
Rueden et al. BMC Bioinformatics (2017) 18:529
DOI 10.1186/s12859-017-1934-z

SOFTWARE Open Access

ImageJ2: ImageJ for the next generation
of scientific image data
Curtis T. Rueden1, Johannes Schindelin1,2, Mark C. Hiner1, Barry E. DeZonia1, Alison E. Walter1,2,
Ellen T. Arena1,2 and Kevin W. Eliceiri1,2*

Abstract

Background: ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to
its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from
non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors
has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user
base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software
engineering effort to support emerging imaging paradigms, to ensure the software’s ability to handle the
requirements of modern science.

Results: We rewrote the entire ImageJ codebase, engineering a redesigned plugin mechanism intended to facilitate
extensibility at every level, with the goal of creating a more powerful tool that continues to serve the existing
community while addressing a wider range of scientific requirements. This next-generation ImageJ, called “ImageJ2”
in places where the distinction matters, provides a host of new functionality. It separates concerns, fully decoupling
the data model from the user interface. It emphasizes integration with external applications to maximize
interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to
visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional
datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes,
backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic
ImageJ interface, allowing users and developers to migrate to these new methods at their own pace.

Conclusions: Scientific imaging benefits from open-source programs that advance new method development and
deployment to a diverse audience. ImageJ has continuously evolved with this idea in mind; however, new and
emerging scientific requirements have posed corresponding challenges for ImageJ’s development. The described
improvements provide a framework engineered for flexibility, intended to support these requirements as well as
accommodate future needs. Future efforts will focus on implementing new algorithms in this framework and
expanding collaborations with other popular scientific software suites.

Keywords: ImageJ, ImageJ2, Image processing, N-dimensional, Interoperability, Extensibility, Reproducibility, Open
source, Open development

*Correspondence: eliceiri@wisc.edu
1Laboratory for Optical and Computational Instrumentation, University of
Wisconsin at Madison, Madison, Wisconsin, USA
2Morgridge Institute for Research, Madison, Wisconsin, USA

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1934-z&domain=pdf
http://orcid.org/0000-0001-8678-670X
mailto: eliceiri@wisc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 2 of 26

Background
ImageJ [1] is a powerful, oft-referenced platform for image
processing, developed by Wayne Rasband at the National
Institutes of Health (NIH). Since its initial release in 1997,
ImageJ has proven paramount in many scientific endeav-
ors and projects, particularly those within the life sciences
[2]. Over the past twenty years, the program has evolved
far beyond its originally intended scope. After such an
extended period of sustained growth, any software project
benefits from a subsequent period of scrutiny and refac-
toring; ImageJ is no exception. Such restructuring helps
the program to remain accessible to newcomers, pow-
erful enough for experts, and relevant to the demands
of its ever-growing community. As such, we have devel-
oped ImageJ2: a total redesign of the previous incarnation
(hereafter “ImageJ 1.x”), which builds on the original’s
successful qualities while improving its core architecture
to encompass the scientific demands of the decades to
come. Key motivations for the development of ImageJ2
include:

1. Supporting the next generation of image data.
Over time, the infrastructure of image acquisition
has grown in sophistication and complexity. For
example, in the field of microscopy we were once
limited to single image planes. However, with
modern techniques we can record much more
information: physical location in time and space
(X, Y, Z, time), lifetime histograms across a range of
spectral emission channels, polarization state of light,
phase and frequency, angles of rotation (e.g., in light
sheet fluorescence microscopy), and
high-throughput screens, just to name a few. The
ImageJ infrastructure needed improvement to work
effectively with these new modes of image data.

2. Enabling new software collaborations. The field of
software engineering has seen an explosion of
available development tools and infrastructure, and it
is no longer realistic to expect a single standalone
application to remain universally relevant. We
wanted to improve ImageJ’s modularity to facilitate
its use as a software library, the creation of additional
user interfaces, and integration and interoperability
with external software suites.

3. Broadening the ImageJ community. Though
initially developed for the life sciences, ImageJ is used
in various other scientific disciplines as well. It has
the potential to be a powerful tool for any field that
benefits from image visualization, processing, and
analysis: earth sciences, astronomy, fluid dynamics,
computer vision, signal processing, etc. We wanted
to enhance ImageJ’s impact in the greater scientific
community by adopting software engineering best
practices, generalizing the codebase, and providing

unified, comprehensive, consistently structured,
community-editable online resources.

From these motivations emerge the six pillars of the
ImageJ2 mission statement:

• Design the next generation of ImageJ, driven by the
needs of the community.

• Collaborate across organizations, fostering open
development through sharing and reuse.

• Broaden ImageJ’s usefulness and relevance across
many disciplines of the scientific community.

• Maintain backwards compatibility with existing
ImageJ functionality.

• Unify online resources to a central location for the
ImageJ community.

• Lead ImageJ development with a clear vision.

It is important to stress that this mission is, and always
will be, informed by pragmatism. For instance, much of
ImageJ’s existing user community is centered in the bio-
sciences and related life science fields, and the core ImageJ
developers and contributors are part of bioimaging lab-
oratories as principal investigators, staff, students, con-
sultants, etc. [3]. As such, ImageJ’s current development
directions tend toward addressing problems in bioimag-
ing. However, most image processing algorithms are gen-
erally applicable, and there are users of ImageJ in other
scientific fields as well. Hence, we wish to avoid pigeon-
holing the software as a tool for bioimage analysis only,
which would implicitly preclude it from being adopted
for other purposes. One of our explicit goals is to exploit
commonality across scientific disciplines, leaving the door
open for others to collaborate and improve ImageJ in cases
where doing so is useful.

Why ImageJ?
Any time a development effort of this scale is undertaken
on an existing tool, it is worth evaluating its impact and
the decision to invest such resources. The bioimage infor-
matics field [4] is fortunate to have a wide range of soft-
ware tools available in both commercial and open source
arenas [5]. Open-source tools are especially important
in science due to their transparency and inherent abil-
ity for sharing and extensibility [6]. This need and ability
for method sharing has resulted in a plethora of open-
source solutions in bioimage informatics, ranging from
image acquisition tools such asμManager [7, 8]; databases
such as Bio-Image Semantic Query User Environment
(BisQue) [9] and OME Remote Objects (OMERO) [10];
image analysis suites such as Icy [11] and BioImageXD
[12]; scientific workflow and pipeline tools such as Cell-
Profiler [13, 14], KoNstanz Information MinEr (KNIME)
[15, 16] and Pipeline Pilot [17]; and (3D) rendering appli-
cations such as FluoRender [18] and Vaa3D [19]. There

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 3 of 26

are many other open, bioimaging-oriented software pack-
ages besides these, including solutions written in powerful
scripting platforms such as R, Python andMATLAB.With
such an extensive array of tools, does it make sense to
invest in an updated ImageJ platform, rather than building
on some combination of more recent tools?
The ImageJ2 project aims to do both, by rearchitecting

ImageJ as a shared platform for integration and interoper-
ability across many bioimaging software packages. ImageJ
has a unique niche in that it is not a monolithic or single-
purpose application, but rather a platform for discovery
where the bench biologist can adapt and deploy new
image analysis methods. Historically, ImageJ 1.x has been
popular due to not only pre-designed tools developed for
a single purpose and regularly maintained and updated,
but also its powerful yet approachable plugin and macro
environments that have enabled hundreds of groups to
generate results through the development of thousands of
customized plugins and scripts [2, 20, 21]. It is this abil-
ity for sharing, and the desire to engage the professional
and amateur developer alike, that drove the development
for ImageJ2. The new version of ImageJ is a platform for
extensibility and cross-application cooperation, broaden-
ing the scope of ImageJ into a new effort called SciJava
[22]: a collaboration of projects striving to cooperate and
build on one another both socially and technically. It is
our intent that with the developments detailed in this
paper, the synergy between these tools, which include
ImageJ, KNIME, CellProfiler, OMERO and others, will
only increase as each tool continues to evolve along with
current avenues of scientific inquiry, benefiting not only
existing users, but new users and communities as well.
See Table 1 in the “Results and discussion” section for a
detailed breakdown of software that has been successfully
integrated with ImageJ.

Design goals
The central technical design goals of ImageJ2 can be
divided into seven key categories: functionality, extensibil-
ity, reproducibility, usability, performance, compatibility
and community. In this section, we discuss the goals of
ImageJ2 from its outset; for how these goals have beenmet
in practice, see the subsequent sections.

Functionality
The overriding principle of ImageJ2 is to create powerful
software, capable of meeting the expanding requirements
of an ever-more-complex landscape of scientific image
processing and analysis for the foreseeable future. As such,
ImageJ needs to be more than a desktop application: it
must be a modular, multi-layered set of functions with
each layer encapsulated and building upon lower layers.
In computer science terminology, ImageJ2 strives to have
a proper separation of concerns between data model and

display thereof, enabling use within a wide variety of sce-
narios, such as headless operation—i.e., running remotely
on a server, cluster or cloud without a graphical user
interface (UI).
At its core, ImageJ2 aims to provide robust support

for N-dimensional image data, to support domains with
dimensions beyond time and space. Examples include:
multispectral and hyperspectral images, fluorescence life-
time measured in the time or frequency domains, multi-
angle data from acquisition modalities such as light sheet
fluorescence microscopy, multi-position data from High
Content Screens, and experiments using polarized light.
In general, the design must be robust enough to express
any newly emerging modalities within its infrastructure.
Finally, it is not sufficient to provide a modular

framework—ImageJ2 must also provide built-in routines
as default behavior for standard tasks in image process-
ing and analysis. These core plugins must span a wealth of
algorithms for image processing and analysis, image visu-
alization, and image file import and export. Such built-in
features ensure users have an application they can apply
out-of-the-box.

Extensibility
According to a survey of ImageJ users, the greatest
strength of ImageJ is its extensibility [23]. From its incep-
tion [1], ImageJ 1.x has had a mechanism by which users
can develop their own plugins and macros to extend its
capabilities. Two decades later, a plethora of such plug-
ins and macros have been shared and published [20]. It
is paramount that ImageJ2 maintains this ease of mod-
ification and extension by its user community, and fur-
thermore leverages its improved separation of concerns
to actually make user extension easier and more power-
ful; e.g., if image processing plugins are agnostic to user
interface, new interfaces can be developed without a loss
of functionality.
A related preeminent concern is interoperability.

There is no silver bullet in image processing. No matter
how powerful ImageJ becomes or how many extensions
exist, there will always be powerful and useful alternative
tools available. Users benefit most when information can
easily be exchanged between such tools. One of ImageJ2’s
primary motivations is to enable usage of ImageJ code
from other applications and toolkits, and vice versa, and
to support open standards for data storage and exchange.

Reproducibility
For ImageJ to be truly useful to the scientific community,
it must be not only technically feasible to extend, but also
socially feasible, without legal obstacles or other restric-
tions preventing the free exchange of scientific ideas.
To that end, ImageJ must be not only open source, but
offer full reproducibility, following an open development

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 4 of 26

Table 1 ImageJ software integrations

Software Integration project Supporting technologies

Apache Groovy [37] SciJava Scripting: Groovy [101] -

BeanShell [102] SciJava Scripting: BeanShell [103] -

Bio-Formats [51] SCIFIO-Bio-Formats [104] SCIFIO-OME-XML [105]

Bio7 (R + ImageJ 1.x) [52] - Eclipse [106]

CellProfiler [13] ImageJ Server* [107] -

ImageJ 1.x [1] ImageJ Legacy [108] ImageJ 1.x Patcher [109], Javassist [47]

ITK [39] ImageJ-ITK [40] SimpleITK [110]

JavaScript [111] SciJava Scripting: JavaScript [112] Nashorn [113], Rhino [114]

Jupyter Notebook [115] SciJava Jupyter Kernel [116] BeakerX‡ [117]

KNIME [15] KNIME Image Processing [16] -

Kotlin [118] SciJava Scripting: Kotlin [119] -

Lisp (JVM) [120] SciJava Scripting: Clojure [121] Clojure [122]

MATLAB [123] SciJava Scripting: MATLAB [124] matlabcontrol [125]

MATLAB ImageJ-MATLAB [38] SciJava Scripting: MATLAB

MiToBo§ [126] - Alida† [127]

OMERO [10] ImageJ-OMERO [41] -

OpenCV¶ [86] IJ-OpenCV [128] JavaCV [129]

Python (CPython or JVM) [130] imglib2-imglyb [131] pyJNIus [132], Jython [133], JyNI [134]

Python (CPython) imagey [135] imglib2-imglyb

Python (CPython) SciJava Scripting: CPython [136] javabridge [137]

Python (JVM) SciJava Scripting: Jython [138] Jython, JyNI

R (JVM) [139] SciJava Scripting: Renjin [140] Renjin [141]

REST‖ [142] ImageJ Server* [107] Dropwizard [143]

Ruby (JVM) [144] SciJava Scripting: JRuby [145] Ruby [144]

Scala [146] SciJava Scripting: Scala [147] -

TensorFlow [148] ImageJ-TensorFlow [149] -

* Provides cross-language interprocess integration with JavaScript, Python and others.
† Advanced Library for Integrated Development of data analysis Applications (Alida).
‡ Beaker Extensions for Jupyter (BeakerX).
§Microscopy image analysis ToolBox (MiToBo).
¶ Open source Computer Vision library (OpenCV).
‖ REpresentational State Transfer (REST)

process which we believe is an optimal fit for open sci-
entific inquiry [24]. We want to enable the community
to not just use ImageJ, but also to build upon it, with
all project resources—revision history, project roadmap,
community contribution process, etc.—publicly accessi-
ble, and development discussions taking place in public,
archived communication channels so that interested par-
ties can remain informed of and contribute to the project’s
future directions. Such transparency also facilitates sen-
sible, defensible software development processes and fos-
ters responsibility amongst those involved in the ImageJ
project. In particular, the project must be well covered
by automated tests, to validate that it produces consistent
results on reference data sets.

Usability
Modular systems composed of many components often
have a corresponding increase in conceptual complexity,
making them harder to understand and use. To avoid this
pitfall, ImageJ2 employs the idea of complexity minimiza-
tion: seeking sensible defaults that make simple things
easy, but difficult things still possible. The lowest-level
software layers should define the program’s full power,
while each subsequent layer reduces visible complexity by
choosing default parameters suitable for common tasks.
The highest levels should provide users with the simplic-
ity of a “big green button,” performing themost commonly
desired tasks with ease—the powerful inner machinery
remaining unseen, yet accessible when needed.

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 5 of 26

To bridge the gap between extensibility and usabil-
ity, there must be a painless process of installing new
functionality: a built-in, configurable automatic update
mechanism to manage extensions and keep the soft-
ware up-to-date. This update mechanismmust be scalable
and distributed, such that software developers can pub-
lish their own extensions on their own websites, without
needing to obtain permission from a central authority.

Performance
N-dimensional images and the ever-expanding size of
datasets increase the computation requirements placed
on analysis routines. For ImageJ2 to succeed, it must
accomplish its goals without negatively impacting perfor-
mance efficiency in time—e.g., Central Processing Unit
(CPU) and Graphics Processing Unit (GPU)—or space—
e.g., Random-Access Memory (RAM) and disk. Further-
more, to ensure ImageJ2 meets performance needs for a
wide variety of use cases, it should offer choices surround-
ing usage of available resources, as well as sensible defaults
for balancing performance in common scenarios.
Another key consideration for performance is scalabil-

ity: ImageJ must be capable of operating on increasingly
huge datasets. In cloud computing, this requirement is
often met via elasticity: the ability to transparently pro-
vision additional computing resources—i.e., throw more
computers at the problem [25]. We are at the dawn of
the “Big Data” era of computing, where both computation
and storage are scalable resources which can be purchased
from remote server farms. Software like ImageJ which
hopes to remain effective for serious scientific inquiry into
the coming decades must be architected so that its algo-
rithms scale well to increasingly large data processed in
parallel across increasingly large numbers of CPU and
GPU cores.

Compatibility
There are a vast number of existing extensions—plugins,
macros, and scripts—for the original ImageJ 1.x appli-
cation which have proven extremely useful to the user
community [20]. ImageJ2 must continue to support these
extensions as faithfully as possible, while also providing a
clear incremental migration path to take advantage of the
new framework.

Community
The principal non-technical goal of ImageJ2 is to serve
the ImageJ community as it evolves and grows; to that
end, several community-oriented technical goals natu-
rally follow. The ImageJ project must provide unified
online resources including a central community-editable
website, discussion forum, and online technical resources
for managing community extensions of ImageJ. And the
ImageJ application itself must work in concert with these
resources—e.g., users should be able to report bugs

directly to online issue tracking systems when something
goes wrong.

Implementation
Broadly speaking, ImageJ2 components are classified into
one of four domains:

• SciJava. The most fundamental layers of ImageJ2 are
independent from image processing, but rather
provide needed functionality common to many
applications. On a technical level, the SciJava core
components are a set of standard Java libraries for
managing extensible applications. Socially, the
SciJava initiative is a pledge among cooperating
organizations to work together, reuse code, and
synergize wherever possible [26].

• ImgLib2. To ensure generality of image analysis,
ImageJ2 is built on the flexible ImgLib2 container
model [27]. Decoupling the elements of image
representation, ImgLib2 components enable general
image processing algorithms to be reused, regardless
of image type, source, or organization.

• SCientific Image Format Input and Output
(SCIFIO). SCIFIO components define standards for
reading, writing, and translating between image
formats [28]. These libraries ensure a broad spectrum
of image data can be interpreted in a consistent
manner across all SciJava applications.

• ImageJ. Low-level components establish image
metadata and algorithm patterns, built on the SciJava
and ImgLib2 layers. High-level components focus on
“end user” tools for working with image data, and
include user interfaces, user-facing commands, and
the top-level ImageJ application [29].

These layers, taken as a whole, form the ImageJ soft-
ware stack [30], the core set of components upon which
ImageJ-based applications are built.
Each domain is itself divided into many individual

libraries, each of which targets a particular function. This
separation of concerns provides a logical organization
which allows targeted reuse and extension of any given
functionality of interest.
The following sections describe, in order from low-

est to highest level, the essential backbone libraries of
ImageJ2. Note that this is not an exhaustive list of compo-
nents, as many components across these domains provide
secondary functions—e.g.: script languages, build man-
agement, UI elements, or targeted implementations of
specific features.

SciJava common
The ground floor of the ImageJ software stack is the
SciJava Common library [31], providing the core frame-
work for creating extensible applications. The heart of

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 6 of 26

SciJava Common is its application container, the
Context class. Each Context encapsulates runtime
application state: available extensions, open images and
documents, user settings, etc. The application con-
tainer paradigm allows multiple independently config-
ured instances of SciJava applications to run concurrently
within the same Java Virtual Machine (JVM).

Service framework
The application container consists of a collection of ser-
vices, which are initialized dynamically at runtime. These
services provide methods which operate on the system in
various ways, such as opening data, manipulating images,
or displaying user interface elements on screen. Taken as
a whole, these service methods constitute the bulk of the
Application Programming Interface (API) of ImageJ. Soft-
ware developers are free to extend the system with new,
needed services and/or override any aspect of behavior
provided by existing services. This approach is in con-
trast to the most common naive design of many software
projects, which use global “static” state and functions,
whose behavior is difficult or impossible to override or
enhance in downstream code.
The SciJava Common library itself provides the most

fundamental of these services, such as:

• A plugin service, which dynamically discovers
available plugins using an index generated at compile
time by a Java annotation processor. This plugin
index is used to bootstrap the application context,
since services are themselves a type of plugin.

• An event service, which provides a hierarchical
publish/subscribe model for event handling.

• A log service, for environment-agnostic data logging.
• An object service, which keeps a central typed index

of available objects.
• A thread service, which manages a thread pool and

dispatch thread(s) for code execution.
• An Input/Output (I/O) service, for reading and

writing of data.
• A preference service, for saving and restoring

user-specific preferences.

In principle, SciJava Common is similar to frameworks
such as Spring [32], offering standard software engineer-
ing patterns such as dependency injection (DI) [33] and
inversion of control (IoC) [34], but tailored to the needs of
collaborative scientific projects like ImageJ. For example,
SciJava Common provides a generalized I/O mechanism
for opening data from any source, but the library itself has
no specific knowledge of how to open eXtensible Markup
Language (XML) documents, microscopy image formats,
or spreadsheets of numerical results—such functionality
is provided by downstream components as SciJava plugins
(see next section).

Plugin framework
SciJava Common provides a unified mechanism for defin-
ing plugins: extensions which add new features or behav-
ior to the software, and/or modify existing behavior.
Plugins are discovered by the system at runtime, and
ordered according to assigned priorities and types, form-
ing type hierarchies: structural trees that define how each
individual plugin fits into the system. The typical pattern
for a desired sort of functionality is to define a dedicated
plugin type, then implement plugins that fulfill that opera-
tion in various ways. SciJava Common is designed to make
virtually any aspect of an application extensible. Some of
the most critical plugin categories and types include:

Core extensibility

• Service – A collection of related functionality,
expressed as an API. SciJava services are singletons
with respect to each application context. For
example, each instance of ImageJ2 has exactly one
AnimationService responsible for managing
animations, with methods to start and stop
animations, select the dimension over which to
animate, adjust frame rate, and other options. Note
that while the behavior of services can certainly be
modified by extensions, doing so is primarily the
domain of advanced developers looking to radically
alter behavior of the system.

• IOPlugin – A plugin that reads data from and/or
writes data to a location, such as a file on disk. For
example, the SciJava layer provides I/O plugins for
common text formats such as Markdown [35], while
the SCIFIO layer provides an I/O plugin for image
formats.

Modules

• Command – An operation, more generally known as
a SciJavamodule, with typed inputs and outputs.
These modules typically appear in the menu system
of the application’s user interface, but can be exposed
via interoperability mechanisms in many other ways,
such as nodes in KNIME or modules in CellProfiler
[13]. When ImageJ users talk about “writing a plugin”
they usually mean a Command. See “Module
framework” below for more on SciJava modules.

• ScriptLanguage – A programming language for
SciJava scripts. Each script language plugin provides
the logic necessary to execute scripts written in that
language (e.g., JavaScript or Python) as SciJava
modules with typed inputs and outputs, in a similar
way to commands. It also makes it possible to express
operations as code snippets that can be reused in
scripts to repeat those operations.

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 7 of 26

• Converter – A plugin which transforms data from
one type of object to a different type of object.
Converters greatly extend the concept of type
conversion from what Java provides out of the box to
provide automatic conversion in a wide and
extensible set of circumstances. For example, it
becomes possible for an algorithm to accept a string
in place of a floating point numerical value, as long as
that string can be parsed to such a value—or to
transparently convert between
normally-incompatible image data structures from
different image processing ecosystems.

• ModulePreprocessor – A “meta-module” which
prepares modules to run. For example, the
LoadInputsPreprocessor populates a
module’s inputs with the last-used values as defaults,
which can save the user a lot of time. Preprocessor
plugins are executed in priority order as part of the
module “preprocessing chain” before the module is
actually executed.

• ModulePostprocessor – A “meta-module”
which does something with a module after it has run.
For example, the DisplayPostprocessor takes
care of displaying the outputs of a module after it has
completed execution. Postprocessor plugins are
executed in priority order as part of the module
“postprocessing chain” after the module is actually
executed.

User interface

• UserInterface – A plugin providing an
application UI. These plugins include functionality
for creating and showing windows and dialogs.
ImageJ2 includes a user interface written in Java’s
Swing toolkit which is modeled closely after the
ImageJ 1.x design, as well as a UserInterface
plugin that wraps ImageJ 1.x itself. But other UIs are
equally possible; since a UI is simply a type of plugin,
anyone can develop their own SciJava UI without any
code changes to the core system. The system is even
flexible enough to display multiple UIs
simultaneously.

• Platform – A plugin which enables customization
of behavior based on machine-specific criteria, such
as specific flavor of operating system or Java
language, including type, architecture, or version. For
example, on Macintosh Operating System (macOS),
the menu bar appears at the top of the screen, with
the About, Preferences, and Quit commands
relocated to the Application menu.

• InputWidget – A user interface element for
harvesting typed inputs. Typically, these widgets are
presented as part of a form in a dialog box which

prompts the user to fill in input values of a module. In
principle, the widgets can be used for anything
requiring typed input from the user. For example, a
FileWidget allows the user to select a file
(java.io.File) on disk, while a ToggleWidget
provides a boolean toggle (typically rendered as a
checkbox). The SciJava layer provides UI-agnostic
interfaces to the common widget types, along with
widget implementations corresponding to each
supported UserInterface plugin. However, an
extension to the system can not only implement its
own data structure classes which it uses as inputs to
its modules; it can also provide corresponding widgets
for those structures, allowing the user to populate
them from the user interface in innovative ways.

• Display – A plugin for visualizing data. For
example, an ImageJ2 ImageDisplay can show
two-dimensional planes of N-dimensional image data
in a window with sliders for controlling which plane
is visible. However, the framework imposes no limits
on the sorts of objects that can be visualized; other
examples include the TextDisplay, which shows
strings, and the TableDisplay, which shows
tabular data as a spreadsheet. These plugins are typically
used to display amodule’s typed outputs (i.e., its results).

• Tool – A collection of rules binding user input (e.g.,
keyboard and mouse events) to display and data
manipulation actions. For example, ImageJ2’s
PanTool pans a display when the mouse is dragged
or arrow key is pressed; the PencilTool draws
hard lines on the data within an image display. Many
user interfaces render them as icons in the
application toolbar.

• ConsoleArgument – A plugin that handles
arguments passed to the application as command line
parameters. This plugin type makes the application’s
command line parameter handling extensible—a
feature especially important for headless operation
sans user interface.

This encapsulation of functionality, coupled with a plu-
gin prioritizationmechanic, allows SciJava-based software
to be fully customized or extended at any point. An appli-
cation such as ImageJ is then simply a collection of plugins
and services built on top of the SciJava Common frame-
work. For instance, the ImageJ Common [36] compo-
nent introduces new services specifically for opening and
displaying images, specializing the functions defined in
the lower-level components. Assigning these specialized
functions a higher plugin priority creates a natural, flex-
ible ordering of operations. Given that everything from
user interfaces to file formats uses the SciJava plugin
mechanism, the path for overriding any behavior is clear
and consistent.

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 8 of 26

Finally, to keep the plugin development process as sim-
ple as possible, great care is taken throughout the code-
base to adhere to interface-driven design with default
method implementations whenever possible. This strat-
egy minimizes the amount of code developers are respon-
sible for writing, lowering the barrier to entry for creating
and modifying plugins.
Module framework
To successfully interoperate with other scientific software,
ImageJ algorithms must be decoupled from the various
user interfaces and applications which might want to
expose them to end users.
The key concept SciJava employs is that of parame-

terized modules: executable routines with declared input
and output parameters of specific types. These modules
can take the form of Command plugins or be expressed
as scripts written in any supported scripting language
(via available ScriptLanguage plugins; see “Plugin
framework” above). For example, a user might write the
following parameterized Groovy [37] script:

#@INPUT String name

#@INPUT int age

#@OUTPUT String greeting greeting =

"Hello, " + name + ". You are " + age + "

years old."

This script accepts two parameters as input—a name
and an age—and outputs a greeting based on the input
values. Note the typing: the name can be any string of
characters, but the age must be an integer value; the
greeting is also a string of characters. Note also that
this script makes no assumptions about user interface;
it is the responsibility of the framework to: A) prompt
the user for the input values in the most appropriate
way, B) execute the module code itself, and finally, C)
process and/or display the output values in the most
appropriate way.
As such, this scheme has great potential for reuse across

a wide variety of contexts. For example, when running
the above script from the ImageJ user interface, a Swing
dialog box will pop up allowing the user to enter the
name and age values; and after OK is pressed, the greet-
ing will be displayed in a new window. However, when
running the script headless from the command line inter-
face, the input values can be passed as command line
arguments and the output values echoed to the standard
output stream. See Additional file 1: Figure S1 for an illus-
tration. Since many computational tools have this concept
of parameterized modules, SciJava developers need only
create some general adapter code to integrate the SciJava
module framework with a given tool—and then all SciJava
modules become automatically available within that tool’s
paradigm. We have already implemented such integration
for several other tools in the SciJava ecosystem, including

CellProfiler, KNIME [16], and the OMERO image server
[10].
SciJava Common has an important mechanism

which facilitates the extensible and configurable exe-
cution of modules: module pre- and post-processing.
Developers can write ModulePreprocessor and
ModulePostprocessor plugins to extend what
happens when a module is executed (see “Plugin
framework” above). Moreover, there are also two plu-
gin types built on this module processing mechanism
which make it easy to customize and extend how
modules behave:

1. The process of collecting module inputs is known as
input harvesting. The InputWidget plugin type
lets developers create widgets to harvest specific
types of inputs from the user. In particular, the
SciJava project provides Swing widgets for several
data types (Additional file 1: Table S1).
Some inputs are also automatically populated via
ModulePreprocessor code. For example, when
a single image parameter is declared, an “active image
preprocessor” detects the situation, populating the
value with the currently active image. In this way, the
user does not have to explicitly select an image upon
which to operate in the common case, but the
module still has semantic knowledge that an image is
one of the routine’s input parameters.

2. The process of dealing with outputs after a module
executes is known as displaying. The Display
plugin type lets developers visualize specific types of
outputs in appropriate ways. The SciJava layer
provides a basic display plugin for text outputs,
which shows the text in a dedicated window, while
the ImageJ layer provides additional similar display
plugins for image and tabular data.

One final SciJava subsystem of note is the conversion
framework, which provides a general way of transforming
data from one type to another. The Converter plugin
type lets developers extend SciJava’s conversion capabil-
ities, allowing objects of one type to be used as module
inputs of a different type, in cases where the two types are
conceptually analogous. For example, data stored in mem-
ory as a MATrix LABoratory (MATLAB) matrix can be
expressed as an ImageJ image object, even though MAT-
LAB matrices are not natively ImageJ images [38]. When
a suitable converter plugin is present, modules capable of
operating only on MATLAB matrices become transpar-
ently capable of accepting ImageJ images as inputs, thanks
to the framework’s auto-conversion. Similarly, a converter
between ImageJ and the Insight ToolKit (ITK) [39] images
greatly streamlines use of ITK-based algorithms within
ImageJ [40].

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 9 of 26

ImageJ common
Meeting the needs of contemporary scientific image
analysis requires a flexible and extensible data model,
including support for arbitrary dimensions, data types and
image sizes. To this end, we have chosen tomodel ImageJ2
images using the ImgLib2 library, which itself provides an
extensible, interface-driven design that supports numeric
(8-bit unsigned integer, 32-bit floating point, etc.) and
non-numeric data types. It also provides great flexibility
regarding the source and structure of data. Out of the box,
ImgLib2 provides several data sources and sample orga-
nizations, including use of a single primitive array (“array
image”), one array per plane (“planar image”), and block-
based “cell image.” However, the library remains general
enough that alternative structures are also feasible. To
quote the ImgLib2 article [27]:

The core paradigm [of ImgLib2] is a clean separation of
pixel algebra (how sample values are manipulated),
data access (how sample coordinates are traversed),
and data representation (how the samples are stored,
laid out in memory, or paged to disc). ImgLib2 relies on
virtual access to both sample values and coordinates,
facilitating parallelizability and extensibility.

ImageJ Common provides a unification of the type and
storage-independence of ImgLib2 with the SciJava Com-
mon plugin framework (described above). A Dataset
interface provides the fundamental representation of
ImageJ images, collections of images, and corresponding
metadata: (ROIs), visualization settings, sample coordi-
nates and physical calibrations, and much more. Also
provided are plugins and services for working with these
Dataset objects. Together, these classes form the access
points for higher-level components to open, save, generate
and process these images.
Note that as of this writing, elements of the ImageJ

Common data model and corresponding services are still
stabilizing. As such, we do not describe these structures in
technical detail here.

SCIFIO
An essential goal of ImageJ2 is to establish universal
image analysis routines, with no limits on application;
however, the proliferation of proprietary image formats
from scientific instruments creates a major obstacle to
this ambition. To overcome this issue, the SCIFIO core
library establishes a common framework for reading, writ-
ing and translating image data to and from the ImageJ
Common data model, as well as between domain-specific
standard metadata models. SCIFIO builds on the services
provided in SciJava Common and ImageJ Common, defin-
ing image Format and metadata Translator plugin
types to encapsulate the operations necessary to take an
image source and standardize it as an ImageJ Dataset.

SCIFIO builds upon SciJava Common’s core I/O infras-
tructure, which allows it to operate on most data locations
independent of their nature. SciJava Common provides
a Location interface which acts as a data descrip-
tor, similar to a Uniform Resource Identifier (URI).
This Location interface is specialized according to the
nature of the data; for example, a URLLocation iden-
tifies data served by a remote Uniform Resource Locator
(URL), while an OMEROLocation (part of the ImageJ-
OMERO integration [41]) identifies an image from an
OMERO server. For data locations whose raw bytes can
be accessed randomly and/or sequentially (e.g., remote
URLs, but not OMERO images), SciJava Common pro-
vides a DataHandle plugin type which enables such
access. The core library provides DataHandle plug-
ins for several kinds of data locations, including files on
disk, remote URLs, and arrays of bytes in local computer
memory. Developers can easily create new DataHandle
plugins which provide random access into additional sorts
of locations, and SCIFIO will be able to use them trans-
parently without any changes to existing Format or
Translator plugins.
The Format plugin API is architected to support read-

ing and writing of image data in chunks, which provides
scalability. It is no longer necessary to have a large quan-
tity of computer RAM towork with large images—SCIFIO
reads the data from the source location on demand, pag-
ing it into and out of memory as needed. SCIFIO’s caching
mechanism persists any changes made to image pixels,
even when chunks leave memory, by using temporary
storage on disk.
SCIFIO Translator plugins provide the means to

translate not only between image formats, but between
common metadata models of various scientific disci-
plines. For example, the Open Microscopy Environment
(OME) defines a data model called OME-XML [42],
for which the SCIFIO-OME-XML component provides
a suite of translators to and from ImageJ Common data
structures. In this way, SCIFIO has the potential to bridge
interoperability gaps across various discipline-specific sci-
entific software packages.
Further details about SCIFIO can be found in the

BioMed Central (BMC) Bioinformatics software article
“SCIFIO: an extensible framework to support scientific
image formats” [28].

ImageJ ops
ImageJ’s ultimate purpose is image processing and anal-
ysis. To that end, we have crafted the ImageJ Ops com-
ponent: ImageJ2’s shared, extensible library of reusable
image processing operations. As of version 0.33.0, the
core Ops library provides 788 Op plugins across nearly
350 types of ops in more than 20 namespaces, covering
functionality such as: image arithmetic, trigonometry,

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 10 of 26

Fourier transformations, deconvolution, global and local
thresholding, image statistics, image filtering, binary
morphological operations, type conversion, image trans-
formations (scaling, rotation, etc.)—even 2- and 3-
dimensional geometric operations such as marching
cubes 3D mesh generation (see Fig. 1 for examples). A
thorough treatment of available ops can be found in the
ImageJ Ops tutorial notebook [43].
ImageJ Ops was conceived with three major design

goals: 1) easy to use and extend; 2) powerful and gen-
eral; and 3) high performance. To achieve all three of
these goals, Ops utilizes a plugin-based design enabling
“extensible case logic.” Ops defines a new plugin type,
Op, each of which has a name and a list of typed
parameters, analogous to a function definition in most
programming languages. When invoking an op, callers
typically do not specify the exact Op plugin to use,

but instead specify the operation’s name and argu-
ments; the Ops framework then performs a matching
process, finding the optimal fit for the given request.
For example, calling math.add with a planar image
and a 64-bit floating point number leads to a match
of net.imagej.ops.math.ConstantToPlanar
Image.AddDouble, which adds a constant value to
each element of an image, whereas calling math.add
with two planar images results in a match of
net.imagej.ops.math.IIToIIOutputII.Add,
which adds two images element-wise.
This scheme is similar to—butmore powerful than—the

method overloading capabilities of many programming
languages: op behavior can be further specialized by tai-
loring Op implementations for specific subclasses, generic
parameters, and Converter substitutions (see “SciJava
Common” above). Consider an op sqrt(image), which

Fig. 1 Examples of image processing algorithms available in ImageJ Ops. Panel a (top left): 3D wireframe mesh of ImageJ’s Bat Cochlea Volume
sample dataset [94], computed by the geom.marchingCubes op, an implementation of the marching cubes algorithm [95], visualized using
MeshLab [96]. Credit to Kyle Harrington for the figure, Tim-Oliver Buchholz for authoring the op, and Art Keating for the dataset. Panel b (top right):
Richardson-Lucy Total Variation deconvolution [97] of the Stellaris FISH dataset #1 [98], computed by the deconvolve.richardsonLucyTV
op. Credit to Brian Northan for authoring the op and figure [99], and George McNamara for the dataset. Panel c (bottom): Grayscale morphology and
neighborhood filter operations on Fiji’s New Lenna sample image, using a diamond-shaped structuring element with radius 3. Credit to Jean-Yves
Tinevez, Jonathan Hale and Leon Yang for authoring the ops

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 11 of 26

computes the element-wise square root of an image. If we
implement this op as sqrt(Dataset), we miss out on
performance optimizations for ArrayImg, an ImgLib2
container type where the entire collection of image sam-
ples is stored in a single Java primitive array. However, if
we only implement sqrt(ArrayImg), we are restricted
in supported data types, since not all images can be
stored in such a manner. The power of the Ops matching
approach is that both of these andmore can coexist simul-
taneously and extensibly, and the most specific will always
be selected at runtime.
Furthermore, as algorithm implementations increas-

ingly become available for the GPU via libraries such as
Open Computing Language (OpenCL) [44] and Nvidia’s
Compute Unified Device Architecture (CUDA) [45], as
well as for clusters via libraries such as Apache Spark
[46], such implementations could also be expressed as ops
so that they can be selected automatically based on the
currently available hardware environment.
The Op plugin type extends SciJava’s Command, and

therefore all ops are SciJava parameterized modules,
usable anywhere SciJava modules are supported—see the
“Module framework” section in “SciJava common” above.
Like standard modules, an op declares typed inputs and
outputs. However, unlike modules in general, an op must
be a “pure function” with a fixed number of parameters
and no side effects; i.e., it must be deterministic in its
behavior, operating only on the given inputs, and populat-
ing or mutating only the given outputs. These restrictions
provide some very useful guarantees which allow the sys-
tem to reason about an op’s use and behavior; e.g., after
computing an op with particular arguments once, the
result can be cached to dramatically improve subsequent
time performance at the potential expense of additional
space. Properly constructed ops will also always be usable
headless because they do not rely on the existence of UI
elements.

Op chaining and special ops It is often the case in image
processing that an algorithm can be expressed as a com-
position of lower level algorithms. For example, a simple
difference of Gaussians (“DoG”) operation is merely two
Gaussian blur operations along with a subtraction:

dog(image, σ1, σ2) =
sub(gauss(image, σ1), gauss(image, σ2))

For users calling into the Ops framework via scripting,
the core library provides an eval op backed by SciJava’s
expression parser library, which enables executing such
sequences of ops via standard mathematical expressions,
including use of unary and infix binary operators.
For developers, the Ops library provides a mechanism

for efficient chaining of ops calls. An op may declare

other ops as inputs, resulting in a tree of ops which
are resolved when an op is matched; the matched op
instance can then be reused across any number of input
values. In this way, very general operations can be cre-
ated to address a broad range of use cases—e.g., the
map operation provides a unified way of executing an
op such as math.sqrt(number) element-wise on a
collection (e.g., an image) whose elements are num-
bers. Indeed, in the case of DoG, the Ops library’s
baseline implementation takes an image as input, along
with two filter.gauss ops and a math.sub op,
and then invokes them on the input image. The base-
line stats.mean implementation is similar, built on the
stats.sum, stats.size and math.div ops. Higher
level DoG ops provide sensible defaults, enabling calls
like dog(image, sigma1, sigma2) to work, mak-
ing common operations simple, while leaving the door
open for additional customization as needed.
To facilitate type-safe and efficient chaining of ops,

the Ops library has a subsystem known as special ops.
Such special ops are specifically intended to be called
repeatedly from other ops, without needing to invoke
the op matching algorithm every time. This repeat usage
is achieved in a type-safe and efficient way by explicitly
declaring the types of the op’s primary inputs—i.e., the
inputs whose values can be efficiently varied across invo-
cations of the op—as well as the type of the op’s primary
output.
Special ops have two major characteristics beyond reg-

ular ops. First, each special op has a declared arity, indi-
cating the number of primary inputs, which are explicitly
typed via Java generics and can thus efficiently vary across
invocations of the op. Three arities are currently imple-
mented: nullary for no inputs, unary for one input, and
binary for two inputs. It is important to note that unlike
a formal mathematical function, a unary special op may
have more than one input parameter—the “unary” in this
case refers to the number of explicitly typed parameters
intended to vary when calling an instance of the op mul-
tiple times. For instance, in the DoG example above, the
baseline DoG is declared as a unary op, so that the input
image can vary efficiently while the sigmas etc. are held
constant in value.
Secondly, every special op is one of three kinds:

• A function operates on inputs, producing outputs, in
a way consistent with the functional programming
paradigm. Inputs are immutable, and outputs are
generated during computation and subsequently also
immutable. Functions are very useful for parallel
processing since they are fully thread-safe even when
object references overlap—but this safety comes at
the expense of space, since they offer no way to reuse
preallocated output buffers.

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 12 of 26

• A computer is similar to a function, but populates a
preallocated output object instead of generating a
new object every time. Computers have many of the
same advantages of functions, but provide the ability
to reuse preallocated output buffers to improve
efficiency in space and time.

• An inplace op mutates its input(s) in place—i.e., its
input and output are the same object. Inplace ops are
highly space efficient, but lack the mathematical
guarantees of functions and computers, since they
destroy the original input data.

Some ops are implemented as hybrids, offering a
choice between two or more of the function, computer
and inplace computation mechanisms. Users of the ops
library—even advanced users—will rarely if ever need to
know about this implementation detail, but for devel-
opers crafting new ops, it is convenient to have uni-
fying interfaces which provide common logic for com-
bining these paradigms. See Additional file 1: Table
S2 for a complete breakdown of the special op kinds
and arities.

ImageJ legacy
To maximize backwards compatibility with ImageJ 1.x,
ImageJ2 must continue to provide access to the complete
existing UI and API with which ImageJ users are famil-
iar, while also making all new ImageJ2 features available
for exploration and use. Furthermore, to bridge the gap,
ImageJ2 must provide improved functionality transpar-
ently when possible, as well as support seamless “mixing
and matching” of the two respective APIs. In this way,
ImageJ2 can enable gradual migration to the more pow-
erful capabilities of ImageJ2, while empowering develop-
ers’ contributions to the framework to be immediately
effective. To achieve this goal, we identified the major
functional pathways of ImageJ 1.x and reworked them to
delegate first to ImageJ2 equivalents, falling back on the
old behavior if needed.
There are two ImageJ components dedicated to main-

taining backwards compatibility with ImageJ 1.x. The
lower level of the two is the IJ1-patcher: using a tool
called Javassist [47] to perform an advanced Java tech-
nique known as bytecode manipulation, ImageJ 1.x code
is modified at runtime to expose callback hooks at critical
locations—e.g.: when opening images with File � Open. . . ,
closing the ImageJ application, or displaying UI compo-
nents. These hooks are built using the SciJava plugin
infrastructure, allowing new behavior to be injected into
ImageJ 1.x despite the fact that it was not designed to
support such extensibility. In essence, ImageJ2 “rewrites”
portions of ImageJ 1.x at runtime to make integration pos-
sible. This approach is necessary because altering ImageJ
1.x directly to enable such hooks would break backwards
compatibility with existing macros and plugins, ruining

established scientific workflows which have otherwise
remained functional across many years.
By default, these hooks are exploited to inject ImageJ2

functionality in the second compatibility layer: ImageJ
Legacy. ImageJ2 intercepts an ImageJ 1.x request and
attempts to delegate to its own routines. For example, in
our implementation of the File � Open. . . hook, we use
the SciJava I/O service, which provides extensible sup-
port for data types via SciJava I/O plugins. This allows the
full power of SCIFIO to be called automatically by File �
Open. . . without requiring users to select individual loader
plugins. In this way, ImageJ2 exposes new “seams” which
provide extensibility points not available in the standalone
ImageJ 1.x project [48].
A second major function of ImageJ Legacy is to pro-

vide a wrapping legacy UI: an ImageJ2 UserInterface
plugin that reuses the ImageJ 1.x UI, but maintains
synchronization between respective data structures. For
example, consider the ImagePlus structure in ImageJ
1.x and its equivalent, the Dataset, in ImageJ2. By
default, an ImagePlus and Dataset could not be
interchanged; they have different Java class hierarchies,
and with ImageJ2’s expanded data model, a Dataset is
more expressive than an ImagePlus. However, requiring
plugins to “select one” would impose a technical bar-
rier, even if both structures are available in the same
application. Thus, the legacy UI notes when either an
ImagePlus or a Dataset is created and ensures a com-
plementary instance is mapped, via SciJava Converter
plugins. This brings the ImageJ 1.x and ImageJ2 worlds
closer together: when an image is opened, it can be
used by plugins that would take an ImagePlus or a
Dataset regardless of whether that image was opened
via an ImageJ 1.x or ImageJ2 mechanism. Furthermore,
because conversion is handled in the ImageJ Legacy
layer, individual plugins do not require knowledge of the
synchronization.
Shared image data structures are but one aspect of the

legacy UI’s synchronization. Others include logging, noti-
fication, and status events—essentially all UI events are
mapped across paradigms. Whenever possible, these con-
versions are achieved using an adapter class that imple-
ments a common interface (e.g., Dataset), which wraps
the object of interest (e.g., ImagePlus) by reference. This
approach enables information to be translated between
ImageJ 1.x and ImageJ2 structures on demand, while min-
imizing the performance impact. Wrapping by reference
also mitigates the burden of updates; once synchroniza-
tion is established, changes to the underlying object are
automatically reflected in the wrapper.

ImageJ updater
The ImageJ Updater is the mechanism by which the avail-
able and installed components of ImageJ are managed. At

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 13 of 26

its core, the Updater is a flexible component for tracking
ImageJ update sites: endpoints containing versioned col-
lections of files. Users can pick and choose which update
sites they wish to enable, with ImageJ’s core functionality
offered on the base “ImageJ” update site, which is on by
default. Distributions of ImageJ such as Fiji Is Just ImageJ
(Fiji) [49] extend this base with additional functional-
ity (Fig. 2) in the form of more plugins, scripts, sample
images, color lookup tables (LUTs), etc., leveraging the
ability to override ImageJ’s base behavior using SciJava’s
plugin priority mechanism (see “SciJava common” above
for details).
The Updater stores metadata in a db.xml.gz file in

the root of each update site, which describes the files
that are part of that update site, including checksums
and timestamps for all previous versions. In this way, the
Updater can tell whether each local file is: A) an up-
to-date tracked file; B) an old version of a tracked file;
C) a locally modified version of a tracked file; or D)
an untracked file. Update sites are served to users over
Hypertext Transfer Protocol (HTTP). Developers may
upload files to an update site via an extensible set of proto-
cols, as defined by Uploader plugins. The core ImageJ dis-
tribution includes plugins for Secure SHell (SSH), Secure
CoPy (SCP), Secure File Transfer Protocol (SFTP) and
Web Distributed Authoring and Versioning (WebDAV),

but in principle, the Updater makes no assumptions about
how files are uploaded.
The db.xml.gz structure was originally designed for

use with the Fiji Updater, the ImageJ Updater’s prede-
cessor. The logic of the Fiji Updater was migrated into
the core of ImageJ2, with backwards compatibility pre-
served for existing Fiji installations. As part of that migra-
tion, the Updater was heavily refactored to be UI agnos-
tic, such that additional user interface plugins for the
Updater could be created which leverage the same core.
Out of the box, ImageJ provides two different user inter-
faces for the Updater: a command-line tool intended for
power users and developers, and a Swing UI intended
to make updating easy for end users. When ImageJ
is first launched, it automatically runs the “Up-to-date
check” command, which then displays the Updater UI if
updates are available from any of the currently enabled
update sites.

Results and discussion
ImageJ has transformed from a single-user, single-bench
application to a versatile framework of extensible, reusable
operations. In the following sections, we discuss how
each core aspect of ImageJ2 has impacted community
usage and how we expect these qualities to shape future
developments.

Fig. 2 ImageJ update sites provide additional functionality to ImageJ. The Morphological Segmentation plugin, part of the MorphoLibJ plugin
collection [100], easily segments the rings of ImageJ’s Tree Rings sample dataset (panel a). The MorphoLibJ plugins are installed into the Fiji
distribution of ImageJ by enabling the IJPB-plugins update site (panel b). Credit to David Legland and Ignacio Arganda-Carreras for authoring the
plugins

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 14 of 26

Functionality
The architecture of ImageJ2 enables it to meet current and
future demands in image analysis.
Dimensions. Using ImgLib2 opens up caching options

for operating on extremely large images, an area in which
ImageJ 1.x has previously struggled. ImageJ 1.x is inher-
ently limited to five dimensions (X, Y, Z, time, and
channel) with fewer than 231 pixels per XY plane, e.g.
a 50, 000 × 50, 000 plane being too large to represent.
ImageJ 1.x allows composite images, but is constrained
to a maximum of seven composited channels. ImageJ2’s
N-dimensional data model supports up to 231 − 1 dimen-
sions, each with up to 263 − 1 elements, and composite
rendering over any dimension of interest regardless of
length. There are several preset dimensional axis types,
and new types can also be defined as needed. When visu-
alizing multi-channel data, each channel can now have its
own LUT without constraint.
Types. ImageJ 1.x supports only five image types

for representing sample values: 8-bit unsigned inte-
ger grayscale, 8-bit with a color lookup table, 16-bit
unsigned integer grayscale, 32-bit floating point, and a
32-bit integer-packed color type representing three 8-bit
unsigned color channels: red, green, and blue. Further-
more, this support is highly static, sometimes requir-
ing case logic for algorithms to properly handle each of
desired image types independently. In contrast, ImgLib2
is explicitly designed to facilitate algorithms developed
agnostic of image type (Fig. 3). ImageJ2 already sup-
ports over twenty different image types (Additional file 1:

Table S3), including arbitrary precision integer and
decimal types, and further types are definable using
SciJava Common’s flexible plugin framework. SciJava
Converter plugins also extend the reach of ImageJ2-
based algorithms even further into additional data
structures, such as MATLAB matrices [38] and ITK
images [40].
Storage. The prime example of an alternate storage

source in ImageJ 1.x is the virtual stack, allowing image
slices to be read on demand—e.g., if the image would
not normally fit in memory. However, ImageJ 1.x com-
mands must explicitly account for whether or not they
can operate on a virtual stack, requiring a proliferation
of case logic and complexity. ImageJ2 takes advantage of
ImgLib2’s extensible container system, which enables data
to be stored flexibly: as files on disk, remote URLs, within
a database, generated on-the-fly, etc. Such routines can
even be used with pixel and storage types implemented
well after their creation without having to change the
original implementation. As image acquisition sizes
increase, we expect virtualized image data to be particu-
larly critical to the future of image analysis. The SCIFIO
library already provides an ImgLib2 image type (“SCIFIO
cell image”) that supports block-based read/write
caching from disk, effectively behaving as a writeable
virtual stack.
Regions of interest (ROIs). Like ImageJ 1.x, ImageJ2

provides support for ROIs, which are functions that iden-
tify samples upon which to operate, as well as over-
lays, which are visuals (e.g., text) superimposed for

Fig. 3 ImageJ 1.x case logic compared to a unified ImgLib2 implementation. Panel a (left) shows the ImageJ 1.x implementation of a rolling ball
background subtraction method, part of the ij.plugin.filter.BackgroundSubtracter class. Panel b (right) shows an equivalent
implementation using ImgLib2, without the need for extensive case logic

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 15 of 26

visualization. ImageJ2 builds upon the ROI interfaces of
ImgLib2, allowing for any number of simultaneous ROIs
and overlays to be associated with a particular image with-
out the need for additional tools like ImageJ 1.x’s global
ROI Manager window.
Because ROIs are part of the core ImgLib2 library, it

is possible to process subsets of images identified by one
or more ROIs using an ImgLib2-based algorithm, and
the Ops library can process data within a ROI as a sin-
gle functional operation. This continues ImageJ2’s migra-
tion towards image processing algorithms that need not
add explicit case logic—e.g., to handle ROIs separately—
but instead simply provide a pixelwise function, or iter-
ate using ImgLib2’s generic iteration mechanism. In this
way, we continue to reduce the effort and complexity of
ImageJ2 plugins, while increasing their utility and applica-
tion.
Modularity. ImageJ 1.x was developed with a “single

computer, single user, single operation” in mind. Although
ImageJ 1.x can be used as a library, it will always be a sin-
gle unit that cannot be decoupled from its dependencies,
which are implicit in its source code. ImageJ2 has suc-
ceeded in building a cohesive application from encapsu-
lated, modular components unified by the SciJava plugin
framework. Each component is independently deployed
and accessible via the build automation tool Maven [50],
allowing developers to pick and choose the individual
pieces relevant to them—be it the ImageJ application, a
particular scripting language, image format, or the Sci-
Java Common core. SciJava-based projects inherit a “bill
of materials” which enables components to be combined
at versions known to be compatible with each other [30].
We have already seen the benefits of this modularity—
for example, the use of the SCIFIO library in KNIME
Image Processing (KNIP) to produce images compatible
with ImageJ2 commands.
Ops. The ImageJ Ops library is the centerpiece of

ImageJ2, bringing Java’s mantra of “write once, run
anywhere” to image processing algorithms. Ops pro-
vides a wealth of image processing algorithms to users,
accessible in a unified way that empowers developers
to transparently extend and enhance the behavior and
capabilities of each operation. It is critical to appre-
ciate that each type of op (more than 350 different
operations as of version 0.33.0) represents a poten-
tial extension point for optimizing existing parame-
ters, or supporting new ones. In contrast to algorithms
coded using ImageJ 1.x data structures, all ops work
without modification on all image types (Additional
file 1: Table S3) and containers, including those not
yet in existence. As the Ops project is a very active
collaboration across several institutions including the
University of Konstanz, University of Wisconsin-Madison
and others, we expect the core library to continue to

grow in both available functionality and use within the
community.

Extensibility
Plugins. The ImageJ2 plugin framework, built on top
of SciJava Common, is a modular and extensible infras-
tructure for adding features. Plugins can now take many
forms, including image processing operations, new tools,
and even completely new displays. In ImageJ 1.x there
are three kinds of plugins: 1) the standard PlugIn,
which provides a freeform run(String arg) method;
2) PlugInFilter, which processes images one plane at
a time; and 3) PlugInTool, which adds a function to
the toolbar. In ImageJ2, these ideas are expressed in the
form of Command, Op and Tool plugins, respectively—
although these plugin types have many advantages over
their ImageJ 1.x analogues: type-safe chaining of opera-
tions, dynamic selection of ops based on arguments, UI
agnosticism, etc. Furthermore, many other types of plug-
ins are available as well, and the flexibility of the SciJava
plugin framework also allows for additional new types of
plugins to be defined.
Modules. The ImageJ application’s menu structure is

made up of SciJava modules—most commonly commands
and scripts. Thus, scripts and Command plugins are prob-
ably the most common points of extension for developers
exploring the ImageJ2 architecture. Writing such exten-
sions in ImageJ2 is much simpler than in ImageJ 1.x, which
requires each extension to explicitly create its own dialog
box to collect user input. In ImageJ2, the use of parameters
results in more declarative extensions, freeing software
developers from the need to explicitly ask the user for
input values in the vast majority of cases, and substan-
tially reducing boilerplate and UI-specific code, making
commands shorter and easier to understand (see Fig. 5
in “Usability” below). Moreover, this mechanism makes
ImageJ2 modules truly independent of the user interface,
allowing them to work with any UI or headlessly. The
module simply declares its inputs and outputs using the
appropriate parameter syntax, and lets ImageJ do the rest.
Formats. In an open source image analysis program

like ImageJ, an extensive collection of supported image
formats is necessary to maximize relevance and impact
across the community. ImageJ 1.x provided a central
HandleExtraFileTypes class to enable extensibil-
ity, but required direct modification of this class to do
so, resulting in many third parties each shipping their
own modified version. Only one modification could “win,”
effectively breaking any other supported formats. To fill
this role in ImageJ2, the SCIFIO library provides extensi-
ble image format support tailored to the ImageJ Common
data model.
As of version 0.29.0, the core SCIFIO library provides

a collection of more than 30 open formats, and also

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 16 of 26

includes a wrapping of the Bio-Formats library [51], which
enables a wide variety of supported images throughout all
ImageJ operations. Furthermore, SCIFIO enables devel-
opers to create their own Format plugins to smoothly
integrate support for new proprietary formats and meta-
data standards without modification of core functions or
proliferation of one-off format commands.
Image processing. ImageJ’s main purpose is effec-

tive and extensible image processing; therefore, ImageJ’s
extension mechanism for image processing algorithms
must be one of its central features. ImageJ2’s op match-
ing subsystem offers extensible case logic: an Op plugin
can be written to add a new algorithm, to extend an exist-
ing algorithm to support new data structures, or to make
an algorithm more efficient for specific data types, all
without impacting previously written code. As the Ops
librarymatures, we expect to see new Op implementations
along all of these lines in existing third-party suites, con-
veniently shipped to users via ImageJ update sites. Hence,
unlike in ImageJ 1.x, existing user scripts using the Ops
library will automatically benefit from new performance-
enhancing ops.
User interface. ImageJ 1.x’s user interface is writ-

ten in Java Abstract Windowing Toolkit (AWT) with
many assumptions throughout the codebase relying on
this fact. Hence, ImageJ 1.x is only limitedly usable
in a headless way (e.g., for image processing on a
server cluster). Normally, ImageJ 1.x cannot be used
headless at all: some lynchpin ImageJ 1.x classes—
notably ij.ImageJ and ij.gui.GenericDialog—
derive from java.awt.Window, and such classes can-
not be instantiated when running in headless mode.
Fortunately, the ImageJ Legacy layer’s runtime patcher
rewrites affected ImageJ 1.x classes to derive from non-
AWT window classes when in headless mode; as such,
ImageJ2 makes headless execution of ImageJ 1.x scripts
feasible.
Furthermore, ImageJ 1.x’s reliance on AWT also limits

its ability to be embedded into other applications using
different UI frameworks, such as Swing or Eclipse Stan-
dard Widget Toolkit (SWT). While some applications
have succeeded in doing so [52], the amount of work
required in response to each ImageJ 1.x update is consid-
erable, since many changes must be made to the ImageJ
1.x core source code.
In contrast, ImageJ2’s separation between the under-

lying data model and the user interface enables it to
run headless or within a variety of different user inter-
face paradigms with no changes to the core. Developers
can create their own plugins to provide alternative user
interfaces. ImageJ2 is even capable of displaying multi-
ple UIs simultaneously in the same Java runtime. Adding
support for a new UI now only requires writing a new
UserInterface plugin and corresponding display and

widget plugins. As one of the most common questions
about ImageJ from software developers is how to cus-
tomize the ImageJ UI, we believe that this improved
user interface framework will yield substantial future div-
idends.
While the current flagship user interface for ImageJ2 is

still the ImageJ 1.x UI via the ImageJ Legacy component,
ImageJ2 also has a Swing user interface modeled after the
ImageJ 1.x UI, but which stands alone with no depen-
dence on ImageJ 1.x code. We have been successful in
“reskinning” this Swing UI with various Java Look & Feels
(L&Fs), including the Metal, Motif, Nimbus, Aqua, Win-
dows and GIMP ToolKit (GTK) L&Fs. Furthermore, we
explored proof-of-concept UI implementations in other
frameworks, such as Eclipse’s SWT, Java AWT sans Swing,
and Apache Pivot. There is also a JavaFX UI for ImageJ2
developed by Cyril Mongis at the University of Heidelberg
[53], as well as integrations of ImageJ into other power-
ful end-user applications such as KNIME and CellProfiler.
See Fig. 4 for a side-by-side illustration of UIs.
Interoperability. There is no one-size-fits-all tool for

scientific image processing. A diversity of tools bene-
fits users, even more so when they can interoperate.
ImageJ 1.x was designed to be run by a single user
on a single desktop computer. Many aspects of the
program are structured as singletons: one macro inter-
preter, one WindowManager, one active image, one
PlugInClassLoader, one active ROI per image, one
set of overlays, one active ROI in the ROI manager, etc.
This structure imposes many limitations: for example,
multiple macros cannot run concurrently, and it is not
possible to operate more than one instance of ImageJ 1.x
in the same JVM simultaneously—e.g., on a single web
page as applets.
ImageJ2 is structured as an application container, avoid-

ing the static singleton pattern and hence many of ImageJ
1.x’s limitations. Multiple instances of ImageJ2 can run in
the same JVM, each with multiple (or no) user interfaces
and multiple concurrent operations. Our primary goal is
to make each encapsulated component of ImageJ2 usable
in other software projects. There are several examples of
other projects leaning on this generality to expose Sci-
Java modules in interesting ways: for example, automated
conversion to nodes in a KNIME workflow. Continuing
efforts are underway at the Laboratory for Optical and
Computational Instrumentation (LOCI) and elsewhere to
integrate ImageJ with many other software projects, script
languages and paradigms (Table 1).

Reproducibility
In the interest of transparency and reproducibility—
especially in the context of open science—the ImageJ2
project strives to be accessible. Ultimately, we want to
spur the community to improve ImageJ in a collaborative

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 17 of 26

Fig. 4 Side-by-side comparison of ImageJ2-based user interfaces and integrations. Panel a (top left): ImageJFX, a JavaFX-based user interface built
on ImageJ2. Panel b (top right): ImageJ2’s default user interface, the ImageJ Legacy UI, which wraps ImageJ 1.x. Panel c (bottom left): Example
KNIME workflow utilizing ImageJ2 image processing nodes. Panel d (middle right): Swing UI prototype, closely modeled after ImageJ 1.x so that it
remains familiar to existing users, in various Java “Look & Feel” modes. Panel e (bottom right): A proof-of-concept Apache Pivot user interface. The
ImageJFX and ImageJ Legacy UIs display an XY slice of ImageJ’s Confocal Series sample dataset (dataset courtesy of Joel Sheffield), which has been
rotated, smoothed and colorized

way, by providing open access to resources. Of course,
we recognize the need for responsive, reliable maintain-
ers to coordinate and facilitate contributions. However,
with the Internet’s modern software infrastructure, it is
now quite feasible to push ImageJ development in a more
collaborative and community-driven direction, embrac-
ing the “GitHub effect” [54] of worldwide, distributed
development.
All ImageJ2 source code is open and publicly available

on GitHub [55], and all core components are permissively
licensed [56] to avoid any ambiguity over how the code
can be used. But visibility alone is not sufficient to keep a
project open; each line of code adds complexity, making
the project harder to understand and maintain. Modular,
encapsulated design, the application of the “Don’t Repeat
Yourself (DRY)” concept, and avoidance of overly “clever”
code keeps ImageJ2 well-organized and easier to under-
stand. Extensive online documentation [29] and Javadoc
[57] provide further insight, while effective unit testing
and dedicated tutorial components [58] illustrate con-
crete use cases. By keeping a clean, well-organized and

well-documented codebase, we facilitate community con-
tributions, as well as continued maintenance of ImageJ
into the future.
ImageJ2’s open development process provides many

benefits over the centralized process of ImageJ 1.x. The
use of Maven makes dependency management human
readable and enables the use of a “bill of materials” to
unambiguously determine which versions of each ImageJ
component are compatible. The use of Git has evolved
revision control to a new level of documentation, clearly
communicating why changes are made and encouraging
atomic, easily understood changes. Furthermore, ImageJ2
minimizes the barrier to community contributions via an
open issue tracking system [59] and open patch submis-
sion process [60].
Finally, it is critical for reproducibility that algorithms

produce consistent results over time. We utilize the pub-
lic Travis continuous integration (CI) infrastructure [61]
to run automated regression tests whenever modifications
to ImageJ’s source code are published. Such tests help to
avoid and detect regression bugs so that core functionality

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 18 of 26

and behavior will continue to work reliably as the pro-
gram evolves.We especially prioritize test coverage for the
crucial base levels of ImageJ: as of this writing, there are
approximately 500 tests for SciJava Common, 1200 tests
for ImageJ Ops, and 1200 tests for ImageJ 1.x. We also
plan to integrate automated test coverage analysis, tomea-
sure the percentage of code which is exercised by the tests,
which should be straightforward thanks to the project’s
use of Maven.

Usability
The ImageJ community includes both end users—who use
ImageJ as an application and want it to “just work”—and
software developers—who want to customize and invoke
parts of ImageJ as a software library from their own pro-
grams. However, these roles are not rigid; many users
write scripts and macros to facilitate their image analysis,
and many developers also use ImageJ as an application.
ImageJ2 includes a powerful Script Editor with many tools
to aid users as they transition into the realm of devel-
opment. This tool removes much of the complexity of
traditional software development, allowing users to focus
on coding without the added burden of applying compil-
ers, Integrated Development Environments (IDEs), or the
command line.
In addition, the SciJava parameterized scripting mech-

anism makes it easier for users to write scripts whose
inputs and outputs are declared in a clear and straightfor-
ward manner. SciJava parameters reduce the boilerplate
code historically needed to define a script’s input values,
in some cases by 50% or more (Fig. 5). Leveraging Sci-
Java annotations also frees the plugin from the Java AWT
dependencies of ImageJ 1.x’s GenericDialog, allowing
the plugin to be used headlessly, in future UIs, and even in
other applications.
Sensible defaults. A key example of reasonable default

behavior is the SciJava conversion framework with its spe-
cialized Converter plugin type. Converter plugins
define useful type substitutions that would not normally
be allowed by the Java type hierarchy. For example, con-
version of ImageJ Dataset objects to and from other
paradigms (MATLAB arrays, ITK images, etc.) is facili-
tated by Converter plugins which encapsulate the logic
for each conversion case. The framework then uses the
converters automatically when modules are executed, so
when a user says e.g. “run this ITK algorithm on this
dataset I opened” everything “just works” without the
user needing to perform an explicit manual conversion.
From a software development perspective, this scheme
lets ImageJ2 retain the advantages of strong typing while
escaping the corresponding shackles that often accom-
pany it.
The ImageJ Ops library provides another illustration

of ImageJ2’s sensible defaults structured in layers. While

every op in the system is a dynamically callable plugin, the
core Ops library also organizes its built-in operations into
a centrally accessible collection of type-safe namespaces in
a standard Java API explorable from IDEs like Eclipse e.g.
via its Content Assist functions. This structure also pro-
vides an elegant and easy-to-read syntax for calling ops
in script-driven workflows (see Fig. 7 in “Compatibility”
below).
Automatic updates. In ImageJ 1.x, plugin installation

requires users to download a Java ARchive (JAR) or Java
class file and place it within the ImageJ plugins folder.
Updating an installed plugin essentially requires repeating
the manual installation steps, which is both tedious and
error-prone. Developers have to manually manage their
plugin’s dependencies, which in practice leads to users
receiving cryptic error messages when multiple plugins
require incompatible component versions. Even worse,
some developers then make suboptimal design decisions
to work around this difficulty, such as reimplement-
ing functionality already provided by well-tested third
party libraries, and/or creating so-called “uber-JARs”
which lump together the dependencies into intractable
bundles [62].
The ImageJ Updater vastly simplifies this process by

informing users automatically when a new plugin version
is available and enabling single-click upgrades to the lat-
est version of all components. On the development side,
the use of Maven by the ImageJ2 and Fiji projects provides
a clear best practice for managing dependencies in a con-
sistent way, which reduces the chance of broken end-user
installations.
ImageJ’s support for multiple update sites makes it fea-

sible for community developers and third parties to create
their own update sites from which users can pick and
choose, without them needing to become a part of the
core ImageJ or Fiji distribution. This distributed model of
update sites fits in very well with the community-driven
aspects of ImageJ, dramatically lowering the barrier for
sharing effort. This capability is made even more potent
by the Personal Update Sites feature, which lets users link
their ImageJ wiki account to their own personal web space.
Furthermore, the Updater derives its initial list of available
update sites from the “List of update sites” wiki page of the
ImageJ website [21]—plugin developers can edit this wiki
page in the same way as the rest of the ImageJ website, in
order to make their site automatically available to all users
of ImageJ. Editing this page is not mandatory, however;
users can also manually edit their ImageJ installation’s list
of available update sites—e.g., if their organization offers
an internally managed update site for plugins specific to
their institute.
Although manual plugin installation is still supported

in ImageJ2, many organizations have already publicized
their own update sites, and thanks to the Updater together

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 19 of 26

Fig. 5 Comparison of pure ImageJ 1.x command with one using SciJava declarative syntax. Panel a (left) shows an ImageJ 1.x implementation of a
plugin that copies slice labels from one image to another, as chosen by the user. Panel b (right) shows the same plugin written using the SciJava
declarative command syntax. Changed lines are highlighted in blue, new lines in green. The actual operation (the copyLabelsmethod) is
identical, but the routine for selecting which images to process is no longer necessary

with the ImageJ Legacy layer, all of the plugins served
from those sites are easily accessible within ImageJ2. This
has helped to focus the Fiji project on its original goal of
being a curated collection of plugins facilitating scientific
image analysis. In addition to Fiji, hundreds of third-party
update sites are available, such as LOCI, Broadly Applica-
ble Routines (BAR), BioVoxxel, the Stowers Institute, and
the BioImaging and Optics platform of the École Poly-
technique Fédérale de Lausanne (EPFL), most of which are
served from the centrally managed Personal Update Sites
server [63].

Performance
ImageJ2 is engineered to accommodate the growing size
and complexity of image data. Although performance
has been a serious design consideration, we believe
in aggressive performance optimization only on an as-
needed basis as software components stabilize andmature
[64]. By designing a robust framework that allows for
specialization at every level, we avoid compromising
design for the sake of incremental performance gains,
while empowering developers to optimize when neces-
sary. Furthermore, the fact that ImageJ2 maintains 100%
backwards compatibility with ImageJ 1.x (see “Compa-
tibility” below) means that existing high-performance
image processing approaches continue to work as is,
even if they do not benefit from ImageJ2’s architectural
improvements.

Efficiency. The time performance of ImageJ2 data
structures is generally consistent with those of ImageJ 1.x.
The core of performance in ImageJ2 hinges on the effi-
ciency of the various ImgLib2 containers. We have run
benchmarks comparing the time performance of itera-
tion and access on ImgLib2 image structures with that of
ImageJ 1.x images, as well as compared to raw array access
[65]. We found that thanks to Java’s Just-In-Time compiler
(JIT), ImgLib2 is highly comparable to ImageJ 1.x in these
regards (Additional file 1: Figure S2).
When time performance is dominated by the over-

head of looping itself, some ImgLib2 container types such
as cell images may be measurably slower to iterate and
access. However, this loop overhead is generally very
small, and for most container types (e.g., array and pla-
nar images) the JIT quickly optimizes the code to equal
the speed of raw array access. Hence, for non-trivial image
processing operations which take significant time to com-
pute per sample, overall time performance converges
across all data structures and container types, ImageJ 1.x
and ImageJ2 alike.
The advantages of ImgLib2’s type- and container-

agnostic algorithm development outweigh any minor dif-
ferences in time performance, saving developer time and
effort via simpler, more maintainable code. Furthermore,
ImgLib2’s more comprehensive set of image types (Addi-
tional file 1: Table S3) make it easier to optimize for space
efficiency. For example, an image sequence recorded using

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 20 of 26

a 12-bit detector requires 16 bits per sample in ImageJ
1.x, whereas ImageJ2 can pack that data without wasted
bits using ImgLib2’s uint12 data type, resulting in a 33%
increase in space efficiency.
Relatedly, the design of the ImageJ Ops library real-

izes these same efficiency advantages. End user scripts
invoke ops by name and arguments, and theOpsmatching
algorithm takes care of selecting the implementation opti-
mized for those arguments. This scheme enables image
processing algorithms to be written once, then auto-
matically benefit from future performance optimizations
without explicit case logic.
To validate this approach, we benchmarked the core

Ops library’s math.add operations which add a constant
value to each element of an image (Fig. 6). As evidenced by
the results, the inplace ImageJ 1.x version of this operation
(the Add. . . command under Math in the Process menu)
performs much better than some generalized op imple-
mentations (II source to RAI destination) which work
on all image types—but the optimized ops outperform it,
with the single-threaded inplace ArrayImg op finishing
7 times faster, and the multithreaded version finishing 9
times faster. While some of this gain is likely due to the
expense of ImageJ 1.x’s bounds checking, it is also evident
from the results that the optimized ops are comparable in
efficiency to operations on raw primitive arrays.

Scalability. As discussed in “Functionality” above,
ImageJ 1.x is fundamentally limited to XY image planes
of less than 231 pixels due to its use of one Java primi-
tive array per plane, and to the size of available computer
memory for many of its image processing operations.
In contrast, ImageJ2 has been engineered at every level
to support scalable image processing using cell images
which are cached to and from mass storage on demand.
ImageJ2’s careful separation of concerns and enhanced
command line parameter handling enable ImageJ to run
headless on remote servers, opening up a wide array of
possibilities for scalable computation. The SCIFIO library
enables direct access into image data samples, so that
image data many orders of magnitude larger than avail-
able computer memory can be systematically processed
on an individual workstation or using a cluster. And
thanks to visualization tools like the BigDataViewer plu-
gin [66], which is also built on ImgLib2 cell images, it is
now realistic to quickly visualize and explore suchmassive
datasets.

Compatibility
The ImageJ2 project, by design, enables software devel-
opers to use a combination of ImageJ 1.x and ImageJ2
features. Many ImageJ-based tools and plugins continue
to rely on ImageJ 1.x data structures, with varying levels

Fig. 6 Benchmarks of a simple addition operation with ImageJ Ops and ImageJ 1.x. Time performance comparison of simple addition operations
between raw Java array manipulation, various math.add operations of ImageJ Ops, and ImageJ 1.x’s Process �Math � Add. . . command.
Benchmarks were run for 20 rounds on randomly generated uint8 noise images dimensioned 15, 000 × 15, 000, using the JUnit Benchmarks
framework, on a MacBook Pro (Retina, 15-inch, Mid 2015) running macOS Sierra 10.12 with 2.5 GHz Intel Core i7 processor and 16 GB 1600 MHz
DDR3 memory. Positive numbers are fold faster, negative numbers are fold slower. The routines which produced these results can be found in the
ImageJ Ops test code, in the AddOpBenchmarkTest class of the net.imagej.ops.benchmark package

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 21 of 26

of dependence on ImageJ2 and the SciJava framework
(Additional file 1: Figure S3). A few examples include:

• TrackMate [67], a plugin for object identification and
tracking, has been used to achieve a semi-automated
workflow for deoxyribonucleic acid (DNA) double-
strand break-induced telomere mobility quantitative
analysis [68], as well as for Caenorhabditis-elegans
lineage analysis during light-induced damage,
recruitment of NF-κB essential modulator (NEMO)
clusters in fibroblasts after Interleukin-1 (IL-1)
stimulation, and clathrin-mediated endocytosis
analysis in plant cells [67].

• Massive Multi-view Tracker (MaMuT), a tool for
the annotation of massive, multi-view data, has been
used for reconstruction of the complete cell lineage
of an outgrowing thoracic limb of the crustacean
Parhyale hawaiensis, with single-cell resolution [69].

• Multiview Reconstruction [70, 71], a pipeline for
registering multi-angle 3D volumes and visualizing
them using the BigDataViewer [66], is commonly part
of experimental protocols for light sheet fluorescence
microscopy, and has been used to analyze zebrafish
embryo eye development [72], as well as directional
movement of cerebrospinal fluid in zebrafish larvae
during developmental neurogenesis [73].

• Sholl Analysis [74] and Simple Neurite Tracer
(SNT) [75], plugins for quantifying traced structures
such as neurites, have been used to analyze dendritic
morphology of the amygdala and hippocampus in
conventionally-colonized versus germ-free mice [76],
morphologies of retinal ganglion cells from neural
retina on poly (lactic-co-glycolic acid) (PLGA)
scaffold [77], as well as dendritic complexity and
arborization in absence of α2-chimaerin, a key
regulator of Rac1-dependent signaling [78].

It is thanks to the ImageJ Legacy and IJ1-patcher com-
ponents that the community can blend the usage of
ImageJ 1.x and ImageJ2 functionality, cherry-picking the
best from each world to accomplish their image analy-
sis tasks. For example, parameterized ImageJ commands
and scripts may continue to use ImageJ 1.x data struc-
tures and plugins as needed, while taking advantage of
ImageJ2 functionality as appropriate (Fig. 7), and declar-
ing and populating input values with less boilerplate code
(see Fig. 5 in “Usability” above).
As ImageJ2 continues to mature, usage of ImageJ 1.x

functionality will be increasingly replaced withmore pow-
erful ImageJ2 equivalents: image processing algorithms
built on ImageJ Ops, data format plugins built on SCIFIO,
block-based cell images using ImgLib2, N-dimensional
ROIs, metadata-rich images, nonlinear registration trans-
forms, etc. However, this process is both lengthy and

necessarily incomplete: migrating ImageJ 1.x core func-
tionality alone is a years-long process as the ImageJ2 APIs
continue to evolve, mature and stabilize—and there are
countless other useful plugins and scripts in the wild,
some of which will never be updated to the new APIs.
Meanwhile, development of ImageJ 1.x also progresses,
with users continuing to request bug fixes and new fea-
tures within its intended scope. As such, the importance
of a robust transitional strategy for migrating from ImageJ
1.x to ImageJ2 cannot be overstated.
Although the development of ImageJ2 has necessitated

reimplementation of ImageJ 1.x functionality, maintain-
ing backwards compatibility with ImageJ 1.x will remain
a fundamental goal. Abandoning or ignoring ImageJ 1.x
would have been a significant disservice to the commu-
nity, causing a rift to the detriment of all parties. Our
efforts to enable incremental migration from ImageJ 1.x
to ImageJ2 allow the two projects to continue developing
in tandem, with new features in each reaching a unified
ImageJ community.

Community
Ultimately, the goal of ImageJ is to enable scientific
collaboration and achievement, which requires commu-
nity management as much as code management. ImageJ
1.x leverages open-source code, a public web site and
a mailing list to support discussion and contributions
from people across the globe. However, it follows a cen-
tralized “cathedral” development model, rather than a
community-driven “bazaar” style model [79], with its pri-
mary resources and scalability fundamentally limited by
a single “gatekeeper.” For ImageJ’s continued success and
growth, it is critical to renew its focus on partnership and
communication with the community [80].
Online resources. The centrally organized documen-

tation of ImageJ2 takes the form of a collaborative wiki
[29] with over 800 articles: a “world-writable” location for
both users and developers to learn about and contribute
to ImageJ. The wiki is complemented by the ImageJ Forum
[81], a powerful, friendly and universally accessible discus-
sion channel driven by the excellent Discourse software,
which is engineered to encourage civil interaction [82].
Finally, ImageJ’s source code and issue tracking via GitHub
completes the community-centric approach for managing
and discussing changes and improvements.
These resources together enable project developers to

clearly communicate the expectations and norms sur-
rounding plugin development, contribution, maintenance
and support, empowering users to easily see who is
responsible for each plugin as well as its support and
development status [83], outstanding bugs [59] and future
plans [84]. This is a critical service for the community:
it is not enough to provide a convenient way for peo-
ple to publish, share and consume extensions—we have

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 22 of 26

Fig. 7 A mixed-world ImageJ 1.x + ImageJ2 script. This example Python script (panel d) uses ImageJ Ops to preprocess a confocal image and
perform an automatic thresholding (panel b). ImageJ 1.x’s Analyze Particles routine is then called to isolate (panel a) and measure (panel c)
foreground objects. Script contributed by Brian Northan, True North Intelligent Algorithms LLC. This script is available within ImageJ as a sample
from the Tutorials submenu of the Script Editor’s Templates menu

learned from experience that there must be a social
framework in place for managing and understanding the
software development lifecycle of the myriad community
efforts.

Future directions
ImageJ is more than a single application: it is a living
ecosystem of scientific exchange. As acquisition technol-
ogy continues to advance, there will always be a need
for new development and maintenance within ImageJ.
There are still key technical tasks remaining for ImageJ2
to achieve stability, as well as new directions made pos-
sible by the ImageJ2 platform which we are excited to
explore:

• Finalize the ImageJ Common data model to support
extensible attachment of metadata, including spatial
metadata, that respond robustly to image processing
operations such as transformation.

• Extend ImgLib2’s N-dimensional ROI interfaces to
cover all needed cases, including all ROI types
supported by ImageJ 1.x, all ROI types supported by
OMERO, and any additional ROI types available in
other image-oriented software packages for which
integration with ImageJ is pursued.

• Update the core SciJava I/O mechanism to be
plugin-driven for improved extensibility of data
source location.

• Generalize SCIFIO’s planar model to operate on
arbitrary “blocks” at a fundamental level.

• Retire the custom C-based ImageJ desktop
application launcher, migrating to the
industry-standard application bundling of JavaFX.

• Complete our ongoing effort to automate the
documentation regarding development and
maintenance responsibility for every core component
of the ImageJ ecosystem, including Fiji components [83].

• Develop our ImageJ-based REST image server
prototype toward production use, providing a
common language- and
implementation-independent API.

• Implement a web UI built on the REST image server.
• Improve the ImageJ Updater user interface to be

more user friendly, so that users can more easily
cherry-pick extensions of interest from each update
site.

• Expand the list of built-in ImageJ Ops with additional
image processing and analysis routines, including
Deep Learning approaches [85] and novel algorithms
from computer vision and statistics.

• Continue building bridges between ImageJ and other
image processing frameworks such as OpenCV [86]
and scikit-image [87].

• Integrate support for cloud computing frameworks
such as Apache Spark [46] running on platforms such
as Amazon Web Services [88].

• Continue supporting community requests for bug
fixes, new features and image analysis advice.

• Continue migrating ImageJ resources into the main
ImageJ wiki website, including the ImageJ User Guide

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 23 of 26

[89], ImageJ 1.x documentation [90] and Luxembourg
Institute of Science and Technology (LIST)’s ImageJ
Information and Documentation Portal [91].

• Redesign ImageJ’s bug submission system such that
users can automatically submit an issue report to the
correct location online whenever something goes
wrong in the software.

• Continue listening to, and working with, the user and
developer community.

A detailed breakdown and discussion of each specific
issue can be found on GitHub, searchable from the unified
ImageJ Search portal [92].

Conclusions
Based on feedback from the existing ImageJ community,
we have over the last several years been designing and
implementing ImageJ2, a radically improved application
that employs best practices and proven software engi-
neering approaches. ImageJ2 directly addresses twomajor
needs, supporting applications where: 1) the underlying
ImageJ data engine was not sufficient to analyze modern
datasets; and 2) the lack of an underlying robust software
design impeded the addition of new functionality. This
overhaul of ImageJ transforms it into not only a power-
ful and flexible image processing and analysis application
in its own right, but also a framework for interoperabil-
ity between a plethora of external image visualization and
analysis programs. ImageJ2 strengthens ImageJ’s utility as
a platform for scientific image analysis by: 1) generalizing
the ImageJ data model; 2) introducing a robust architec-
ture instrumental in building bridges across a range of
other image processing tools; 3) remaining open source
and cross-platform with permissive licensing, enabling
continued widespread adoption and extension; 4) build-
ing on the huge collection of existing ImageJ plugins while
enabling the creation of new plugins with more power-
ful features; and 5) leveraging a correspondingly large and
diverse community to foster a collaborative and interdisci-
plinary project that facilitates the collective advancement
of science.

Availability and requirements
Project name: ImageJ
Project home page: https://imagej.net/
Archived version: net.imagej:imagej:2.0.0-rc-55
Operating system(s): Platform independent
Programming language: Java
Other requirements: Java 8 or higher
License: Simplified (2-clause) Berkeley Software Distribu-
tion (BSD)
Any restrictions to use by non-academics: None
All data generated or analyzed during this study are

included in this published article.

Additional file

Additional file 1: Figures and illustrations. Figure S1: Module execution
in different contexts. When running a parameterized script (panel B) from
the ImageJ user interface (panel A), a pop-up dialog box (panel C) enables
the user to enter the name and age values; when running the script
headless from the command line (panel D), input values are passed as
arguments and output values echoed to the standard output stream.
Figure S2: Comparison of time performance across ImageJ 1.x and
ImgLib2 data structures. For ten iterations, we ran a “cheap” per-pixel
operation and an “expensive” operation on a 25 Mpx image stored in the
ImageJ 1.x container, various ImgLib2 containers, and raw byte arrays.
Panel A (left) shows the time (ms) it took to complete a “cheap” operations
versus the loop iteration for each container. Panel B (right) shows the same
information but for the time (ms) it took to complete the expensive
operation. Figure S3: Sample ImageJ plugin usage of ImageJ 1.x and
ImageJ2. This plot displays a select few ImageJ plugins in varying stages of
transition, from ImageJ 1.x to ImageJ2, as of 11 Aug 2017 2:35 PM CDT. The
ratio of ImageJ 1.x to ImageJ2 usage was computed by counting the
number of imports each plugin uses from relevant Java packages: "ImageJ
1.x plugins" is ij.plugin.*, "ImageJ 1.x data structures" is ij.*
excluding the plugin subpackage, "SciJava framework" is
org.scijava.*, and "ImageJ2 data structures" is net.imagej.*
and net.imglib2.*. References for plugins shown: TrackMate [67],
MaMuT [150], Multiview Reconstruction [70, 71], MotherMachine Analyzer
(MoMA) [151, 152], Sholl Analysis [74], Kymograph Builder [153], Z-Spacing
Correction [154], Trainable Weka Segmentation [155], Pendent Drop [156],
SciView [157], BigDataViewer [66], Image Stitching [158], Coloc 2 [159],
MorphoLibJ [100]. Table S1: Built-in SciJava input widgets. Table S2: Kinds
and arities of special ops. Table S3: Image types supported by ImageJ.
(ZIP 549 kb)

Abbreviations
3D: Three-dimensional; Alida: Advanced library for integrated development of
data analysis applications; API: Application programming interface; AWT:
Abstract windowing toolkit; BAR: Broadly applicable routines; BeakerX: Beaker
extensions for Jupyter; BisQue: Bio-Image semantic query user environment;
BMC: BioMed Central; BSD: Berkeley software distribution; CI: Continuous
integration; CPU: Central processing unit; CUDA: Compute unified device
architecture; DI: Dependency injection; DNA: Deoxyribonucleic acid; DRY:
Don’t repeat yourself; EPFL: École Polytechnique Fédérale de Lausanne; Fiji: Fiji
is just ImageJ; GPU: Graphics processing unit; GTK: GIMP ToolKit; HTTP:
Hypertext transfer protocol; I/O: Input/Output; IDE: Integrated development
environment; IL-1: Interleukin-1; IoC: Inversion of control; ITK: Insight ToolKit;
JAR: Java ARchive; JIT: Just-In-Time compiler; JVM: Java virtual machine; KNIME:
KoNstanz information MinEr; KNIP: KNIME image processing; L&F: Look & feel;
LIST: Luxembourg institute of science and technology; LOCI: Laboratory for
optical and computational instrumentation; LUT: Color lookup table; macOS:
Macintosh operating system; MaMuT: Massive multi-view tracker; MATLAB:
MATrix LABoratory; MiToBo: Microscopy image analysis ToolBox; MoMA:
MotherMachine analyzer; NEMO: NF-κB essential modulator; NIGMS: National
institute of general medical sciences; NIH: National institutes of health; OME:
Open microscopy environment; OMERO: OME remote objects; OpenCL: Open
computing language; OpenCV: Open source computer vision library; PLGA:
Poly (lactic-co-glycolic acid); RAM: Random-Access memory; REST:
REpresentational state transfer; RGB: Red+Green+Blue color model; ROI:
Region of interest; SCIFIO: SCientific image format input and output; SCP:
Secure CoPy; SFTP: Secure file transfer protocol; SNT: Simple neurite tracer;
SSH: Secure SHell; SWT: Standard widget toolkit; UI: User interface; URI:
Uniform resource identifier; URL: Uniform resource locator; WebDAV: Web
distributed authoring and versioning; XML: eXtensible Markup Language

Acknowledgements
Many people have contributed to the development of ImageJ2 on both
technical and leadership levels. In particular, the authors gratefully thank and
acknowledge the efforts of (in alphabetical order): Ignacio Arganda-Carreras,
Michael Berthold, Tim-Oliver Buchholz, Jean-Marie Burel, Albert Cardona, Anne
Carpenter, Christian Dietz, Richard Domander, Jan Eglinger, Gabriel Einsdorf,
Adam Fraser, Aivar Grislis, Ulrik Günther, Robert Haase, Jonathan Hale, Kyle
Harrington, Grant Harris, Stefan Helfrich, Martin Horn, Florian Jug, Lee

http://dx.doi.org/10.1186/s12859-017-1934-z

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 24 of 26

Kamentsky, Gabriel Landini, Rick Lentz, Melissa Linkert, Mark Longair, Kevin
Mader, Hadrien Mary, Kota Miura, Birgit Möller, Cyril Mongis, Josh Moore, Alec
Neevel, Brian Northan, Rudolf Oldenbourg, Aparna Pal, Tobias Pietzsch, Stefan
Posch, Stephan Preibisch, Loïc Royer, Stephan Saalfeld, Benjamin Schmid,
Daniel Seebacher, Jason Swedlow, Jean-Yves Tinevez, Pavel Tomancak, Jay
Warrick, Leon Yang, Yili Zhao and Michael Zinsmaier. We also thank the entire
ImageJ community, especially those who contributed patch submissions, use
cases, feature requests, and bug reports. A special thanks to Wayne Rasband
for his tireless work on, and continuing maintenance of, ImageJ 1.x for these
many years. Finally, our deep thanks to the NIH, whose initial funding of
ImageJ2 in 2009 was instrumental in launching the project, as well as to all
funding agencies and organizations who have supported the project’s
continued development [93].

Funding
ImageJ2 was funded from 2010 through 2012 by the National Institute of
General Medical Sciences (NIGMS) through the American Recovery and
Reinvestment Act of 2009 NIH Research and Research Infrastructure “Grand
Opportunities” Grant, “Hardening” of Biomedical Informatics/Computing
Software for Robustness and Dissemination (Ref: RC2 GM092519-01), as well as
a Wellcome Trust Strategic Award (Ref: 095931). SCIFIO was funded by the
National Science Foundation, award number 1148362. ImageJ2 projects were
also funded by internal funding from the Laboratory for Optical and
Computational Instrumentation, and the Morgridge Institute for Research.

Authors’ contributions
CTR acted as the technical lead of the ImageJ2 project and primary architect of
ImageJ2’s software architecture. JS migrated key portions of Fiji into ImageJ2,
including the Launcher and Updater components, and advised and improved
upon many architectural aspects of ImageJ2, particularly the legacy layer. MCH
served as the lead SCIFIO developer and contributed to all layers of the ImageJ
software stack. BED developed substantial portions of the ImageJ2 codebase,
including much of the legacy layer for backwards compatibility, prototype
versions of ImageJ Ops for numerical processing, and many command
implementations. AEW contributed to ImageJ Ops and the ImageJ-OMERO
integration layer. ETA made extensive edits and improvements to the
manuscript. Lastly, as the primary principal investigator of ImageJ2, KWE
directed and advised on all aspects of the project, including development
directions and priorities. All authors contributed to, read, and approved the
final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 19 January 2017 Accepted: 14 November 2017

References
1. Schneider CA, Rasband WS, Eliceiri KW, et al. Nih image to imagej: 25

years of image analysis. Nat Methods. 2012;9(7):671–5.
2. Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW.

Quantitating the cell: turning images into numbers with imagej. Wiley
Interdiscip Rev Dev Biol. 2017;6(2):e260. doi:10.1002/wdev.260.

3. ImageJ Contributors. https://imagej.net/Contributors. Accessed 7 Aug
2017.

4. Peng H. Bioimage informatics: a new area of engineering biology.
Bioinformatics. 2008;24(17):1827–1836.

5. Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS,
Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, et al. Biological
imaging software tools. Nat Methods. 2012;9(7):697–710.

6. Swedlow JR, Eliceiri KW. Open source bioimage informatics for cell
biology. Trends Cell Biol. 2009;19(11):656–60.

7. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer
control of microscopes using μmanager. Hoboken: Wiley Online Library;
2010, pp. 14–20. doi:10.1002/0471142727.mb1420s92.

8. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman
N. Advanced methods of microscope control using μmanager software.
J Biol Methods. 2014;1(2):10. doi:10.14440/jbm.2014.36.

9. Kvilekval K, Fedorov D, Obara B, Singh A, Manjunath B. Bisque: a
platform for bioimage analysis and management. Bioinformatics.
2010;26(4):544–52.

10. Allan C, Burel JM, Moore J, Blackburn C, Linkert M, Loynton S,
MacDonald D, Moore WJ, Neves C, Patterson A, et al. Omero: flexible,
model-driven data management for experimental biology. Nature
Methods. 2012;9(3):245–53.

11. De Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S,
Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y,
et al. Icy: an open bioimage informatics platform for extended
reproducible research. Nature Methods. 2012;9(7):690–6.

12. Kankaanpää P, Paavolainen L, Tiitta S, Karjalainen M, Päivärinne J,
Nieminen J, Marjomäki V, Heino J, White DJ. Bioimagexd: an open,
general-purpose and high-throughput image-processing platform.
Nature Methods. 2012;9(7):683–9.

13. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O,
Guertin DA, Chang JH, Lindquist RA, Moffat J, et al. Cellprofiler: image
analysis software for identifying and quantifying cell phenotypes.
Genome Biol. 2006;7(10):100.

14. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa
V, Rueden C, Eliceiri KW, Carpenter AE. Improved structure, function
and compatibility for cellprofiler: modular high-throughput image
analysis software. Bioinformatics. 2011;27(8):1179–1180.

15. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb
C, Thiel K, Wiswedel B. KNIME: The Konstanz Information Miner In:
Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R, editors. Data
Analysis, Machine Learning and Applications: Proceedings of the 31st
Annual Conference of the Gesellschaft für Klassifikation e.V.,
Albert-Ludwigs-Universität Freiburg, March 7–9, 2007. Berlin: Springer;
2008. p. 319–326. doi:10.1007/978-3-540-78246-9_38.

16. Dietz C, Berthold MR. Knime for open-source bioimage analysis: A
tutorial. In: De Vos WH, Munck S, Timmermans J-P, editors. Focus on
Bio-Image Informatics. Cham: Springer; 2016. p. 179–97.
doi:10.1007/978-3-319-28549-8_7.

17. Warr WA. Scientific workflow systems: Pipeline pilot and knime. J
Comput Aided Mol Des. 2012;26(7):801–4.

18. Wan Y, Otsuna H, Chien C-B, Hansen C. Fluorender: an application of
2d image space methods for 3d and 4d confocal microscopy data
visualization in neurobiology research. In: Pacific Visualization
Symposium (PacificVis), 2012 IEEE. Songdo: IEEE; 2012. p. 201–8.
doi:10.1109/PacificVis.2012.6183592.

19. Peng H, Bria A, Zhou Z, Iannello G, Long F. Extensible visualization and
analysis for multidimensional images using vaa3d. Nat Protoc. 2014;9(1):
193–208.

20. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The imagej ecosystem:
An open platform for biomedical image analysis. Mol Reprod Dev.
2015;82(7-8):518–29.

21. List of ImageJ Update Sites. https://imagej.net/List_of_update_sites.
Accessed 17 Jan 2017.

22. SciJava. http://www.scijava.org/. Accessed 17 Jan 2017.
23. 2015 ImageJ Conference Presentation: Survey. https://imagej.github.io/

presentations/2015-09-03-imagej2-and-fiji/#/6. Accessed 4 Aug 2017.
24. Carpenter AE, Kamentsky L, Eliceiri KW. A call for bioimaging software

usability. Nature Methods. 2012;9(7):666.
25. Atwood J. Hardware Is Cheap, Programmers Are Expensive. 2008.

https://blog.codinghorror.com/hardware-is-cheap-programmers-are-
expensive/. Accessed 17 Jan 2017.

26. SciJava. https://imagej.net/SciJava. Accessed 17 Jan 2017.
27. Pietzsch T, Preibisch S, Tomančák P, Saalfeld S. Imglib2—generic image

processing in java. Bioinformatics. 2012;28(22):3009–011.
28. Hiner MC, Rueden CT, Eliceiri KW. Scifio: an extensible framework to

support scientific image formats. BMC Bioinformatics. 2016;17(1):521.
29. ImageJ. https://imagej.net/. Accessed 17 Jan 2017.
30. ImageJ Architecture. https://imagej.net/Architecture. Accessed 17 Jan

2017.

http://dx.doi.org/10.1002/wdev.260
https://imagej.net/Contributors
http://dx.doi.org/10.1002/0471142727.mb1420s92
http://dx.doi.org/10.14440/jbm.2014.36
http://dx.doi.org/10.1007/978-3-540-78246-9_38
http://dx.doi.org/10.1007/978-3-319-28549-8_7
http://dx.doi.org/10.1109/PacificVis.2012.6183592
https://imagej.net/List_of_update_sites
http://www.scijava.org/
https://imagej.github.io/presentations/2015-09-03-imagej2-and-fiji/#/6
https://imagej.github.io/presentations/2015-09-03-imagej2-and-fiji/#/6
https://blog.codinghorror.com/hardware-is-cheap-programmers-are-expensive/
https://blog.codinghorror.com/hardware-is-cheap-programmers-are-expensive/
https://imagej.net/SciJava
https://imagej.net/
https://imagej.net/Architecture

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 25 of 26

31. SciJava Common. https://imagej.net/SciJava_Common. Accessed 17
Jan 2017.

32. Spring. https://spring.io/. Accessed 17 Jan 2017.
33. Dependency Injection. https://en.wikipedia.org/wiki/

Dependency_injection. Accessed 17 Jan 2017.
34. Inversion of Control. https://en.wikipedia.org/wiki/Inversion_of_control.

Accessed 17 Jan 2017.
35. Gruber J. Daring Fireball: Markdown. https://daringfireball.net/projects/

markdown/. Accessed 17 Jan 2017.
36. ImageJ Common. https://imagej.net/ImageJ_Common. Accessed 17

Jan 2017.
37. Groovy. http://groovy-lang.org/. Accessed 7 Aug 2017.
38. Hiner MC, Rueden CT, Eliceiri KW. Imagej-matlab: a bidirectional

framework for scientific image analysis interoperability. Bioinformatics.
2016;33(4):629–630. doi:10.1093/bioinformatics/btw681.

39. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward
S, Metaxas D, Whitaker R. Engineering and algorithm design for an
image processing api: a technical report on itk-the insight toolkit. Stud
Health Technol Inform. 2002;85:586–592.

40. ImageJ-ITK. https://imagej.net/ITK. Accessed 17 Jan 2017.
41. ImageJ-OMERO. https://github.com/imagej/imagej-omero. Accessed 17

Jan 2017.
42. Goldberg IG, Allan C, Burel JM, Creager D, Falconi A, Hochheiser H,

Johnston J, Mellen J, Sorger PK, Swedlow JR. The open microscopy
environment (ome) data model and xml file: open tools for informatics
andquantitative analysis in biological imaging. Genome Biol. 2005;6(5):47.

43. ImageJ Tutorial Notebooks. https://imagej.github.io/tutorials/. Accessed
7 Aug 2017.

44. OpenCL. https://www.khronos.org/opencl/. Accessed 4 Aug 2017.
45. CUDA. http://www.nvidia.com/object/cuda_home_new.html. Accessed

4 Aug 2017.
46. Apache Spark. https://spark.apache.org/. Accessed 17 Jan 2017.
47. Chiba S, Nishizawa M. An easy-to-use toolkit for efficient java bytecode

translators. In: International Conference on Generative Programming
and Component Engineering. Erfurt: Springer; 2003. p. 364–76.

48. Feathers M. Working Effectively with Legacy Code. Upper Saddle River:
Prentice Hall Professional; 2004.

49. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch
T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source
platform for biological-image analysis. Nature Methods. 2012;9(7):
676–82.

50. Apache Maven. https://maven.apache.org/.
51. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A,

Loranger B, Moore J, Neves C, MacDonald D, et al. Metadata matters:
access to image data in the real world. J Cell Biol. 2010;189(5):777–82.

52. Austenfeld M, Beyschlag W. A graphical user interface for r in a rich
client platform for ecological modeling. J Stat Softw. 2012;49(4):1–19.

53. Mongis C. ImageJFX - an Enhanced Interface for ImageJ. http://www.
imagejfx.net/. Accessed 17 Jan 2017.

54. Preston-Werner T. The GitHub Effect: Forking Your Way to Better Code
(FOWA Vegas 2011). 2011. http://lanyrd.com/2011/fowa-vegas/sfxcw/.
Accessed 2 Apr 2016.

55. ImageJ Source Code. https://imagej.net/Source_code. Accessed 19 Jan
2017.

56. ImageJ Licensing. https://imagej.net/Licensing. Accessed 17 Jan 2017.
57. ImageJ Javadocs. https://javadoc.imagej.net/. Accessed 17 Jan 2017.
58. ImageJ Tutorials. https://imagej.net/Tutorials. Accessed 7 Aug 2017.
59. ImageJ Issue Management. https://imagej.net/Issues. Accessed 17 Jan

2017.
60. Contributing to ImageJ. https://imagej.net/Contributing. Accessed 17

Jan 2017.
61. Travis CI. https://travis-ci.org/. Accessed 7 Aug 2017.
62. Uber-JARs. https://imagej.net/Uber-JAR. Accessed 17 Jan 2017.
63. Personal Update Sites. https://sites.imagej.net/. Accessed 17 Jan 2017.
64. Hyde R. The fallacy of premature optimization. Ubiquity.

2009;2009(February):1.
65. ImgLib2 Benchmarks. https://imagej.net/ImgLib2_Benchmarks.

Accessed 17 Jan 2017.
66. Pietzsch T, Saalfeld S, Preibisch S, Tomancak P. Bigdataviewer:

visualization and processing for large image data sets. Nature Methods.
2015;12(6):481–3.

67. Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine
E, Bednarek SY, Shorte SL, Eliceiri KW. Trackmate: An open and
extensible platform for single-particle tracking. Methods. 2017;115:
80–90.

68. Cho NW, Lampson MA, Greenberg RA. In vivo imaging of dna
double-strand break induced telomere mobility during alternative
lengthening of telomeres. Methods. 2017;114:54–9.

69. Wolff C, Tinevez JY, Pietzsch T, Stamataki E, Harich B, Preibisch S,
Shorte S, Keller PJ, Tomancak P, Pavlopoulos A. Reconstruction of cell
lineages and behaviors underlying arthropod limb outgrowth with
multi-view light-sheet imaging and tracking. bioRxiv. 2017112623.

70. Preibisch S, Saalfeld S, Schindelin J, Tomancak P. Software for
bead-based registration of selective plane illumination microscopy data.
Nature Methods. 2010;7(6):418–9.

71. Preibisch S, Amat F, Stamataki E, Sarov M, Singer RH, Myers E,
Tomancak P. Efficient bayesian-based multiview deconvolution. Nature
Methods. 2014;11(6):645–8.

72. Icha J, Schmied C, Sidhaye J, Tomancak P, Preibisch S, Norden C.
Using light sheet fluorescence microscopy to image zebrafish eye
development. Journal of visualized experiments: JoVE. 2016;110:53966.
doi:10.3791/53966.

73. Fame RM, Chang JT, Hong A, Aponte-Santiago NA, Sive H. Directional
cerebrospinal fluid movement between brain ventricles in larval
zebrafish. Fluids and Barriers of the CNS. 2016;13(1):11.

74. Ferreira TA, Blackman AV, Oyrer J, Jayabal S, Chung AJ, Watt AJ,
Sjöström PJ, Van Meyel DJ. Neuronal morphometry directly from
bitmap images. Nature Methods. 2014;11(10):982–4.

75. Longair MH, Baker DA, Armstrong JD. Simple neurite tracer: open
source software for reconstruction, visualization and analysis of neuronal
processes. Bioinformatics. 2011;27(17):2453–454.

76. Luczynski P, Whelan SO, O’sullivan C, Clarke G, Shanahan F, Dinan TG,
Cryan JF. Adult microbiota-deficient mice have distinct dendritic
morphological changes: differential effects in the amygdala and
hippocampus. Eur J NeuroSci. 2016;44(9):2654–666.

77. Li K, Zhong X, Yang S, Luo Z, Li K, Liu Y, Cai S, Gu H, Lu S, Zhang H, et al.
Hipsc-derived retinal ganglion cells grow dendritic arbors and functional
axons on a tissue-engineered scaffold. Acta Biomater. 2017;54:117–27.

78. Valdez CM, Murphy GG, Beg AA. The rac-gap alpha2-chimaerin
regulates hippocampal dendrite and spine morphogenesis. Mol Cell
Neurosci. 2016;75:14–26.

79. Raymond ES. The Cathedral & the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. Sebastopol: "O’Reilly Media, Inc.";
2001.

80. ImageJ Communication Channels. https://imagej.net/Communication.
Accessed 17 Jan 2017.

81. ImageJ Forum. http://forum.imagej.net/. Accessed 17 Jan 2017.
82. Discourse. https://www.discourse.org/. Accessed 17 Jan 2017.
83. SciJava Team Roles. https://imagej.net/Team. Accessed 17 Jan 2017.
84. ImageJ Roadmap. https://imagej.net/Roadmap. Accessed 17 Jan 2017.
85. Deep Learning. http://deeplearning.net/. Accessed 19 Jan 2017.
86. OpenCV: Open Source Computer Vision. http://opencv.org/. Accessed

17 Jan 2017.
87. Scikit-image: Image Processing in Python. http://scikit-image.org/.

Accessed 17 Jan 2017.
88. Amazon Web Services. https://aws.amazon.com/. Accessed 17 Jan 2017.
89. Ferreira T. ImageJ User Guide. https://imagej.net/docs/guide/. Accessed

17 Jan 2017.
90. ImageJ 1.x Documentation. https://imagej.net/index.html. Accessed 17

Jan 2017.
91. ImageJ Information and Documentation Portal. http://imagejdocu.

tudor.lu/. Accessed 17 Jan 2017.
92. ImageJ Search. https://search.imagej.net/. Accessed 17 Jan 2017.
93. ImageJ Funding. https://imagej.net/Funding. Accessed 17 Jan 2017.
94. Keating A. Bat Cochlea Volume. https://imagej.net/images/bat-cochlea-

volume.txt. Accessed 17 Jan 2017.
95. Lorensen WE, Cline HE. Marching cubes: A high resolution 3d surface

construction algorithm. In: ACM Siggraph Computer Graphics. vol. 21.
New York: ACM; 1987. p. 163–9. doi:10.1145/37401.37422.

96. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G.
Meshlab: an open-source mesh processing tool. In: Eurographics Italian
Chapter Conference. vol. 2008. Salerno: The Eurographics Association;
2008. p. 129–36.

https://imagej.net/SciJava_Common
https://spring.io/
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Inversion_of_control
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://imagej.net/ImageJ_Common
http://groovy-lang.org/
http://dx.doi.org/10.1093/bioinformatics/btw681
https://imagej.net/ITK
https://github.com/imagej/imagej-omero
https://imagej.github.io/tutorials/
https://www.khronos.org/opencl/
http://www.nvidia.com/object/cuda_home_new.html
https://spark.apache.org/
https://maven.apache.org/
http://www.imagejfx.net/
http://www.imagejfx.net/
http://lanyrd.com/2011/fowa-vegas/sfxcw/
https://imagej.net/Source_code
https://imagej.net/Licensing
https://javadoc.imagej.net/
https://imagej.net/Tutorials
https://imagej.net/Issues
https://imagej.net/Contributing
https://travis-ci.org/
https://imagej.net/Uber-JAR
https://sites.imagej.net/
https://imagej.net/ImgLib2_Benchmarks
http://dx.doi.org/10.3791/53966
https://imagej.net/Communication
http://forum.imagej.net/
https://www.discourse.org/
https://imagej.net/Team
https://imagej.net/Roadmap
http://deeplearning.net/
http://opencv.org/
http://scikit-image.org/
https://aws.amazon.com/
https://imagej.net/docs/guide/
https://imagej.net/index.html
http://imagejdocu.tudor.lu/
http://imagejdocu.tudor.lu/
https://search.imagej.net/
https://imagej.net/Funding
https://imagej.net/images/bat-cochlea-volume.txt
https://imagej.net/images/bat-cochlea-volume.txt
http://dx.doi.org/10.1145/37401.37422

Rueden et al. BMC Bioinformatics (2017) 18:529 Page 26 of 26

97. Dey N, Blanc-Feraud L, Zimmer C, Roux P, Kam Z, Olivo-Marin JC,
Zerubia J. Richardson–lucy algorithm with total variation regularization
for 3d confocal microscope deconvolution. Microsc Res Tech.
2006;69(4):260–6.

98. McNamara G. Leica Microscope GPU Deconvolution Stellaris FISH
Dataset #1. https://works.bepress.com/gmcnamara/31/. Accessed 17
Jan 2017.

99. Northan B. Flexible Deconvolution Using ImageJ Ops. https://imagej.
github.io/presentations/2015-09-04-imagej2-deconvolution/. Accessed
17 Jan 2017.

100. Legland D, Arganda-Carreras I, Andrey P. Morpholibj: integrated library
and plugins for mathematical morphology with imagej. Bioinformatics.
2016;32(22):3532–534.

101. SciJava Scripting: Groovy. https://github.com/scijava/scripting-groovy.
Accessed 8 Aug 2017.

102. BeanShell: Lightweight Scripting for Java. http://beanshell.org/.
Accessed 8 Aug 2017.

103. SciJava Scripting: BeanShell. https://github.com/scijava/scripting-
beanshell. Accessed 8 Aug 2017.

104. Scifio-bf-compat. https://github.com/scifio/scifio-bf-compat. Accessed
8 Aug 2017.

105. SCIFIO OME-XML Support. https://github.com/scifio/scifio-ome-xml.
Accessed 8 Aug 2017.

106. Eclipse. https://eclipse.org/. Accessed 8 Aug 2017.
107. ImageJ Server. https://github.com/imagej/imagej-server. Accessed 8

Aug 2017.
108. ImageJ Legacy. https://github.com/imagej/imagej-legacy. Accessed 8

Aug 2017.
109. ImageJ 1.x Patcher. https://github.com/imagej/ij1-patcher. Accessed 8

Aug 2017.
110. SimpleITK. https://simpleitk.org/. Accessed 8 Aug 2017.
111. JavaScript. https://developer.mozilla.org/en-US/docs/Web/JavaScript.

Accessed 8 Aug 2017.
112. SciJava Scripting: JavaScript. https://github.com/scijava/scripting-

javascript. Accessed 8 Aug 2017.
113. Project Nashorn. http://openjdk.java.net/projects/nashorn/. Accessed 8

Aug 2017.
114. Rhino JavaScript Implementation. https://developer.mozilla.org/en-US/

docs/Mozilla/Projects/Rhino. Accessed 8 Aug 2017.
115. Project Jupyter. https://jupyter.org/. Accessed 8 Aug 2017.
116. SciJava Jupyter Kernel. https://github.com/scijava/scijava-jupyter-

kernel. Accessed 8 Aug 2017.
117. Beaker Extensions for Jupyter Notebook. https://github.com/twosigma/

beakerx. Accessed 8 Aug 2017.
118. Kotlin. https://kotlinlang.org/. Accessed 8 Aug 2017.
119. SciJava Scripting: Kotlin. https://github.com/scijava/scripting-kotlin.

Accessed 8 Aug 2017.
120. Lisp (programming Language). https://en.wikipedia.org/wiki/

Lisp_(programming_language). Accessed 8 Aug 2017.
121. SciJava Scripting: Clojure. https://github.com/scijava/scripting-clojure.

Accessed 8 Aug 2017.
122. The Clojure Programming Language. https://clojure.org/. Accessed 8

Aug 2017.
123. MATLAB: The Language of Technical Computing. https://www.

mathworks.com/products/matlab.html. Accessed 8 Aug 2017.
124. SciJava Scripting: MATLAB. https://github.com/scijava/scripting-matlab.

Accessed 8 Aug 2017.
125. Matlabcontrol. https://code.google.com/archive/p/matlabcontrol/.

Accessed 8 Aug 2017.
126. Möller B, Glaß M, Misiak D, Posch S. Mitobo-a toolbox for image

processing and analysis. J Open Res Softw. 2016;4(1):17.
doi:10.5334/jors.103.

127. Alida. http://www.informatik.uni-halle.de/alida/. Accessed 8 Aug 2017.
128. Domínguez C, Heras J, Pascual V. Ij-opencv: Combining imagej and

opencv for processing images in biomedicine. Comput Biol Med.
2017;84(C):189–94.

129. JavaCV: Java Interface to OpenCV and More. https://github.com/
bytedeco/javacv. Accessed 8 Aug 2017.

130. Python. https://python.org/. Accessed 8 Aug 2017.
131. Imglib2-imglyb. https://github.com/hanslovsky/imglib2-imglyb.

Accessed 8 Aug 2017.

132. PyJNIus: Access Java Classes from Python. https://github.com/kivy/
pyjnius. Accessed 8 Aug 2017.

133. Jython: Python for the Java Platform. http://jython.org/. Accessed 8 Aug
2017.

134. JyNI – Jython Native Interface. https://jyni.org/. Accessed 8 Aug 2017.
135. Imagey: ImageJ with CPython REPL. https://github.com/hanslovsky/

imagey. Accessed 8 Aug 2017.
136. SciJava Scripting: CPython. https://github.com/scijava/scripting-

cpython. Accessed 8 Aug 2017.
137. Python-javabridge: Python Wrapper for the Java Native Interface. https://

github.com/LeeKamentsky/python-javabridge. Accessed 8 Aug 2017.
138. SciJava Scripting: Jython. https://github.com/scijava/scripting-jython.

Accessed 8 Aug 2017.
139. The R Project for Statistical Computing. https://r-project.org/. Accessed

8 Aug 2017.
140. SciJava Scripting: Renjin. https://github.com/scijava/scripting-renjin.

Accessed 8 Aug 2017.
141. Renjin. http://renjin.org/. Accessed 8 Aug 2017.
142. Representational State Transfer. https://en.wikipedia.org/wiki/

Representational_state_transfer. Accessed 8 Aug 2017.
143. Dropwizard. http://dropwizard.io/. Accessed 8 Aug 2017.
144. Ruby Programming Language. https://www.ruby-lang.org/. Accessed 8

Aug 2017.
145. SciJava Scripting: JRuby. https://github.com/scijava/scripting-jruby.

Accessed 8 Aug 2017.
146. The Scala Programming Language. https://scala-lang.org/. Accessed 8

Aug 2017.
147. SciJava Scripting: Scala. https://github.com/scijava/scripting-scala.

Accessed 8 Aug 2017.
148. TensorFlow: An Open-source Software Library for Machine Intelligence.

https://www.tensorflow.org/. Accessed 8 Aug 2017.
149. ImageJ-TensorFlow. https://github.com/imagej/imagej-tensorflow.

Accessed 8 Aug 2017.
150. MaMuT. https://imagej.net/MaMuT. Accessed 14 Aug 2017.
151. Jug F, Pietzsch T, Kainmüller D, Funke J, Kaiser M, van Nimwegen E,

Rother C, Myers G. Optimal joint segmentation and tracking of
escherichia coli in the mother machine. In: Cardoso MJ, Simpson I,
Arbel T, Precup D, Ribbens A, editors. Bayesian and graphical Models for
Biomedical Imaging: First International Workshop, BAMBI 2014,
Cambridge, MA, USA, September 18, 2014, Revised Selected Papers.
Cham: Springer; 2014. p. 25–36. doi:10.1007/978-3-319-12289-2_3.

152. Jug F, Pietzsch T, Kainmüller D, Myers G. Tracking by assignment
facilitates data curation. In: MICCAI IMIC Workshop. vol. 2. Boston:
Springer; 2014.

153. Mary H, Rueden C, Ferreira T. KymographBuilder: Release 1.2.4. 2016.
doi:10.5281/zenodo.56702.

154. Hanslovsky P, Bogovic JA, Saalfeld S. Post-acquisition image based
compensation for thickness variation in microscopy section series. In:
Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium On.
New York: IEEE; 2015. p. 507–11. doi:10.1109/ISBI.2015.7163922.

155. Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J,
Cardona A, Seung HS. Trainable weka segmentation: a machine
learning tool for microscopy pixel classification. Bioinformatics.
2017;33(15):2424–2426. doi:10.1093/bioinformatics/btx180.

156. Daerr A, Mogne A. Pendent_drop: an imagej plugin to measure the
surface tension from an image of a pendent drop. J Open Res Softw.
2016;4(1):3. doi:10.5334/jors.97.

157. SciView. https://github.com/scenerygraphics/SciView. Accessed 14 Aug
2017.

158. Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3d
microscopic image acquisitions. Bioinformatics. 2009;25(11):1463–1465.

159. Coloc 2. https://imagej.net/Coloc_2. Accessed 14 Aug 2017.

https://works.bepress.com/gmcnamara/31/
https://imagej.github.io/presentations/2015-09-04-imagej2-deconvolution/
https://imagej.github.io/presentations/2015-09-04-imagej2-deconvolution/
https://github.com/scijava/scripting-groovy
http://beanshell.org/
https://github.com/scijava/scripting-beanshell
https://github.com/scijava/scripting-beanshell
https://github.com/scifio/scifio-bf-compat
https://github.com/scifio/scifio-ome-xml
https://eclipse.org/
https://github.com/imagej/imagej-server
https://github.com/imagej/imagej-legacy
https://github.com/imagej/ij1-patcher
https://simpleitk.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/scijava/scripting-javascript
https://github.com/scijava/scripting-javascript
http://openjdk.java.net/projects/nashorn/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://jupyter.org/
https://github.com/scijava/scijava-jupyter-kernel
https://github.com/scijava/scijava-jupyter-kernel
https://github.com/twosigma/beakerx
https://github.com/twosigma/beakerx
https://kotlinlang.org/
https://github.com/scijava/scripting-kotlin
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://github.com/scijava/scripting-clojure
https://clojure.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://github.com/scijava/scripting-matlab
https://code.google.com/archive/p/matlabcontrol/
http://dx.doi.org/10.5334/jors.103
http://www.informatik.uni-halle.de/alida/
https://github.com/bytedeco/javacv
https://github.com/bytedeco/javacv
https://python.org/
https://github.com/hanslovsky/imglib2-imglyb
https://github.com/kivy/pyjnius
https://github.com/kivy/pyjnius
http://jython.org/
https://jyni.org/
https://github.com/hanslovsky/imagey
https://github.com/hanslovsky/imagey
https://github.com/scijava/scripting-cpython
https://github.com/scijava/scripting-cpython
https://github.com/LeeKamentsky/python-javabridge
https://github.com/LeeKamentsky/python-javabridge
https://github.com/scijava/scripting-jython
https://r-project.org/
https://github.com/scijava/scripting-renjin
http://renjin.org/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
http://dropwizard.io/
https://www.ruby-lang.org/
https://github.com/scijava/scripting-jruby
https://scala-lang.org/
https://github.com/scijava/scripting-scala
https://www.tensorflow.org/
https://github.com/imagej/imagej-tensorflow
https://imagej.net/MaMuT
http://dx.doi.org/10.1007/978-3-319-12289-2_3
http://dx.doi.org/10.5281/zenodo.56702
http://dx.doi.org/10.1109/ISBI.2015.7163922
http://dx.doi.org/10.1093/bioinformatics/btx180
http://dx.doi.org/10.5334/jors.97
https://github.com/scenerygraphics/SciView
https://imagej.net/Coloc_2

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Why ImageJ?
	Design goals
	Functionality
	Extensibility
	Reproducibility
	Usability
	Performance
	Compatibility
	Community

	Implementation
	SciJava common
	Service framework
	Plugin framework
	Core extensibility
	Modules
	User interface

	Module framework

	ImageJ common
	SCIFIO
	ImageJ ops
	Op chaining and special ops

	ImageJ legacy
	ImageJ updater

	Results and discussion
	Functionality
	Extensibility
	Reproducibility
	Usability
	Performance

	Compatibility
	Community
	Future directions

	Conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

