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Abstract

Background: In the search for novel causal mutations, public and/or private variant databases are nearly always
used to facilitate the search as they result in a massive reduction of putative variants in one step. Practically, variant
filtering is often done by either using all variants from the variant database (called the absence-approach, i.e. it is
assumed that disease-causing variants do not reside in variant databases) or by using the subset of variants with
an allelic frequency > 1% (called the 1%-approach). We investigate the validity of these two approaches in terms
of false negatives (the true disease-causing variant does not pass all filters) and false positives (a harmless mutation
passes all filters and is erroneously retained in the list of putative disease-causing variants) and compare it with an
novel approach which we named the quantile-based approach. This approach applies variable instead of static
frequency thresholds and the calculation of these thresholds is based on prior knowledge of disease prevalence,
inheritance models, database size and database characteristics.

Results: Based on real-life data, we demonstrate that the quantile-based approach outperforms the absence-approach
in terms of false negatives. At the same time, this quantile-based approach deals more appropriately with the variable
allele frequencies of disease-causing alleles in variant databases relative to the 1%-approach and as such allows a better
control of the number of false positives.
We also introduce an alternative application for variant database usage and the quantile-based approach. If
disease-causing variants in variant databases deviate substantially from theoretical expectancies calculated with
the quantile-based approach, their association between genotype and phenotype had to be reconsidered in 12
out of 13 cases.

Conclusions: We developed a novel method and demonstrated that this so-called quantile-based approach is a
highly suitable method for variant filtering. In addition, the quantile-based approach can also be used for variant
flagging. For user friendliness, lookup tables and easy-to-use R calculators are provided.
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Background
The identification of genetic variation responsible for a
phenotype, is one of the key aims in the field of genetics.
Already in 1999, the importance of a central variant
database to facilitate the discovery of variant-phenotype
associations was recognized and led subsequently to the
establishment of dbSNP [1]. More recently, large scale
projects like HapMap and the 1000 Genomes project

variant database (1000G) were initiated that actively col-
lect and sequence samples in order to identify the vast
majority of genetic variation segregating in several popu-
lations [2, 3].
While these three databases all are publicly available

variant catalogs, they differ in terms of scope, inclusion
criteria and data collection [2–4]. For dbSNP, the scope
of the database was “to provide a dense catalog of vari-
ants” and this catalog encompasses both “disease-caus-
ing clinical mutations and neutral polymorphisms” [1].
In addition, anyone can contribute to the database. For
HapMap and 1000G, only samples fulfilling specific
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inclusion criteria (i.e. individuals that wanted to partici-
pate had to be legally competent adult donors that gave
their explicit consent) were allowed and data was ac-
tively generated from a limited number of participating
centers [2, 3]. These differences between databases can
also influence the variants that end up in these data-
bases. For example, based on the inclusion criteria of the
latter two databases, for specific phenotypes, severely
diseased individuals, are less likely to be included in the
latter two databases.
Irrespective of the differences between these databases,

they are often used the same way. Practically, this means
that the facilitating role of variant databases for causal
variant discovery lies currently mainly in reducing the
large list of putative variants discovered during sequen-
cing. This is often done according to one of the follow-
ing approaches. The first approach is based on the
assumption that disease-causing variants cannot reside
in these databases [5, 6], hence, all variants in the variant
database are used for filtering the list of putative
disease-causing variants discovered during sequencing
(called the “absence-approach”). The second approach
employs allele frequency based cut-offs that differ with
the mode of inheritance: for autosomal recessive (AR)
disorders, all variants in databases with an allelic fre-
quency of >1% can be used, while for autosomal domin-
ant (AD) disorders, the threshold is set at 0.1% (called
the “1%-approach”) [6]. As a consequence, a subset of
the total number of variants inside these variant data-
bases is used at that moment for filtering.
Even though the absence- and 1%-approach are part of

the standard toolbox, to our knowledge, their perform-
ance has not been assessed yet. As such, the first aim
was to assess the validity of these two standard ap-
proaches and at the same time compare their perform-
ance with a novel approach, the so-called quantile-based
approach, which we believed would improve the search
for novel variants responsible for Mendelian disorders.
This quantile-based approach also applies frequency
thresholds, but instead of static thresholds, these thresh-
olds are variable and use prior knowledge on disease
prevalence and inheritance data on one hand and data-
base size and database characteristics on the other hand.
In addition, while databases are typically used for vari-

ant filtering, we also wanted to introduce an alternative
application based of the quantile-based approach. This
alternative application is based on the hypothesis that if
a mutation is linked to a disease according to some pro-
posed mode of inheritance, we should be able to predict
its allelic frequency in a variant database. If this not the
case, i.e. if the actual allelic frequency deviates suffi-
ciently from these theoretical expectations, this might
indicate that the proposed role of that variant in the dis-
ease has to be reconsidered.

Methods
In this section, we will first introduce the quantile-based
approach. Next, two different methods for variant data-
base usage based on this quantile-based approach are
developed (Fig. 1). The aim of the first method is to pro-
vide an improved method for variant filtering when
novel disease-causing variants are looked for (method 1).
The starting point of this method is thus a large list of
variants discovered during a new sequencing experiment
that needs to reduced as much as possible. The second
method uses the allele frequency of disease-causing vari-
ants that reside in variant databases to assess the validity
of the proposed models. As such, this method allows the
flagging of previously identified disease-causing variants
that warrant additional research (method 2). The start-
ing point of this method is thus previously discovered
variants in variant databases for which an association
with a phenotype has been reported.

Terminology
Notation wise, the allelic frequencies for one locus are
defined as p = frequency of allele 1 (A1), which is consid-
ered to be the normal wild type allele and q = frequency
of allele 2 (A2), which is considered to be the deleterious
mutant allele with p + q = 1. Based on Hardy-Weinberg
equilibrium (HWE), the following relation exists be-
tween the aforementioned allelic frequencies and the
corresponding genotype frequencies for the genotypes
A1A1, A1A2 and A2A2: P + H +Q = p2 + 2pq + q2 = 1.
Penetrance and detectance are defined as Ppt = P (phe-

notype|genotype) and Pdt = P (genotype|phenotype), re-
spectively [5, 7, 8]. Whereas disease prevalence Pd and
the previously introduced allele and genotype frequen-
cies are population parameters, the frequency of the
disease-causing allele in the variant database is a sample
parameter and is referred to as f (Fig. 1).

The quantile-based approach
The quantile-based approach is short for “the expected
allele frequency theoretical quantile-based filtering ap-
proach” that combines knowledge on disease prevalence,
mode of inheritance, database size and database charac-
teristics to calculate the expected allele frequency of the
disease-causing allele in variant databases.

Assumptions
The following assumptions are used:

1. All causal variants are bi-allelic and in HWE.
2. The disease prevalence Pd is error-free and from the

same population the individuals included in the
database are sampled from.

3. Each individual included in the database is sequenced
at a sufficient sequencing depth and with sufficient
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quality to avoid allelic drop-out and sequencing
errors.

4. All individuals and alleles are sampled independent
and identically distributed.

If genetic heterogeneity is present, the following sim-
plification is made: if k loci are responsible for a pheno-
type, they are assumed to be mutually exclusive. The
validity of this approximation is based on the observa-
tion that the probability that two unlinked loci occur in
a disease-state in one individual is extremely small, as
demonstrated in Additional file 1.

Linking population disease prevalence with expected
allele frequency in variant databases and allele frequency
thresholds: a quantile-based approach
The starting point is knowledge on the disease preva-
lence Pd. Given assumptions 1 and 2, when the disease
prevalence Pd is known, it can be linked with q with dif-
ferent formulas according to the mode of inheritance.
Several formulas are necessary as specific adaptations
need to be considered when penetrance and/or detec-
tance is reduced (Additional file 2). In addition, due to
the inclusion criteria for HapMap and 1000G, not every
individual from the population is available for sampling

[2, 3]. The reason is that demanding legal competence
might result in the selective exclusion of diseased indi-
viduals from participating. As this results in a selective
exclusion of disease-causing alleles (relative to the wild
type alleles), this might influence f. As such, separate for-
mulas have to be developed for the situation where indi-
viduals can be selected at random from the entire
population (situation a) or when individuals can only be
selected from the non-diseased part of the population
(situation b).
For situation a, it can be shown that the relation be-

tween q and Pd for fully penetrant and non-heterogeneous
AD and AR diseases, respectively equals to:

q ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffi

1−Pd

p

ðADÞ

q ¼
ffiffiffiffiffiffi

Pd

p

ðARÞ

Based on this relation, it can be seen that for an identi-
cal Pd, the q for AD diseases is far lower compared to
AR diseases (See Additional file 3). When the same dis-
ease characteristics apply, but the sampling situation is
limited to situation b, the formulas have to be adapted.
The derivation of the aforementioned formulas for situ-
ation a and additional formulas for genetic heterogeneity,

Fig. 1 An overview of variant filtering (method 1) and variant flagging (method 2). A. method 1: In a sequencing study, a hypothetical list of 7
variants was discovered, with variant 4 being the causal variant and the other ones harmless co-inherited mutations. Inside the variant database,
5 out of 7 variants discovered during sequencing (including variant 4) are already represented with varying allele frequencies f (allele frequency
db-column). Three different approaches for variant filtering can be used. Candidate variants that are filtered out, are denoted with an X. Candidate
variants that are retained after filtering are denoted with a ✓. By assuming absence of disease-causing variants from variant databases (absence-
approach), the disease-causing variant was erroneously filtered out. The same issue was encountered by using a static 1% threshold. The quantile-
based approach was used to calculate a suitable allelic frequency threshold Tv. Based on the disease prevalence Pd of 1 in 10,000 individuals and
an autosomal recessive mode of inheritance, the population allele frequency q is 0.01. For a variant database of 50 individuals (= 100 chromosomes,
situation a), the Tv associated with the 95th quantile equals 0.03 (3/100). While the allele frequency f of the disease-causing variant in the variant
database (= 0.02) is slightly higher than the theoretically expected population allele frequency (= 0.01) due to sampling variability, the Tv cut-off (0.03)
has made it possible to discover the true disease-causing variant, while this was not the case for the other two approaches. B. method 2: this analysis
determines how likely it is that a disease-causing variant (variant 4) occurs at least twice in a variant database of 50 individuals (= 100 chromosomes,
situation a), given Pd equals 1 in 10,000 and an autosomal mode of inheritance. Based on the binomial distribution, this probability equals 0.26. As such,
there is insufficient evidence to conclude that this model is inappropriate
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reduced penetrance and a combination of both for situ-
ation a and b are shown in Additional file 2.
Once q, the mutant allele frequency for the popula-

tion, is calculated given a population disease prevalence
Pd, one can calculate with a certain probability at which
upper frequency the disease-causing variant would res-
ide in the variant database. These calculations are based
on the quantile function of the binomial distribution for
a random variable Φ, that represents the number of
times the mutant allele occurs in the variant database,
with parameters 2c and q or q’ (situation a or b, respect-
ively (see Additional file 2)). For diploid organisms, c is
the database size, expressed as the number of individ-
uals. The upper frequency, or so-called threshold value
Tv, calculated with this method, will be used later on to
select certain variants in the variant database. More spe-
cifically, only variants residing in the variant database at
an allelic frequency strictly higher than this Tv can be
used for filtering the list of putative disease-causing vari-
ants discovered during sequencing. In terms of probabil-
ity, this quantile-based Tv corresponds to P (Φ ≤ Tv) and
a priori, it has to be decided which probability that Φ ≤
Tv is considered to be sufficient. Throughout our ana-
lysis, a 95% quantile-based approach is used, i.e. P (Φ ≤
Tv) = 0.95 or conversely, P (Φ > Tv) = 0.05.

Method 1: improved identification of novel disease-causing
variants (“variant filtering”)
Problem setting
When searching for novel disease-causing mutations,
due to the output of massive parallel sequencers, a large
number of variants are discovered. As a consequence, it
is difficult to discriminate the small number of causal
mutations from the large amount of harmless mutations
that are co-inherited. At that moment, variants inside
variant databases are typically used to reduce this list of
candidate variants as much as possible. In other words,
the aim of variant database usage is to reduce the
amount of false positives (i.e. a harmless mutation passes
all filters and is erroneously retained in the list of puta-
tive disease-causing variants) as much as possible. At the
same time, it has been argued and even demonstrated
that variant databases might actually contain disease-
causing variants, which is called variant database con-
tamination [5, 6, 9]. If a disease-causing variant occurs
in a variant database and that database is used next for
filtering variants discovered during sequencing, the true
disease-causing variant might be erroneously removed
from the list of candidate variants and cannot be discov-
ered anymore [6]. This is defined as a false negative: the
true disease-causing variant does not pass all filters, is
thus removed from the list of putative disease-causing
variants and as such, the correct mutation cannot be
identified. It is clear that an optimal balance has to be

found in order to restrict the number of both false posi-
tives and false negatives as much as possible.
In the next section, the two standard methods for vari-

ant database usage (the 1%-approach and the absence-
approach) and the novel quantile-based approach are
compared in terms of false positives and false negatives.

Assessment of variant database contamination inside
1000G for 30 AR diseases.
Practically, the absence-approach, the 1%-approach and
the quantile-based approach were first compared in
terms of the probability of encountering false negatives.
This was done by alphabetically selecting diseases from
the Genetics Home Reference National Institutes of
Health database, based on the following three inclusion
criteria: 1/ an AR mode of inheritance, 2/ the disease
prevalence Pd is known and 3/ genes have been found to
be associated with the phenotype. Selection was contin-
ued up until a total of 30 diseases were retained. Next,
the actual allelic frequencies f of the causal mutations in
the 1000G [3] were obtained by searching ClinVar [10]
(filters: pathologic, single nucleotide variant, insertion,
deletion, followed by a manual check of the associated
condition) for disease-causing mutations in the genes
suggested by Genetics Home Reference.
For the quantile-based approach, the following meth-

odology was adopted. If Pd was provided as a range, the
highest prevalence was used. The Tv (95th quantile) was
calculated based on the Pd, by using the formula for an
AR mode of inheritance, assuming situation b. Tv calcu-
lations were done under the assumption of no genetic
heterogeneity (i.e. detectance of 100%) because the num-
ber of different loci is generally unknown a priori.
Next, the number of false negatives were counted for

each method. A false negative occurs when the disease-
causing variant occurs at any frequency f > 0 inside the
variant database, at a frequency higher than 1% or at a
frequency higher than the Tv, for the absence-approach,
1%-approach and quantile-based approach, respectively.

Evaluation of the effect of filtering method on the number
of variants available for filtering
The second assessment aims to evaluate the false posi-
tive probability. Determining an exact false-positive
probability is difficult however, given that it is a count
based on the number of variants discovered during se-
quencing and the number retained after filtering. These
numbers depend however on several factors (type and/
or assumption of the other filters used, realized sequen-
cing depth, number of samples, …) that are not solely
related to the problem of variant database usage. As
such, a different approach was chosen: an approach that
looks at the question from the database perspective: how
many variants inside the database occur at a frequency
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higher than 1% or the Tv, respectively for the 1%-ap-
proach and the quantile-based approach. By definition,
for the absence-approach, the entire set of variants from
the database is available all the time.
For this analysis, a random subset from 1000G was used

(UCSC table browser, settings: genome: Human, group:
Variation, track: 1000G Ph3 Vars) [3, 11]. An important
assumption (assumption 2) introduced earlier on states
that the population used for the variant database is the
same as the population from which the disease prevalence
was obtained. The 1000G contains several subpopulations
however [3]. This has to be taken care of as a disease
prevalence might vary between populations, and as such,
the allelic frequency might differ as well. To fulfill the as-
sumption that the disease prevalence and the population
to sample from are the same, all variants that did not seg-
regate in the (European) population were removed. In
total, the subset of 1000G contained 100,000 variants.
For the quantile-based approach, the following meth-

odology was used: as the Tv for the quantile-based ap-
proach varies with Pd, the 95% quantile-based Tv was
calculated for each step for a Pd that varied between 1/
1000 to 1/100000 (in steps of 1000). For each prevalence
step, the number of variants with an allelic frequency
higher than the Tv was counted.

Example of the quantile-based approach for variant filtering
To exemplify the quantile-based approach practically, an
additional example is given, based on Miller syndrome.
Miller syndrome was used as it was the first successful
application of whole exome sequencing [12].

Method 2: flagging suspicious disease-causing variants
(“variant flagging”)
For previously identified disease-causing variants that res-
ide in variant databases, the probability that they are
present in a variant database at a frequency f or higher can
be calculated when the disease-prevalence, mode of inher-
itance, database size and f are given. This corresponds to
1-P (Φ < f |q,2c) = P (Φ ≥ f |q,2c). The 13 variants from the
first analysis that deviated sufficiently (i.e. with a probabil-
ity of ≤0.05) from the theoretical expectancy, based on the
proposed disease model, were investigated in detail to
identify potential reasons for their unexpected high allelic
frequencies in the 1000G variant database by performing a
literature search in PubMed. Literature was searched step-
wise. First, evidence for a link between the phenotype and
genotype was searched for. If a causal association was re-
ported, next, a search was conducted to identify potential
reasons for this abnormal high frequency.
Throughout the paper, all analysis and simulations

were conducted in R (version 3.3.2) using R-studio (ver-
sion 1.0.44). Variant descriptions were checked with
Mutalyzer 2.0.24 [13].

Results
Method 1: improved identification of novel disease-causing
variants
For the first analysis, 1169 mutations responsible for 30
AR diseases were identified. From the total number of
mutations, 113 were found in 1000G (Fig. 2). For the
absence-approach, this means that 113 disease-causing
variants might not have been identified if the entire
database is used for filtering the list of disease-causing
variants. Expressed differently, the false negative prob-
ability was around 10% (113/1169) for the absence-
approach. For the 1%-approach, the probability of false
negatives was 1% (11/1169), i.e. eleven variants had an
allelic frequency > 1%. The quantile-based approach re-
sulted in a nearly identical false negative proportion of
1% as 13 out of 1169 variants had an allelic frequency
higher than the 95th quantile Tv. When the list of false
negative variants encountered with the 1% and the
quantile-based approach were compared, 8 variants were
found to be shared while 3 were uniquely missed by the
1%-approach and 5 by the quantile-based approach
(Fig. 2). For the 1%-approach, the 3 unique false negative
variants are associated with highly prevalent diseases,
while for the quantile-based approach, 4 out of 5 unique
false negatives are at the rare end of the spectrum.
Next, the number of variants left in the database that

can be used for variant filtering was evaluated for all
three methods as an indirect method to estimate the
false positives. Ideally, the number of false positives
should be small, as such, the more variants that can be

Fig. 2 Actual allelic frequencies f of the disease-causing mutations for
30 autosomal recessive disorders. For a total of 1169 disease-causing
mutations, the allelic frequency f was plotted, relative to the static 1%
threshold and the variable quantile-based thresholds. For all variants, it
was indicated whether they were correctly classified. Disease
prevalence is expressed as 1/n (with n ranging from 0 to 1 000 000)
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used for filtering, the better. By definition, for the
absence-approach, 100% of the variants were available
all the time. For the 95% quantile-based approach, the
proportion of variants available ranged from 33% up to
47% for AR diseases for disease prevalences ranging
from 1/1000 to 1/ 100,000 (Fig. 3). For the fixed 1%-ap-
proach, the number of variants remained fixed at the
42% level. While initially the quantile-based approach
uses less variants from the database, as soon as Pd ≤ 1/
18000, this changes: from that moment on, the quantile-
based approach has more variants available for filtering.

Example for method 1
A detailed example is given for Miller syndrome, which
is also known as postaxial acrofacial dysostosis or
Genee-Wiedemann syndrome. Miller syndrome has an
estimated prevalence of 1 in 1 million and was generally
reported to be an AR disease, with one exception of AD
inheritance [14, 15]. As such, an AR mode of inheritance
was deemed most plausible and used for the analysis. As
the 1000G was used for filtering, Tv calculations had to
take into account that sampling was likely restricted to
healthy individuals (situation b) [3]. A priori, it is gener-
ally unknown that cases typically have different muta-
tions within the same gene, so a naïve analysis was
conducted assuming no genetic heterogeneity.
From the total of 13 mutations currently identified

[12, 16], 12 do not reside in the 1000 Genome variant
database (Additional file 4). One mutation (rs201230446,
Arg135Cys) does reside in the database, at f = 0.0004.
Even though this disease is rare, variant database con-
tamination has thus occurred. As a consequence, using
all variants from the 1000G for filtering (the absence-

approach) might result in a false negative. Based on the
calculations, a naïve Tv of 0.0018 was found with the
quantile-based approach. As f < Tv, applying this cut-off
would thus not have resulted in a false negative and the
same applies for the 1%-approach. In terms of false posi-
tives, 100%, 63% and 42% of the variant database would
be available for filtering for the absence-approach, the
quantile-based approach and the 1%-approach, respect-
ively. The quantile-based approach thus outperforms the
1%-approach in terms of false positives, while it main-
tains a zero false negative probability for this specific
disease.

Method 2: flagging suspicious disease-causing variants
Based on the 95% quantile-based Tv, 13 variants oc-
curred in the database at a frequency that was higher
than expected (Additional file 5). These variants were
thus flagged by the quantile-based approach to investi-
gate their association with their respective phenotypes
more deeply. For 2 variants, no evidence for any link
with the phenotype was found. Two other variants were
immediately considered to be normal polymorphisms
upon discovery [17–19], while for one additional variant,
the association with a phenotype was reported to be
highly doubtful [20, 21]. For these 5 variants, it can thus
be expected that they deviate from the theoretical values
as they are not linked to the specified diseases.
For the 8 remaining variants, associations with their

respective phenotypes were reported, as such, literature
was searched for additional explanations for their unex-
pected high occurrence. For 7 variants, potential expla-
nations were found. One variant was first classified as
pathogenic, but no functional consequences were found
later on, which subsequently resulted in a reclassification
as a normal polymorphism [22, 23]. Other reasons were
incorrect prevalence estimates (up to 20-fold higher [24,
25]), reduced penetrance [25], mild clinical phenotypes
[19, 26] and incorrect modes of inheritances [19, 27–31]
or a combination. In the end, for only 1 variant, no ex-
planation for the high allelic frequency was found [32].
As such, 12 out of 13 variants were correctly flagged by
the quantile-based approach as suspicious, based on
their frequency f in 1000G. A detailed overview is pre-
sented in Additional file 5 for these variants.

Discussion
When databases are used, quite often, no restrictions are
made and all variants in these databases are used to filter
the list of candidates [5, 12]. This so-called absence-
approach works under the assumption that the specific
disease-causing variant(s) for the studied disease can
under no circumstances have been included in these da-
tabases. As a consequence, this also implies that the in-
dividuals that were used to construct the database,

Fig. 3 Relation between disease prevalence and proportion of the
variant database available for filtering. The proposed mode of
inheritance is autosomal recessive, the disease prevalence is
expressed as 1/n (with n ranging from 1000 to 100,000). Both the
variable quantile-based approach and the static 1%-approach are
depicted. By definition, for the absence-approach all variants (100%)
are available (not shown)
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cannot at least carry one copy of the disease-causing
mutant allele. Whether this is likely, depends firstly on
the scope of the database, as introduced earlier on.
Based on the inclusion criteria for HapMap and 1000G,
severely diseased individuals might be excluded from
these two databases [2, 3]. For dbSNP however, variant
database contamination is far more likely. There are
however several additional reasons why disease-causing
variants can end up in variant databases [6, 9]. For AR
diseases, all mutations are symptomless in a heterozygous
state. Whenever penetrance is not complete, individuals
that are genetically affected might not show it phenotypic-
ally. Some diseases are late-onset or the phenotype is actu-
ally very mild or might not even be considered to be a
disease. Overall, there seem to be overt reasons to con-
clude that requiring a mutation to be absent is dangerous.
This conclusion is also supported by our results as 10%
false negatives were reported.
Taking the risk of variant database contamination into

account, the static 1% or 0.1% approach has been sug-
gested as an alternative [6]. This approach works as the
false negatives decreased from 10% to 1% relative to the
absence-approach. However, we demonstrated that this
static threshold is too low for frequent AR disorders,
while it is too high for rare AR disorders. While the
former issue results in an increased probability to en-
counter false negatives, the latter can affect the number
of false positives. This static approach is thus rather lim-
ited as it makes no use of epidemiologic data of the dis-
ease, neither of the characteristics or size of the
database. One advantage is however that it is an easy
rule of thumb, while our proposed models can require
quite some calculations. To solve this, we provide look-
up tables containing Tv cut-offs for AR and AD diseases
for a wide range of disease prevalence and database sizes
(Additional file 6-7) and also an R-script to calculate
these cut-offs, together with sample code used to obtain
the result for Miller syndrome (Additional file 8).
Overall, it is clear that no method is entirely error free.

As such, an optimal balance has to be found in terms of
both the false negative and the false positive probability.
However, we do believe more priority should be given at a
reduction of the false negatives. The reason is that the con-
sequences of erroneously filtering out your actual disease-
causing variant are irreversible, while the number of false
positives can easily be reduced further by additional (filter-
ing) steps [5, 7]. Examples of additional filters are eliminat-
ing variants that are not inherited in a manner compatible
with the proposed mode of inheritance, sequencing add-
itional affected individuals or controls and looking for
shared/unshared mutations or genotypes and by removing
synonymous variants [12]. Based on this weighting of false
negatives relative to false positive errors, we consider the
general absence-approach rather dangerous, especially now

database sizes are increasing tremendously. A direct com-
parison of the quantile-based approach and the 1%-ap-
proach revealed a more or less identical false negative
probability overall. Whereas the number of false positives
will be slightly lower with the 1%-approach for highly
prevalent diseases, the difference between the quantile-
based approach and the 1%-approach decreases rapidly
and as soon as the Pd drops beneath 1/18000, more vari-
ants will be available for filtering with the quantile-based
approach, resulting in less false positives from that mo-
ment on. As such, while the false negative probability is
nearly identical, it is likely that causal variant discrimin-
ation will be more easy with the quantile-based approach,
especially for rare diseases.
The quantile-based approach proposed here is based

on prior knowledge of both the disease studied and the
database used. It starts with obtaining the correct dis-
ease prevalence Pd of the population and disease studied.
When this has been done and the genetic disease char-
acteristics have been determined, the theoretically ex-
pected mutant allele frequency q can be calculated with
the appropriate formulas. In the final step, the appropri-
ate Tv is calculated, based on the previously determined
q and the database size. Clearly, the quantile-based ap-
proach is thus based on several assumptions. When the
search is aimed towards the discovery of novel causal
variants, it has to be assumed that this prior knowledge
is correct.
The quantile-based approach can however also be used

in a different way: a method to investigate the genotype-
phenotype relation for “known” disease-causing variants
that reside in variant databases and that have been re-
ported to be associated with a phenotype previously. Con-
trary to the variant filtering method, this variant flagging
method thus does not start from a list of variants that
were discovered during a new sequencing experiment, but
from variants that were previously discovered and reside
inside a variant database. By comparing the theoretical
disease characteristics with the actual database occurrence
of variants, one can identify variants that do not follow
these theoretical expectancies and even calculate the prob-
ability for this deviation to occur. It is important to stress
that this method only allows flagging variants that warrant
further attention: the exact cause of the deviations cannot
be identified with the quantile-based approach. Based on
the results, it is clear however that these variants are often
flagged correctly and that deviations can be related to any
of the assumptions.
A potential first cause for deviations and also the start-

ing point for the quantile-based approach, is related to
correct disease prevalence estimates. For variant filter-
ing, if the disease prevalence estimate is an overesti-
mation of the actual disease prevalence, q will be
overestimated and accordingly the Tv will be set too
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high, hence less variants will be available for filtering lead-
ing to more false positives. The converse would happen if
the prevalence is underestimated, as was the case for cere-
brotendinous xanthomatosis (Additional file 5) where the
Pro384Leu variant would have been filtered out errone-
ously [24, 25]. The same risk occurs when phenotypes are
mild and as such can remain unrecognized, as was the
case for one mutation associated with biotinidase defi-
ciency. Precautionary measures to get the prevalence esti-
mates correct are that estimates have to be based on a
representative, sufficiently sized sample and clear, stan-
dardized diagnostic criteria should be used.
Secondly, the appropriate formulas to link Pd with q and

calculate the Tv have to be used. As such, the correct
mode of inheritance, penetrance and probability of genetic
heterogeneity have to be chosen. Whereas genetic hetero-
geneity tends to reduce the individual allelic frequencies
of disease-causing alleles, the opposite happens when the
penetrance is incomplete. As such, where an unexpected
genetic heterogeneity reduces the probability of encoun-
tering a false negative, an unexpected reduced penetrance,
especially when reduced severely, increases this probabil-
ity. Based on the examples and our focus on reducing false
negatives, especially reduced penetrance is thus a potential
issue. One example is again related to cerebrotendinous
xanthomatosis where a reduced penetrance led to unex-
pectedly high f [24, 25]. The disease model can however
also be incorrect, as discovered for ataxia with oculomotor
apraxia and Bardet Biedl [27, 29].
From the database perspective, two other assumptions

were made. Firstly, it was assumed that every individual
was sequenced sufficiently in order to avoid allelic drop-
out and, secondly, it was assumed that no sequencing er-
rors occurred. The effect of sequencing errors can go in
two directions: if a sequencing error occurs predomin-
antly in the direction of the mutant allele, f might be
(falsely) higher than expected based on the disease
prevalence. If it is the other way around, f is lower. The
latter would actually have no important consequence:
the Tvs are not influenced by this (they are based on dis-
ease prevalence and database size), f will have even de-
creased and as such, the probability of being erroneously
removed decreases as well. Linked to sequencing error is
the sufficient sequencing/allelic drop-out assumption be-
cause in general, a higher sequencing coverage is associ-
ated with a reduced sequencing error and because the
consequences are the same. Missing a mutant allele, re-
sults in a decreased f, hence nothing bad happens. The
converse happens when a wild type allele is lost: f in-
creases in the variant database, corresponding to an in-
creased probability of erroneous removal of the disease-
causing variant.
Two final causes for deviations are that the HWE as-

sumption might be invalid and that deviations from

the theoretical model can always occur by chance.
While HWE can be tested for, by chance deviations
and the database assumptions are difficult to evaluate.
Either of the latter three assumptions might actually
explain the high frequency of the Ile294Val variant for
biotinidase deficiency as no other reason could be pin-
pointed [32].
While all assumptions were discussed separately, it is

important to stress that several assumptions can be
jointly incorrect. Even though the exact cause for devia-
tions differs, their net consequences are the same: f oc-
curs either at higher frequencies than expected or at
lower frequencies than expected. In the case f occurs at
lower frequencies than expected, the Tv could have been
set lower and as such, the probability of encountering
false positives might be slightly increased. As discussed
earlier on, this is not necessarily an issue as the number
of false positives can often be reduced further by add-
itional (filtering) steps [5, 7]. Whenever f occurs at
higher frequencies than expected, the potential conse-
quences are far more dangerous as this results in an in-
creased false negative probability. Based on the 1% false
negative probability for the quantile-based approach
which is based on real-life data, the quantile-based ap-
proach does seem to control this false negative probabil-
ity relatively well. In addition, if a variant was missed, in
12 out of 13 times, it was actually correctly flagged as
the correlation between genotype and phenotype did not
follow the prespecified model.
Whereas the scope of this article is directed towards

Mendelian disorders, it can be questioned whether the
methodology proposed here might be of broader use,
i.e. can it be used for complex disorders as well? For
several reasons however, this is not necessarily the case.
Complex disorders are the resultant of the combined
effect of genetic and environmental factors and typic-
ally, this genetic contribution itself is due to the com-
bined effect of several co-occurring variants [33, 34].
As such, the negligible probability that several muta-
tions occur together is due to the definition of complex
disorders invalid. This assumption is however necessary
to link disease prevalence directly to the probability of
observing a certain mutant allele for an individual
locus. A potential solution is based on the general
architecture of complex disorders [33]: assuming a q of
0.05 for common variants, the P (Φ ≤ Tv) can be calcu-
lated for one variant. The overall probability for k inde-
pendent loci to occur ≤ Tv is the product of these
individual probabilities. This is only an approximate so-
lution however: it still requires an assumption on the
number of loci and also assumes the disease follows the
general architecture of complex disorders. As such, the
proposed models might thus be of limited use for com-
plex disorders.
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Conclusions
To conclude, we developed and evaluated a novel
method for variant filtering, based on disease character-
istics on one hand and database characteristics on the
other hand. This so-called quantile-based approach has
a similar false negative probability relative to the 1%-ap-
proach, but will often result in (far) less false positives.
In addition, it can be used to correctly identify variants
that deviate from their proposed role in specific pheno-
types. For practical usability, R functions and tables are
provided. Overall, we believe the quantile-based ap-
proach will lead to improved variant database usage in
the search for novel disease-causing mutations and to
assess phenotype-genotype relations.
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