
SOFTWARE Open Access

Synima: a Synteny imaging tool for
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Abstract

Background: Ortholog prediction and synteny visualization across whole genomes are valuable methods for detecting
and representing a range of evolutionary processes such as genome expansion, chromosomal rearrangement, and
chromosomal translocation. Few standalone methods are currently available to visualize synteny across any number of
annotated genomes.

Results: Here, I present a Synteny Imaging tool (Synima) written in Perl, which uses the graphical features of R. Synima
takes orthologues computed from reciprocal best BLAST hits or OrthoMCL, and DAGchainer, and outputs an overview of
genome-wide synteny in PDF. Each of these programs are included with the Synima package, and a pipeline for their
use. Synima has a range of graphical parameters including size, colours, order, and labels, which are specified in a config
file generated by the first run of Synima – and can be subsequently edited. Synima runs quickly on a command line to
generate informative and publication quality figures. Synima is open source and freely available from https://github.com/
rhysf/Synima under the MIT License.

Conclusions: Synima should be a valuable tool for visualizing synteny between two or more annotated genome
assemblies.
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Background
Orthologous genes are sections of nucleic acid that
encode a protein or functional RNA molecule and have
descended from a single ancestral gene followed by
divergence through speciation [1, 2]. In contrast, paralo-
gous genes are those that have arisen from duplication
within a single species. Orthology and paralogy together
constitute sequence homology. Numerous repositories of
pre-determined orthologs are available including OrthoDB
[3], Eggnog [4], InParanoid [5], and the Orthologous
Matrix (OMA) project [6]. Orthologous genes can also be
identified de novo from newly annotated genomes to
assess assembly or annotation completeness, predict/infer
gene function, and as a precursor to phylogenetic analyses
between two or more species [7–9]. Many tools and
methods have been developed to predict orthologs, for
example via reciprocal best hits from pairwise Basic Local

Alignment Search Tool (BLAST) [10] of proteins, which
can be further clustered and assessed by such tools (as
well as both being databases): InParanoid [11] or
OrthoMCL [12]. Large gene families, low quality annota-
tion and/or assemblies have each been identified as
contributing factors to accuracy in ortholog prediction
[13]. Ortholog predictions are further refined by identify-
ing those that fall in contiguous chains, such as by the tool
DAGchainer [14].
Orthologs can be used to provide evidence for synteny:

the conservation of the ordering of loci on chromosomes
between two individuals or species. Visualizing syntenic
regions is valuable for detecting and displaying evolu-
tionary processes, including genome expansions [15],
and chromosomal translocations [16]. Furthermore, lack
of synteny has been used to identify horizontal gene
transfer [17]. Genome assembly contamination or
inaccuracies may also be detected given, for example,
low levels of synteny, or an abundance of chromosomal
rearrangements in otherwise closely related isolates.
Other methods for detecting these processes include
Dot Plots [18], or global alignment search tools such as

Correspondence: rfarrer@broadinstitute.org
1Department of Infectious Disease Epidemiology, Imperial College London,
London W2 1PG, UK
2Department of Genetics, Environment and Evolution, University College
London, London WC1E 6BT, UK

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Farrer BMC Bioinformatics  (2017) 18:507 
DOI 10.1186/s12859-017-1939-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1939-7&domain=pdf
http://orcid.org/0000-0001-8456-7458
https://github.com/rhysf/Synima
https://github.com/rhysf/Synima
mailto:rfarrer@broadinstitute.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Mummer [19] or Threaded Blockset Aligner (TBA) [20].
However, these methods are inherently genome rather
than gene centric, requiring additional work to identify
changes to gene content across species, or indeed distin-
guish erroneous ortholog or genome assembly from bio-
logical variation.
Synteny visualization has been implemented in a range

of software suites and tools such as Sybil/Sybillite [21],
which is both a command line and web tool to search and
visualize several genomes based on clusters of orthologous
genes. Another popular synteny visualization tool is Circos
[22], which draws genomes as a circle, with arcs between
regions of conservation or interactions. Owing to differ-
ences in requirements, data-input, and the type of
visualization required – additional tools are still required
for use in comparative genomes, while existing tools often
require further development and maintenance for new
features, and error corrections.

Implementation
Here, I present a Perl based tool named Synteny Imager
(Synima) to visualize chains of predicted orthologs
between two or more genomes. Synima reads the orthol-
ogy data contained in DAGchainer output files and gen-
erates and launches an Rscript visualising the locations
and relationships between chromosomes and genes of
each genome in PDF. Chromosomes and/or up to three
separate gene categories can be optionally highlighted in
a single run of Synima, either as specified on the com-
mand line from an initial run, or specified in a Synima
config file. Synima is freely available from https://
github.com/rhysf/Synima. Synima supersedes code that
was successfully used in a range of projects [16, 23–25],
where it facilitated the quantification and presentation of
genome similarity and evolutionary changes between
and within species. The tool has therefore been devel-
oped and tested on a range of datasets, including up to
12 genomes of 17.2–18.3 million bases long each,
although this does not reflect an upper limit.
Included in the Synima package is a pipeline written for

Linux or Macintosh OS for predicting and generating
chains of orthologs between any number of genomes.
Details of the methodology for each of these programs are
available from their respective publications (BLAST [10],
OrthoMCL [12] and DAGchainer [14]). Full details of the
pipeline are also provided in the README accompanying
the Synima application. Briefly, the Synima pipeline starts
with a Repository specification file (Repo_spec) that speci-
fies the genome FASTA, complementarity-determining
region (cds) FASTA, peptide (pep) FASTA, and annotation
GFF for each genome being compared. These files need to
be (and are checked for being) uniformly formatted for
each isolate or species (i.e. ID’s in FASTA corresponding
to the same parent ID of a given feature in the GFF). The

Repo_spec and accompanying files are used to generate a
Repository Sequence Database, consisting of a summary
of all the contained data, and are the input for the
remaining steps. Next, an all vs all legacy BLAST wrapper
script is run (optionally in parallel). The m8 formatted
output from pairwise blasts are clustered using an
OrthoMCL v1.4 wrapper script, that has the mcl applica-
tion v10–201 dependency (https://micans.org/mcl/).
Alternatively, (for very large datasets), the blast reports
can be clustered by reciprocal best hits (RBH) with the
Slclust application dependency (https://sourceforge.net/p/
slclust/) that performs single-linkage clustering. Next,
summaries of the OrthoMCL or RBH outputs are gener-
ated. A DAGchainer wrapper script is finally run on the.
Cluster summary file, and Synima run on the DAGchainer
output (.aligncoords and aligncoords.spans).
Synima (the ultimate step of the pipeline, or simply

run on independently generated DAGchainer output)
runs on the command line of Linux, Macintosh or
terminal emulators in Windows, and requires only the
Perl and R interpreters, and BioPerl installed. As input,
Synima takes a genome FASTA file for each isolate of
interest, and the predicted chains of orthologs in a
tabulated delimited aligncoords and aligncoords.spans
file, described in the README, which can be generated
from tools such as DAGchainer [14]. Synima has a range
of graphical parameters (size, chromosomal colours,
gene colours, text etc.), and outputs a PDF overview of
the determined synteny.

Results
Figure 1a shows an example output figure from Synima.
Here, the synteny (shown in default R colour ‘azure4’) of
four genomes belonging to each of the four known
lineages of the environmental and human pathogen
Cryptococcus gattii are presented (data from [16]). Small
black boxes above contig line show locations of all genes
(And the lack of genes in a large region of WM276 cgbb is
thereby revealed). For illustrative purposes, supercontig
(sc) 5 of the hypervirulent VGII CNB2/R265 isolate and
sc1 of VGIV IND107 are highlighted in R colours ‘dark-
goldenrod1’ and ‘cadetblue’, respectively. The location of
genes involved in 1. ergosterol production, 2. capsule
biosynthesis and 3. capsule attachment and cell wall
remodeling [26] are presented in R colours ‘cornflower-
blue’, ‘coral3’ and ‘darkcyan’, respectively. As a comparison
to Synima’s output, two alternative tools for visualizing
synteny are shown in Fig. 1b and c: a Dotplot generated
from a Mummer alignment [19] and a Circos figure
respectively, both showing synteny between C. gattii
CNB2/R265 and IND107. These alternative methods may
be preferable for identifying chromosomal duplications
within a genome for example, while Synima may be
chosen for visualizing synteny between multiple genomes.
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In addition to visualizing synteny, Synima includes a
pipeline for the prediction of orthologs and preparing
input aligncoords and aligncoords.spans files from a
genome FASTA and annotation in GFF3 format for each
isolate. The pipeline generates all vs all (pairwise)
BLASTp hits with or without the option of parallel
computing via the Platform Load Sharing Facility (LSF),
Sun GridEngine (SGE) or Univa GridEngine (UGE),
RBH or OrthoMCL clustering, and DAGChainer. Each
program is included in the Synima repository, and was
used for the generation of Fig. 1a. This pipeline therefore
facilitates both the detection of orthologs, and the
correctly formatted inputs for Synima.

Conclusion
I present here a new tool for Synteny Imaging (Synima)
from chains of predicted orthologs, including a pipeline

for their prediction. Synima was used in several previous
projects, although it has undergone large code refine-
ments for reducing bugs, increased ability to run on a
broad range of genome sizes (kilobases to megabases),
FASTA ID formats, and a substantial increase in
graphical parameters. For example, Synima identifies the
clearest way to image the synteny with minimum over-
lap, which can nevertheless also be specified (or further
refined) by editing the self-generated Config file.
Although several tools have been developed to

visualize synteny from predicted orthologs i.e. [21, 22],
the particular aesthetics of Synima’s output, its ease to
which it can be incorporated into existing bioinformatics
pipelines, and speed of use (circa minutes), should make
Synima a valuable tool for researchers interested in
synteny between two or more annotated genome assem-
blies, and highlighting genes of interest among them.

a

b c

Fig. 1 a Example output figure from Synima. Synteny is shown in the default R colour azure4 for four genomes representing each of the four lineages
of the pathogenic fungus Cryptococcus gattii [16]. Isolate names are shown to the right of their genomes, which are represented by lines, with vertical
lines indicating chromosomal/scaffold/contig borders, and their identifiers listed above (sc = supercontig, +/− = orientation). Supercontig (sc) 5 of the
hypervirulent VGII CNB2/R265 isolate and sc1 of VGIV IND107 are highlighted in R colours ‘darkgoldenrod1’ and ‘cadetblue’, respectively. Genes involved in
1) ergosterol production, 2) capsule biosynthesis and 3) capsule attachment and cell wall remodeling [26] are shown as boxes in R colours ‘cornflowerblue’,
‘coral3’ and ‘darkcyan’, respectively. Sc’s and genes highlighted are for illustrative purposes only. The ordering and orientation of chromosomes are
automatically calculated and applied by Synima, although manual changes to these can be made in the config file, e.g. re-orienting sc1 in IND107
(highlighted), CA1280 sc2 and WM276 cgba to avoid synteny overlap across the four genomes. b Mummer 3.22 alignment and Dotplot for C. gattii VGII
CNB2/R265 vs C. gattii VGIV IND107. c Circos v0.66 figure of C. gattii VGII CNB2/R265 vs C. gattii VGIV IND107, ordered according to Synima’s pipeline
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