To understand observation (ii), note that if reads
belonging to a gene do not assemble into a contiguous
sequence (due to low or non-uniformity of coverage), then
reads belonging to the gene will be placed into multiple
clusters.
Finally, as coverage approached 100x, clusters became

less homogenous. This happened because having more
reads increased the change of mistakenly placing reads
into clusters representing different bacteria. In this exper-
iment, 80x appears to be a good coverage.

The affect of unknown bacteria concentration
To study the affect of the amount of unknown bacte-
ria has on prediction accuracy, we evaluated our method
with mock communities in which percentage of unknown
bacteria varied from 2 to 16%, while read coverage was
kept constant at 40x with 10 random replicates at each
percentage.
The result of this experiment is summarized in the

box plot in Fig. 4. As expected, prediction accuracy (as
measured by AMI, ARI and Completeness) tended to
decrease with more unknown bacteria. On the other
hand, homogeneity were not effected very much. The
result shows that accuracy starts dropping dramatically
when the concentration of unknown bacteria reaches 16%.
We hope that future improvements can increase this
number.

Conclusions
Although it is known that 16S rRNA genes can be used
to distinguish known bacteria, we demonstrated that only
reads from these genes can be used to predict the num-
ber of unknown bacteria in oral microbial communities.
Advantages include (i) a reduction in cost and computa-
tional processing, and (ii) the high conservation of 16S
rRNA genes increases the chance of reference genetic

Fig. 4 Accuracy of predicting unknown bacteria (measured by 4
different metrics) at different amount of unknown bacteria

materials being highly similar to those of bacteria in envi-
ronments, which eliminates multiple sources of errors and
challenges.
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