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Abstract

Background: RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for
discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential
revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists
have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA
sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The
two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection.
Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs
rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory
units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step
towards lincRNA recognition.

Results: The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the
putative data sets. The experimental results also show the excellent performance of predictive deep neural network
on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is
validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding
the whole annotated sequences through the deep learning machine, which indicates that deep learning method has
the extensive ability for lincRNA prediction.

Conclusions: The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data.
Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the
auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA
sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder
algorithm can exert their capability in knowledge learning in order to capture the useful features and the information
correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to
adopt the deep learning techniques for identifying lincRNA transcription sequences.
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Background
LincRNA refers to long intergenic non-coding RNA
with the length greater than 200 nucleotides that are
transcribed from non-coding DNA sequences between
protein-coding regions. These intergenic regions were
referred as junk DNA, however, now it is discovered that
intergenic regions can be transcribed and provide func-
tional non-coding RNA genes within intergenic regions
[1]. Various classes of transposable elements are embe-
ded in lincRNAs and lincRNAs are viewed as a tool box
of elements with some regulatory functions in transcrip-
tion and translation. For example some lincRNAs attach
to messenger RNA to block protein production [2] and
families of transposable elements-derived lincRNAs have
been implicated in the regulation of pluripotency [3]. In
addition, lincRNA is highly tissue-specific, indicating that
it might be closely related to epigenetic regulation. Thus,
identifying these lincRNAs is the critical step towards
understanding complicated regulatory mechanisms.

Non-coding RNA regions are four times longer than
coding RNA sequences. However, currently only 21 thou-
sand lincRNAs (about 2M bytes) are computationally
discovered [4]. This is also one of the most important find-
ings in lincRNA identification. The latest work are mostly
based on RNA-seq data and heavily rely on the RNA-seq
assembly technology [4, 5]. As the long intergenic non-
coding RNAs are differentially expressed in different tis-
sues and multiple conditions, the RNA-seq data sets allow
to detect both rare and tissue-specific transcription events
that would be undetectable in other limited studies, such
as tiling array studies [6]. Thus, it establishes a philoso-
phy that RNA-seq data can be used for lincRNA detection
as the large volume of sequencing data are comprehensive
and detailed. A general procedure of the state-of-the-art
method to identify lincRNA is composed of the follow-
ing main steps [5]: (1) Acquiring RNA-seq data set, (2)
De novo RNA-seq assembly, (3) filtering and expression
analysis.

Acquiring RNA-seq data sets is to collect the RNA
sequencing data of different tissues under multiple con-
ditions. Single RNA-seq data set cannot be used for the
evidence of lincRNA detection. For example, in [4], more
than one hundred previously published RNA-seq data
sets covering more than twenty human tissues under
multiple conditions and consisting of about four billion
uniquely mapped reads. Subsequently, De novo RNA-seq
transcriptome assembly [7] is used as the key technol-
ogy to discover novel lincRNAs in a currently adopted
model, which creates a transcriptome without the use
of a reference genome. On the contrary, although the
reference-based assembly method is a robust way of iden-
tifying transcript sequences using genome alignment, it
is not able to account for incidents of structural alter-
ations of mRNA transcripts, such as rare splicing sites and

alternative splicing [8]. Instead, spliced variants are not
actual proteins and they do not align continuously along
the genome. An assembled transcript can be represented
as introns and exons that are characterized as one of the
features of an lincRNA. Thus, finding the alternative splic-
ing transcripts from RNA-seq is regarded as one of the
most important factors to the detection of novel lincR-
NAs. From the assembled transcripts, all known genes,
pseudogenes, short ncRNAs, novel protein coding tran-
scripts, novel UTRs, and non-lincRNA non-coding RNAs
must be filtered to identify actual lincRNAs. Only inter-
genic non-coding transcripts with at least 200 nucleotides
in length and expressed at least at one copy per cell are
kept as ultimately annotated lincRNAs. A set of filters can
be designed to achieve this goal.

The aforementioned techniques ensure the quality of
annotated lincRNA data and provide the probability to
develop a knowledge-based discovery method, although
currently knowledge-based discovery methods for iden-
tifying the lincRNA remain on the preliminary stage.
Driven by the newly found data set, scientists have found
some hints that can corroborate their previous specu-
lations: (1) the expression of lincRNAs appears to be
regulated, that is, the relevance exists along the DNA
sequences; (2) lincRNAs contain some conversed pat-
terns/motifs tethered together by non-conserved regions
[9]. The two evidences give the reasoning for develop-
ing knowledge-based deep learning methods in lincRNA
detection.

The latest findings show that the expression of lin-
cRNAs appears to be specifically regulated, although a
widely accepted concept is that the degree to which
intergenic transcription is functional remains uncertain
and controversial [9]. According to the reasoning that
negative transcripts (non-lincRNA) should lack coher-
ent epigenetic patterns, the evaluation of lincRNAs
depends on whether lincRNAs contains epigenetic mark-
ers. The catalog of lincRNAs shows some patterns of
epigenetic modification similar to protein coding genes
[10, 11]. For example, activating histone markers includ-
ing H3K4me3 and H3K36me3 are both significantly
contained within highly expressed lincRNAs; similarly,
the repressive mark H3K27me3 is significantly enriched
within lowly expressed lincRNAs.

The recent studies further reveal that the majority of the
lincRNAs identified display a level of conservation con-
sistent with known functional lincRNAs. This studies was
performed through a 50 nt window to scan the sequences
for the evaluation of conserved patterns [4]. Consistent
with prior studies, lincRNAs display detectable but mod-
est conservation [12]. Thus, by taking advantage of these
patterns and conservations along DNA sequence, the
knowledge-based discovery systems such as deep learn-
ing can discover more unidentified lincRNAs as long as
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(a) (b)
Fig. 1 Architecture of Deep Neural Network. a An Illustration of Deep Neural Network Architecture. b An Illustration of Auto-encoder

the sufficient knowledge can be acquired. Fortunately,
those newly found lincRNA data are able to provide such
opportunities.

The preliminary concepts of deep learning includ-
ing deep neural network were proposed in mid-2000s
although the ideas of deep neural network had been
discussed for long time since 90s [13–15]. After that,
deep learning techniques have been applied to life sci-
ences and shown tremendous promise [16–19]. Thus,
deep-learning based technologies are regarded as poten-
tial tools for computational discovery of lincRNA. Deep
neural network uses complicated algorithms, such as

convolution, auto-encoder and Boltzmann machine etc.,
to constrain the error between layers and eliminate the
back-propagation problem. Relying on a multiple-layer
perceptron architecture, the estimation of input data
through the hidden layer can be calculated by iterative
encoding-decoding processing so that the minimum dif-
ference can be achieved between the input data and the
estimation.

Deep learning related methods are barely seen in the
methodology of lincRNA annotation. Based on those
annotated data, deep learning based methods can exert
their capability in knowledge learning in order to improve

Fig. 2 Flow Chart for Auto-encoder Method
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Fig. 3 Five Encoding Schemes

the aforementioned method and discover novel lincRNAs
in DNA genomes.

In this project, three goals are set. The first one is
developing a deep learning method for lincRNA tran-
scription splicing sites. Second, validating the annotated
lincRNAs transcription sites and testing the performance
of deep learning method by comparing with conventional
methods such as support vector machine (SVM) and
traditional neural network based method. Third, compu-
tationally discovering other unidentified splicing sites. For
the first goal, auto-encoder method achieves 100% predic-
tion accuracy illustrated in next section. For the second
and third goal, one unreported splicing site is found dur-
ing re-scanning the whole annotated human lincRNA data
sets through the deep learning method.

Methods
Auto-encoder
Auto-encoder (AE) is a layer-wise training algorithm we
adopt on an artificial neural network that can be used
to constitute a multiple-layer percetron architectures for
deep learning machine shown in Fig. 1a. The hidden layer
h and the iterative estimation of x∗ can be expressed as
Eq. 1 by calculating the weights as illustrated in Fig. 1b.
The iteration becomes stable when it has the minimum
distance between x and x∗, as shown in Eq. 2. The pre-
liminary ideas of shallow/deep neural network had been
discussed for long time since 90s, however, mature con-
cepts of deep learning including deep neural network were
proposed in mid-2000s [13–15]. Since then, it has been
applied to life sciences and shown tremendous promise
[16–19].

The simplest auto-encoder is based on a feedforward,
non-recurrent neural network similar to the multiple-
layer perceptron (MLP). The difference is that the output
layer of auto-encoder has the same number of nodes as
the input layer and an auto-encoder is trained to recon-
struct their own inputs instead of being trained to predict

the output value. Thus, training the neighboring set of
two layers minimizes the errors between layers and elim-
inates the problem of error propagation that occurs in
conventional neural network.

Our auto-encoder method is composed of three main
steps as shown in Fig. 2: building, pre-training and vali-
dating. In the first step, the basic architecture including
input layer, hidden layer and activation functions is built;
secondly, the encoder and the decoder are trained layer
by layer following the pre-configured iterations; thirdly,
fine-grained training/validation is performed through the
entire model. In other words, the first step constructs the
basic framework of the deep neural network, the second

Algorithm 1 Psudocode of Auto-encoder Cost Update
Algorithm

1: x ← <input matrix> //Input data
2: p ← <parameter matrix> //Parameters
3: y ← null //Vector for hidden layer
4: z ← null //Reconstructed x
5: h ← null //Vector for cross entropy
6: c ← null //Vector for average cross entropy
7: lr ← 0.8 //Learning rate
8: g ← null //Vector for gradient
9: u ← <null matrix> //Updates of parameters

10: l ← batch number
11: i ← 0
12: while i < l do
13: y = <gethiddenvalue( x[ i] )>
14: z = <getreconstructed( y )>
15: h = −sum(x ∗ log (z) + (1 − x) ∗ log (1 − z))
16: c = mean(h)

17: g = <gradient( c, p[ i] )>
18: u[ i] = p[ i] −lr ∗ g
19: end while
20: return u
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Table 1 Results on lincRNA Acceptor Data
a I II III IV V

TP 49.4 49.4 49.0 49.4 49.4

FP 0.0 0.2 0.0 1.4 50.6

FN 0.0 0.4 0.0 0.1 0.0

TN 50.5 50.4 0.6 49.2 0.0

b I II III IV V

Sn 100.0 99.2 100.0 99.9 100.0*

Sp 99.9 99.6 100.0 97.2 0.0

Acc 100.0 99.4 100.0 98.5 49.4

Mcc 99.9 98.8 100.0 97.1 –

Ppv 99.9 99.6 100.0 97.2 49.4

Pc 99.9 98.8 100.0 97.1 49.4

F1 100.0 99.4 100.0 98.5 66.1

I: DAX, II: EIIP, III: Complimentary, IV: Enthalpy, V: Galois
Panel a : the measurement of methods
TP: True positive
FP: False positive
FN: False negative
TN: True negative
Panel b : the evaluation of methods
Sensitivity, Sn = TP/(TP + FN)

Specificity, Sp = TN/(TN + FP)

Accuracy, Acc = (TP + TN)/(TP + FP + FN + TN)

Matthews correlation coefficient, Mcc=TP×TN−FN×FP√
(TP+FN)×(TN+FP)×(TP+FP)×(TN+FN)

Positive predictive value, Ppv = TP/(TP + FP)
Performance coefficient, Pc = TP/(TP + FN + FP)

F1 score, the harmonic mean of precision and sensitivity,
F1 = 2 × TP/(2 × TP + FP + FN)

*: Not eligible for comparison due to training failure
–: Invalid value

one trains the layer-wise nodes and the last one flows
through all layers for validation.

As the core of auto-encoder, the pseudo-code of cost
update algorithm is shown in Algorithm 1 following the
Eqs. 1 and 2.{

h = f (x) = Sf (Wx + bh)
x∗ = g(h) = Sg(W ′h + bx)

(1)

ζDAE(θ) = arg min
∑

x∈X
E

[
L

(
x, x∗)] (2)

Transcription Sites
Similar to coding region transcription, non-coding
regions are split at transcription sites. However, regu-
latory RNAs rather than message RNAs are generated.
That is, the transcribed RNAs participate the biological
process as regulatory units instead of generating pro-
teins. Thus, identifying these transcriptional regions is the
first step towards lincRNA recognition. Similar to gene
structures, lincRNAs have the complicated exon/intron
structures, whereas the difference from gene structures
is that many of them have two exons or three exons
only.

Benefiting from the increasing annotation data in lin-
cRNAs, lincRNA transcriptional splicing site sequences
are collected from the annotated human DNA genome
data. However, the annotated data sets of lincRNAs are
not so many as that of mRNAs. Thus, all of anno-
tated lincRNAs are used for training, validation and
testing.

In the same vein to detection of protein-coding splic-
ing sites, auto-encoder neural network method is used for
the lincRNA application. A 2-layer auto-encoder model
is used for lincRNA detection and various encoding
schemes are used for evaluating the best performance.
The similar knowledge-based deep learning methods in
lincRNA detection is barely mentioned in literature so
far. The experimental results show an excellent predictive
performance of deep neural network method on lincRNA
data sets.

Encoding Schemes of DNA Sequence
Data representation, particularly the encoding scheme of
DNA sequence, is one of important factors that can largely
impact on the performance of knowledge-based discov-
ery systems. Different from other data format, the DNA
nucleotide sequences are recorded as human readable
characters, C, T, A and G. Adopting the improper encod-
ing schemes to feed the learning machine can lead to
the failure of prediction task. The encoding schemes we
test are shown as Fig. 3, including DAX [20], EIIP [21],
Complementary [22], Enthalpy [23], and Galois(4) [24]
schemes.

Table 2 Results on lincRNA Donor Data
a I II III IV V

TP 7.7 9.0 8.5 11.2 0.0

FP 2.1 2.7 2.8 4.5 0.0

FN 6.7 5.4 5.9 3.2 14.4

TN 83.5 82.9 82.8 81.1 85.6

b I II III IV V

Sn 53.2 62.5 58.8 78.1 0.0

Sp 97.6 96.9 96.7 94.8 100.0*

Acc 91.2 91.9 91.2 92.4 85.6

Mcc 60.1 64.9 61.5 70.2 –

Ppv 78.6 77.1 75.0 71.5 –

Pc 46.5 52.7 49.1 59.5 0.0

F1 63.5 69.0 65.9 74.6 0.0

I: DAX, II: EIIP, III: Complimentary, IV: Enthalpy, V: Galois
Panel a : the measurement of methods
Panel b : the evaluation of methods
*: Not eligible for comparison due to training failure
–: Invalid value
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Fig. 4 Comparison between Support Vector Machine and Deep Learning on lincRNA Acceptor Data Set

Algorithm Implementation and Validation
The auto-encoder algorithm for lincRNA detection is
implemented on open source Python libraries, Theano
and Keras. The training and validation data sets includ-
ing the known lincRNA data are collected from UCSC
Genome Browser database. The existing methods, including
NNSplice [25] and Libsvm [26], are used for validat-
ing the proposed deep learning method by the compar-
isons with traditional Neural Network and Support Vector
Machine.

According to the latest findings [4], totally 46,983
lincRNA sequences containing 90 nucleotides and
89,287 lincRNA sequences containing 15 nucleotides are
extracted and collected as transcriptional sites, Acceptors
and Donors respectively, including 5,000 sequences as
validation in each data set. Based on the auto-encoder
algorithm, a 2-layer neural network is constructed
for the experiments. Five aforementioned encoding
schemes are used for comparing and acquiring the best
performance.

Results
Tables 1 and 2 respectively show the comparison results
for the two data sets. It shows that 100% predictive rate of
deep neural network method with complementary encod-
ing scheme on the acceptor data, meaning that comple-
mentary scheme has the strong ability on more-feature
data sets. Similar performances among all encoding
schemes show the similar ability on less-feature data set.

Moreover, we compare the deep learning method with
Support Vector Machine (SVM) using the same data sets.
SVM software is tested on the latest version of libsvm [26].
Figures 4 and 5 show the comparative results that auto-
encoder based deep learning method has an extraordinary
ability over conventional SVM method. On the data set
with more features in Fig. 4, the deep learning method
shows the large superiority over SVM while their perfor-
mances are very close on the data set with less features in
Fig. 5.

In addition, a comparison between the deep learning
method and the traditional neural network (NN) based

Fig. 5 Comparison between Support Vector Machine and Deep Learning on lincRNA Donor Data Set
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Fig. 6 Comparison between Conventional Neural Network Method and Deep Learning Method on lincRNA Acceptor Data Set

method [25] is also conducted. Figures 6 and 7 show that
DL outperforms the conventional NN based method for
detection of transcriptional sites using lincRNA data sets.
Similarly, on the data set with more features in Fig. 6, the
deep learning method distinguishes itself from the NN
based method while their performances are very close on
the data set with less features in Fig. 7. It means that
various methods have the similar performance on han-
dling the less-feature data set while deep learning can have
a large superiority over others on processing the more-
feature data set. Such experimental results also manifest
that deep learning based method can have better perfor-
mance than other conventional methods for prediction
of lincRNAs on DNA sequence data. The reason that
we separate the comparison between SVM-DL group and
NN-DL group is that the SVM tool we use for the exper-
iment can accept all encoding schemes as its input while
the NN-based web tool accepts only the DNA sequence as
its input.

Figure 8 shows an unreported splicing site is found
by re-scanning the whole human genome through the
deep learning method, which is located at 90,763,154
chromosome 12 (hg38) within the annotated lin-
cRNA chr12_90761911_90806776. This result is based
on the aforementioned deep learning method that
was tested with 100% accuracy on acceptor data
set.

Discussion
Although a deep learning based method has been illus-
trated for lincRNA detection, distinguishing the coding
and non-coding transcription is still an open problem
because the transcribed regions have the similar struc-
tures of exon and intron in both coding and non-coding
regions. Practically, it is hard to find an effective way to
differentiate the two types of transcripts. Thus, the inter-
genic regions have to be selected and the pre-processing
is necessary for detection, which is the downside of our

Fig. 7 Comparison between Conventional Neural Network Method and Deep Learning Method on lincRNA Donor Data Set
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Fig. 8 An Unidentified lincRNA Acceptor Site

method and partially limits the use of the proposed deep
learning based method.

In addition, the development of deep learning method
for lincRNA detection is still on preliminary stage and the
prototype of the auto-encoder based method has more
spaces to improve. For example, function modules need to
be uniformed and parameters in the work flow have to be
optimized.

Conclusion
RNA-seq technologies generate a large volume of tran-
scriptional data that scientists can utilize for lincRNA
annotation. Derived from the observations from the
newly found lincRNA data set, two evidences can pro-
vide the reasoning for adopting knowledge-based deep
learning methods in lincRNA detection: (1) the expres-
sion of lincRNAs appears to be regulated, indicating
that the relevance exists along the DNA sequences; (2)
lincRNAs contain some conversed patterns/motifs teth-
ered together by non-conserved regions [9]. In this
project, a knowledge-based discovery method using the
emerging deep learning technology for lincRNA detec-
tion is proposed and developed on DNA genome analy-
sis. It takes advantage of the latest findings of lincRNA
data set and aims to utilize the cutting-edge knowledge-
based method, namely auto-encoder algorithm, in order
to extract the features of lincRNA transcription sites

in a more accurate way than conventional methods.
The results show its superiority over the support vec-
tor machine and the conventional neural network based
method.

In the future, developing a generic framework based on
deep learning for lincRNA prediction will be focused on,
which can provide an uniform platform for user inter-
faces. Meanwhile, the studies on lincRNA detection will
be carried out on other species such as mouse and other
mammals.
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