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Abstract

Background: Drug-drug interaction extraction (DDI) needs assistance from automated methods to address the
explosively increasing biomedical texts. In recent years, deep neural network based models have been developed
to address such needs and they have made significant progress in relation identification.

Methods: We propose a dependency-based deep neural network model for DDI extraction. By introducing the
dependency-based technique to a bi-directional long short term memory network (Bi-LSTM), we build three channels,
namely, Linear channel, DFS channel and BFS channel. All of these channels are constructed with three network layers,
including embedding layer, LSTM layer and max pooling layer from bottom up. In the embedding layer, we extract
two types of features, one is distance-based feature and another is dependency-based feature. In the LSTM layer, a
Bi-LSTM is instituted in each channel to better capture relation information. Then max pooling is used to get optimal
features from the entire encoding sequential data. At last, we concatenate the outputs of all channels and then link it
to the softmax layer for relation identification.

Results: To the best of our knowledge, our model achieves new state-of-the-art performance with the F-score of 72.
0% on the DDIExtraction 2013 corpus. Moreover, our approach obtains much higher Recall value compared to the
existing methods.

Conclusions: The dependency-based Bi-LSTM model can learn effective relation information with less feature engineering
in the task of DDI extraction. Besides, the experimental results show that our model excels at balancing the Precision and
Recall values.
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Background
Drug-drug interaction is a situation in which one drug
influences the level or activity of another drug when
both are taken in combination. Such interactions may
result in either synergistic or antagonistic effect. A specific
instance of antagonistic effect is adverse drug reaction
(ADR), which has been a growing problem in hospital
medicine. Those unexpected side effects caused by ADR
are serious health hazards and sometimes even result in
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death. A slew of studies have pointed to the recent swift
growth of the numbers of ADRs [1]. It is reported that
more than 300,000 deaths are caused by ADRs per year in
the USA and Europe [2, 3]. More seriously, according to
data from Centers for Disease Control and Prevention, ad-
verse drug reactions harm anywhere from 1.9 to 5 million
inpatients per year. Owing to the aging of population and
the rise in more people taking multiple medications, the
problem likely continues to get worse. As a result, the
detection of DDIs have been taken seriously by pharma-
ceutical companies and drug agencies in drug safety and
healthcare management.
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So far, there are multiple databases supporting the
healthcare professionals in recognizing adverse effects of
drugs, such as DrugBank [4], Stockley [5]. However, the
time and labor-consuming to manually keep updating them
with the rapidly growing volume of biomedical literatures
are unacceptable, which means massive amount of valuable
DDIs remain hidden in the unstructured published articles,
scientific journals, books and technical reports [1]. There-
fore, there is a sharp increase in interest in automatic
extraction of DDIs information from biomedical texts.
Realizing the importance of interaction information

between two drugs, DDI extraction has been developed
as a widely studied relation extraction task in natural
language processing [6]. Various methods have been pro-
posed aiming at DDI extraction. Existing approaches can be
roughly classified into pattern-based methods and machine
learning-based methods [7]. Pattern-based methods use
manually defined patterns to identify DDIs, whereas
machine learning-based [8–10] methods learn effective
features over the annotated corpora for relation extrac-
tion. Early studies in DDI extraction are almost all
pattern-based. For examples, IS Bedmar obtained the
patterns with the help of a pharmacist [11], Blasco et al.
extracted the patterns by Maximal Frequent Sequences
[12] and Segura-Bedmar et al. defined a set of domain-
specific rules for DDI extraction.
In general, machine learning-based methods have shown

better performance and better portability than pattern-
based methods and can be easily extended to new dataset,
even new domain [13]. However, machine learning-based
methods are limited on the annotated corpora, which
usually take much time and labor to accomplish the
annotation. In recent years, based on a benchmark
corpus, the DDI corpus shared by DDIExtraction challenges
in 2011 and 2013 [14, 15], various machine learning-based
approaches have been proposed to accomplish the task of
DDI extraction. DDIExtraction 2011 challenge focused on
the detection of DDIs, while DDIExtraction 2013 challenge
required DDIs being classified into four predefined DDI
types: Advice, Effect, Mechanism and Int. Roughly, existing
methods of DDI extraction can be divided into two cat-
egories: one-stage and two-stage methods. In one-stage
methods [6, 16–19], a multiclass classifier is built to
directly classify each candidate DDI instance into one
of the five types, including Advice, Effect, Mechanism,
Int and Negative class. As the name suggests, the two-
stage methods [20–22] split the problem into two stages:
first, a binary classifier is built to recognize all candidate
instances into positive instances or negative instances, then
only the positive instances are considered to be classified
into one of the four predefined DDI types. A further
comparison among these methods reveals that deep neural
network models, including Convolutional Neural Network
(CNN) [23, 24], and sequential neural networks such as
Recurrent Neural Network (RNN) [25] and Long Short
Term Memory Network (LSTM) [26, 27], perform better
than models based on Support Vector Machine (SVM)
with linear or non-linear kernel in relation classification.
Effective relation features can be learned by these powerful
deep neural network models without complicated feature
engineering [19].
Although various approach have been proposed, the

research about DDI extraction is still in its infancy and
there is still much room for improvement on its perform-
ance [22]. In this work, we aim to construct a relation
extraction model for drug-drug interaction by integrating
deep neural network and less but more effective features. A
key feature of our work is that we apply the dependency-
based technique to a deep neural network, bi-directional
LSTM network, which has shown significant power in
processing long sequential data. We realize three separate
channels equipped with Bi-LSTM, named as Linear
channel, DFS channel and BFS channel, in our model to
learn valuable information for DDI extraction. Here Linear
channel utilizes a Bi-LSTM for encoding linear sequence,
while DFS channel and BFS channel use the Bi-LSTMs to
encode the corresponding dependency-based sequential
data. All of these three channels are constructed with three
network layers from bottom up, including embedding
feature layer, LSTM layer and max pooling layer. In the
embedding feature layer, distanced-based features are linked
to the linear channel, and dependency-based features are
linked to the DFS channel and the BFS channel. Both of
these two kinds of features are initialized with syntax word
embedding or random word embedding. We make a
detailed and exhaustive comparative study of such two
kinds of word embedding methods in the discussion part.
After that, in the LSTM layer, a Bi-LSTM is instituted in
each channel to better capture relation information. Instead
of concatenating the outputs of forward LSTM layer and
backward LSTM layer, we define a new and simple rule to
combine the outputs obtained by encoding the sequence in
different direction. Then we employ the max pooling
method to get optimal features from the entire encoding
sequential data in the max pooling layer. Lastly, the
outputs of all channels are concatenated together and
then fed to the softmax layer for relation classification.
To the best of our knowledge, our model achieves new

state-of-the-art performance with the F-score of 72.0%.
Moreover, our approach obtains much higher Recall
value compared to the existing methods. Namely, our
model excels at balancing the Precision and Recall values,
leading to a higher F-score.

Methods
We propose a LTSM based multi-classification model
aiming at the task of DDI extraction. All pairs of drugs
in each sentence are either recognized as non-interacting
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pair, or classified into one of the predefined types of DDIs.
The framework of our model is shown in Fig. 1. The first
layer constructs two types of embedding features as input
for LSTM layer, including distance-based feature and
dependency-based feature. Each type of features is linked
to the corresponding channel in LSTM layer, then the en-
coding outputs from different channels are concatenated
to extract the relations. The components of our model are
described in detail in the following parts.

Embedding feature layer
In our model, we extend two kinds of discrete features,
including distance-based features and dependency-based
features, to represent each word in the sentence.

Distance-based feature
we follow the previous studies [24] to characterize a
word with the position features consisting of two relative
distances. Thus, each word in a sentence is represented
with[w,D1,D2], where w is the exact word, D1 and D2

are relative distances from current word to the first drug
and the other drug, respectively. This way the value of
either D1 or D2 would be zero for the corresponding
drug names. Take the following instance in which the
pair of drugs are highlighted in italic as an example.
“The findings suggest that the dosage of S-ketamine

should be reduced in patients receiving ticlopidine”. The
relative distances of the word “suggest” to the pair of drugs
are 5 and 12, respectively. In terms of the drug name
“S-ketamine”, the distance values would be 0 and 7.
Fig. 1 The framework of our model
Dependency-based feature
A dependency relationship is an asymmetric binary relation
between two words in a sentence [28]. Normally with the
dependency relationships, all words in a sentence are
connected, called the dependency structure of the sentence.
In this way, a sentence is converted into a dependency tree.
We utilize Stanford Parser [29] to get the dependency rela-
tion between words in a sentence. For example, consider
the text: The findings suggest that the dosage of S-ketamine
should be reduced in patients receiving ticlopidine. The
typed dependency representation and the corresponding
dependency tree are given as shown in Fig. 2. Take
“nsubj(suggest-3, findings-2)” as an example, node “suggest”
is the governor of node “findings” and “nsubj” represents
the grammatical relation between them.
In Fig. 2, the root (the word “suggest”) of the dependency

tree plays a decisive role in recognizing the relation between
two drugs (S-ketamine and ticlopdine). It is consistent with
the intuition that more attention should be paid to the
words surrounding the root in the tree, assuming that the
closer words contain more information for the relation
extraction. Hence, similar to distance-based feature, we
construct the dependency-based feature by representing
each word with [w, L − L1, L − L2], where w is the exact
word, L is the shortest distance from current node to the
root in the dependency tree. L − L1 and L − L2 represent the
differences between the distance values in terms of current
node and the targeted drugs.
Syntax word embedding based on word2vec [30] and ran-

dom word embedding are respectively employed in mapping



Fig. 2 An example of the typed dependency representation and the corresponding dependency tree

Fig. 3 LSTM memory block
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the words to real-valued vectors. Besides, the distance values
are mapped to a ten bit binary vector. Then the embedding
distance-based feature and dependency-based feature consti-
tute the first layer of our model, separately being linked to
the corresponding channel in LSTM layer.

LSTM layer
LSTM is an outstanding model for modeling long sequen-
tial data. In this layer, we build three separate channels in
this paper to further process the corresponding type of
embedding features of a sentence into specific sequential
data. These three channels are defined as follows:

� Linear channel: in this channel we generate the
sequential data with distance-based features in
original order.

� DFS channel: based on the dependency tree, we
generate the sequential data with dependency-based
features by going through the tree using depth first
search.

� BFS channel: similar to DFS channel but traversing
the tree using breadth first search, the sequential
data is produced with dependency-based features.

Each of these three channels is equipped with a bi-
directional LSTM model to process the corresponding
sequential data. The bi-directional LSTM model contain
two parallel LSTM layers, including forward LSTM layer
and backward LSTM layer. Basing on recurrent neural
network architecture, LSTM model aims at overcoming
the long-term dependencies problem. More precisely,
LSTM model introduces a new structure of the memory
block with a memory cell (ct) and three multiplicative
gates, including the input gate (it), output gate (ot), and
forget gate (ft), to deal with the difficulty lying in the van-
ishing gradient problem which means the back propagated
error either blows up or decays exponentially. Respect-
ively, the activation of the input gate multiplies the input
to the cells, the output gate multiplies the output to the
net, and the forget gate multiplies the previous cell values.
The illustration of a LSTM memory block is shown in
Fig. 3. Let xch1 ; x
ch
2 ;…; xchi ;…; xchm be the sequential data,

where xchi represents a feature vector of the word, m is the
length of sentence and ch represents the corresponding

channel. Let h f
t and c ft be current hidden vector and cell

vector respectively in forward LSTM layer. Similarly, current
hidden vector and cell vector in backward LSTM layer are

respectively denoted as hbt and cbt . At each time step, h f
t and

c ft is computed based on the h f
t−1 and c ft−1 of LSTM block.

The detail operation is defined as follows:

it ¼ σ Wxixt þWhiht−1 þWcict−1 þ bið Þ
f t ¼ σ Wxf xt þWhf ht−1 þWcf ct−1 þ bf

� �

zt ¼ tanh Wxcxt þWhcht−1 þ bcð Þ
ct ¼ f t⋅ct−1 þ it⋅zt

ot ¼ σ Wxoxt þWhoht−1 þWcoct þ boð Þ
ht ¼ ot⋅ tanh ctð Þ
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Where σ is sigmoid activation function, b is the bias
term, · is element-wise multiplication and W(.) are learning

parameters of LSTM model. Accordingly, hbt can be com-
puted by reversing the sequential data.

Instead of concatenating h f
t and hbt to represent word’s

encoding information (zt) in most of previous studies,

we average h f
t and hbt as follow:

zt ¼ h f
t þ hbt

� �.
2

Max pooling layer
The scope of pooling layer is to obtain a fixed length
vector by performing feature selection. We choose max
pooling to get the maximum over the entire sequence.
Let z1, z2, …, zt, …, zm be the sequence of the output of
the corresponding channel in LSTM layer and < v1t ; v

2
t ;

…; vdt > be the vector of zt. The result of max pooling
would be:

z ¼< max v1
� �

; max v2
� �

;…; max vd
� �

>

Where max(.) is the function of taking the maximum
value of each dimension wise and d is the dimension.
Then we concatenate all channels’ outputs after max
pooling is done respectively.

Z ¼ zlinear⊕zDFS⊕zBFS

Softmax layer
We non-linearize the output of pooling layer by using
tanh activation. After that we set a softmax layer with
dropout layer, which makes the model more robust by
avoiding overfitting. The detail operation is defined as
follows:

hs ¼ tanh hpð Þ
p yjxð Þ ¼ Softmax Wshs þ bsð Þ

Where hp is the output of max pooling layer, W is the
softmax matrix and b is the bias parameter.

Model training
The parameters including weights and biases of the entire
network are updated by backpropagation through time. We
use the cross entropy loss function and Adam optimization
[31] with gradient clipping, parameter averaging and
L2-regularization while training our model. In terms of
the imbalanced class distribution problem, we employ
two enhancements, negative instance filtering and training
set sampling, which are described in detail in the following
section.
Dataset description
Our Model is evaluated on a benchmark corpus, the DDI
corpus [1], which is shared by the 2013 DDIExtraction
challenge. The DDI corpus is a valuable gold-standard for
those researches focusing on the analysis of pharmaco-
logical substances, specifically for those working on DDI
relation extraction. This dataset consists of 1017 texts,
including 784 texts selected from the DrugBank database
and 233 abstracts on the subject of DDI selected from the
MEDLINE database. The corpus is split into training and
test instances provided by sentences. All pairs of drugs in
each sentence are manually annotated with the following
four kinds of DDI types:

� Advice: this type is assigned when a
recommendation or advice related to the
concomitant use of two drugs is given, e.g., “If at all
possible guanethidine should be discontinued well
before minoxidil is begun”.

� Effect: this type is assigned when the effect of a DDI
between two drugs is described. For example,
“Decreased seizure threshold has been reported in
patients receiving CYLERT concomitantly with
antiepileptic medications”.

� Mechanism: this type is assigned when the sentence
describes a pharmacokinetic mechanism. For example,
“Oral hypoglycemic agents Oxandrolone may inhibit
the metabolism of oral hypoglycemic agents”.

� Int: this type is assigned when a DDI is simply
stated in the sentence without providing any other
information, e.g., “Interactions for Vitamin B1
(Thiamine): Loop Diuretics”.

Before feeding the dataset to our model, a series of
preprocessing operations are done: drug blinding, negative
instance filtering and training set sampling.

Drug blinding on dataset
For keeping the generalization of our model, the two
drugs in pair are respectively replaced with “DRUG_1”
and “DRUG_2” in turn by following the earlier studies
[6, 22], and all the other drugs in the same sentence are
replaced by “DRUG_N”. For instance, the DDI candidates in
the sentence “The CNS-depressant effect of propoxyphene is
additive with that of other CNS depressants, including
alcohol” are blinded as shown in Table 1.
After drug blinding, all words are converted to lowercase

and sentences are tokenized using the Natural Language
Toolkit [32].

Dataset balancing
Having 1:5.8 ratio for training set and 1:4.8 ratio for test
set on positive instances and negative instances, the DDI
corpus suffers from the imbalanced class distribution



Table 1 An example of drug blinding

Drug candidate Sentence with drug blinding

(propoxyphene,
CNS depressant)

The CNS-depressant effect of DRUG_1 is additive
with that of other DRUG_2, including DRUG_N

(propoxyphene,
alcohol)

The CNS-depressant effect of DRUG_1 is additive
with that of other DRUG_N, including DRUG_2

(CNS depressant,
alcohol)

The CNS-depressant effect of DRUG_N is
additive with that of other DRUG_1, including DRUG_2

Table 2 The statistics of the DDI corpus

Training
set

Training set
filtering

Test
set

Test set
filtering

Negative 23,371 17,297 4737 3335

Advice 1319 1315 302 301

Effect 1687 1677 360 357

Mechanism 826 821 221 221

Int 189 184 96 96

Total 27,792 21,294 5716 4310

Ra. 1:5.8 1:4.3 1:4.8 1:3.4

Note The Ra. denotes the ratio between positive instances and
negative instances
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problem, which will significantly affect the performance
of the classification model. To alleviate it, we first filter
out the negative instances on the entire dataset based on
the predesigned rules. Then concerned on the training
data, sampling is expected to correct the imbalanced
issue.

Negative instance filtering
The previous studies [22, 33] has shown that negative
instance filtering makes sense on constructing a less im-
balanced corpus and has positive impact on classification
model. Therefore, we define the following rules to remove
the possible negative instances:

� Rule 1: the two targeted drugs share the same
name. In such case, exact string matching is made
use of to filter out the corresponding instances.

� Rule 2: one drug is a special case of the other drug.
To satisfy this criteria, we apply the patterns (e.g.,
“DRUG_1 (DRUG_N* DRUG_2)”, “DRUG_1 such as
DRUG_N* DRUG_2”) using regular expression to
remove such case. An example in which the pair of
drugs are highlighted in italic is given as follow: “A
variety of antiarrhythmics such as quinidine or
propranolol were also added, sometimes with
improved control of ventricular ectopy.”

� Rule 3: the two candidate drugs appear in the same
coordinate structure. Again, several patterns, such as
“DRUG_1 DRUG_N* and*|or* DRUG_2”, are used
to remove such instances. For example, the
following instance will be filtered out according to
rule 3: “Sulfamethizole may increase the effects of
barbiturates, tolbutamide, and uricosurics.”

Training set sampling
Generally, sampling is expected to correct the imbalance
of the dataset since the majority class is more dominant
than the minority class in satisfying the objective function
of the machine learning model [34]. There are two effective
methods to adjust the class distribution of the dataset:
under sampling and oversampling. The former one
decreases majority cases, while the latter one increases
minority cases.
As shown in Table 2, after negative instance filtering,

having 94.0:1 ratio on Negative and Int instances, the
training set of the DDI corpus still exists a serious
imbalanced issue. Hence, we employing under sampling and
oversampling in Negative and Int instances, respectively, to

obtain a more balanced training set. Let Xf
neg and Xf

int be

the outputs of Negative instances and Int instances in
training set after negative instances filtering, then the
outputs of sampling would be:

Xs
neg ¼ Sfun α;Xf

neg

� �

Xs
int ¼

XK

k¼1

Sfun β;Xf
int

� �

Where α, β are sampling ratios, Sfun(.) is the function
of sampling based on sampling ratio and K is sampling
times. As under sampling might discard valuable samples,
it is done within every interaction to obtain different
sampling outputs while training our model. In this way, we
expect to cover all the negative cases. Meanwhile, to over-
come the overfitting of the corresponding cases caused by
oversampling, the ratio of dropout, is set up in our model
to eliminate the outputs of LSTM cells randomly.

Results and discussion
Experimental settings
Our model is coded with Python language using Tensorflow
[35] package and is evaluated with the same scheme as used
in the DDIExtraction 2013 chanllenge [15], including
Precision (P), Recall (R) and F-score (F). As our model
adopts the manner of one-stage, all candidate DDI
instances are classified into five types, including Advice,
Effect, Mechanism, Int and Negative class.
We use two different methods to initialize the word

embedding matrix: syntax word embedding based on
word2vec and random word embedding method. The syn-
tax word embedding used in our experiments is pre-trained
by the Skip-gram algorithm [36] on about 14-gigabyte unan-
notated article titles and abstracts extracted from MEDLINE
[37] database. Following the previous studies [38], we look
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up the syntax word embedding matrix to get the word em-
bedding of known words that present in the vocabulary, and
randomly initialize the word embedding of unknown words
that do not present in the vocabulary. We call the model
using syntax word embedding with the name of DLSTM1.
On the other hand, in the random word embedding
method, denoted as DLSTM2, we initialize the word embed-
ding of all words with random real values from −1 to 1.
In this work, we propose a relation classification model

based on bi-directional long short term memory network.
The hyper parameters used in our model are summarized
in Table 3.
We use the recent methods as baselines, which include

linear methods (Kim, UTurku), kernel methods (FBK-irst,
NIL_UCM) and neural network methods (CNN, SCNN1,
SCNN2, CNN&DCNN, B-LSTM, AB-LSTM and Joint
AB-LSTM). Briefly descriptions about these methods are
given as follows:

� Kim [33] built a linear SVM classifier relying on a
rich set of lexical and syntactic features.

� UTurku [21] used the features extracted from
dependency parsing and domain dependent
resources to realize the Turku event extraction
system for DDI extraction.

� FBK-irst [39] was a two-stage method of relation
extraction. A hybrid kernel was used in the model to
train a classifier with syntax tree and dependency
tree features.

� NIL_UCM [40] used a multiclass SVM as kernel
methods relying on lexical, morphosyntactic and
parse tree features.

� CNN [6] employed the convolutional neural
network in DDI extraction without manually defined
features.

� SCNN1 and SCNN2 [22] utilized features based on
PoS tags and dependency tree to train the
convolution neural network with max pooling layer.
Table 3 The hyper parameters of our model

Parameter Description Value

dw Dimension of word embedding 100

dp Dimension of distance embedding 10

num The number of hidden units 300

ρ The ratio of dropout 0.7

l2 The L2 regularization 0.001

la The learning rate of Adam optimizer 0.01

α The ratio of under sampling 0.5

β The ratio of oversampling 0.5

K The times of oversampling 6
� CNN&DCNN [41] designed a simple rule to
combine convolutional neural network and
dependency-based convolutional neural network.

� B-LSTM, AB-LSTM and Joint AB-LSTM [42]
utilized word and distance embedding as latent
features with no feature engineering and learnt
higher level features representation through
bidirectional long short term memory network.

Comparison with baseline methods
The performance among our models and baseline methods
is shown in Table 4. As can be seen from it, the neural
network methods outperform the linear methods and the
kernel methods in Precision, Recall and F-score. It is indi-
cated that deep neural networks show more significant
power in relation extraction with less or no handcrafted
features. To the best of our knowledge, DLSTM1 model
achieves new state-of-the-art performance with the F-score
of 72.0%. There is 5% of relative improvement on F-score
when comparing with the best result (67% in Kim method)
of linear methods and kernel methods. Furthermore,
the models, including DLSTM1, DLSTM2, B-LSTM,
AB-LSTM and Joint AB-LSTM, that are equipped with
long short term memory network perform better than
those models that are equipped with convolutional
neural network, which is consistent with the intuition
that long short term memory network outperforms in
processing long sequential data due to its nature.
Although CNN&DCNN outperforms our models by the
Precision of 78.24%, DLSTM1 and DLSTM2 achieve
much higher Recall value, which means our models
excel at balancing Precision and Recall. A further
comparison among the LSTM-based models reveals
that the multi-channel models (DLSM1, DLSTM2 and
Joint AB-LSTM) give much better results in relation
classification. Besides, the best performance of DLSTM1

can be attributed to the contribution of the dependency-
based features.
Considering our models, DLSTM1 performs better than

DLSTM2. It gives an indication that random word embed-
ding is better than syntax word embedding. This may clash
with the intuition that syntax word embedding should be
more vital for representing a sentence’s syntactic structure
than random word embedding. By statistical analysis, we
can conclude that unknown words are responsible for the
worse performance of DLSTM2. In the syntax word em-
bedding matrix, there are 203 unknown words initialized
by random values among 4279 words, leading to a break
for syntax information to some extent.
The same as previous studies [6], our models perform

better on DrugBank subset compared to MEDLINE
subset. We observe that the sentences in MEDLINE
abstracts tend to be long and complex, whereas sentences
in DrugBank commonly show conciseness. In addition,



Table 4 Performance comparison of our models with baseline methods

Models DDI corpus

DrugBank MEDLINE Overall

P R F P R F P R F

DLSTM1 74.74 74.57 74.66 48.78 42.55 45.45 72.53 71.49 72.00

DLSTM2 75.29 72.64 73.95 50.67 40.43 44.97 73.29 69.54 71.37

B-LSTM – – – – – – 75.97 65.57 70.39

AB-LSTM – – – – – – 67.85 65.98 66.90

Joint AB-LSTM – – – – – – 73.41 69.66 71.48

CNN&DCNN – – – – – – 78.24 64.66 70.81

CNN 77.02 66.74 71.52 61.43 45.26 52.12 75.72 64.66 69.75

SCNN2 – – – – – – 72.50 65.10 68.60

SCNN1 – – – – – – 69.10 65.10 67.00

Kim – – 69.80 – – 38.20 – – 67.00

FBK-irst 66.70 68.60 67.60 41.90 37.90 39.80 64.60 65.60 65.10

UTurku 73.80 53.50 62.00 59.30 16.80 26.20 73.20 49.90 59.40

NIL_UCM 56.60 57.90 57.30 35.70 15.80 21.90 53.50 50.10 51.70

Models PK DDI corpus

– – – – – – P R F

DLSTM1-multi – – – – – – 89.89 89.89 89.89

DLSTM1-single – – – – – – 87.97 87.97 87.97

Table 5 Class wise performance comparison of our models
with baseline methods

Models Advice Effect Mechanism Int MAVG

DLSTM1 80.85 68.37 75.35 49.00 68.39

DLSTM2 77.00 69.47 74.61 51.03 68.27

CNN 77.72 69.32 70.23 46.37 65.91

Kim 72.50 66.20 69.30 48.30 64.10

FBK-irst 69.20 62.80 67.90 54.70 64.80

UTurku 63.00 60.00 58.20 50.70 58.70

NIL_UCM 61.30 48.90 51.50 42.70 53.50
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one should recall that the percentage of instances
from DrugBank to the training set is higher than from
MEDLINE.
Moreover, for further verifying the effectiveness of

DLSTM1, we utilize another corpus, called PK DDI
corpus [43], to train our model. After preprocessing the
data, 1906 instances are separated into training data and test
data according to the ratio of 3:1. DLSTM1-multi preserves
the Linear channel, DFS channel and BFS channel, while
DLSTM1-single only keeps the Linear channel. As the results
shown in Table 4, DLSTM1-multi outperforms DLSTM1-single

by 1.92% of relative improvement on F-score. It gives an
indication that the dependency-based channels in our model
make contributions to relation classification. More narrowly,
the dependency-based features extracted by going through
the dependency tree using depth first search and breadth
first search can better represent relation information during
training our model.

Comparison on class wise performance
As shown in Table 5, our models show the best perform-
ance for Advice, Effect and Mechanism types, whereas
FBK-irst method achieves the best performance for Int
type. Moreover, DLSTM1 outperforms all other methods
by the macro-average F-score of 68.39%. Among all DDI
types, Advice and Mechanism types are better identified,
while Effect and Int types are more difficult to be detected
by all methods. Considering the serious imbalanced training
set, it is obvious that the least proportion in training data
are responsible for the worst performance on Int type. This
also explains the second worst performance on Effect type
because of the insufficient training data.
Enhancement performance analysis
To evaluate the effectiveness of the enhancements of our
model, the corresponding experiments are conducted with
DLSTM1: an enhancement is removed or replaced each
time, while -(*) denotes the removing operation and #(*)
denotes the replacing operation. The effects of enhance-
ments on performance are shown in Table 6.



Table 6 The effect of enhancements on performance

Enhancement removed or replaced P R F △

None 72.53 71.49 72.00 –

-DFS channel 70.22 68.21 69.20 −2.80

-BFS channel 73.52 65.23 69.13 −2.87

-DFS&BFS channels 66.57 71.69 69.04 −2.96

-Negative instance filtering 70.59 69.15 69.87 −2.13

-Train set sampling 69.51 66.67 68.06 −3.94

#Bi-LSTM outputs concatenating 70.94 66.87 68.85 −3.15

Notes. △ denotes the corresponding F-score decrease percentage when an en-
hancement is removed or replaced
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DFS, BFS and DFS&BFS channels
After DFS channel enhancement and BFS Channel enhance-
ment are removed separately, the F-scores decrease by
2.80% and 2.87%. It indicates that the features respectively
extracted by going through the dependency tree using depth
first search and breadth first search play similarly important
roles in relation extraction. While both DFS and BFS
channels are removed, the F-score decreases by 2.96%,
which means handcrafted features contribute to relation
classification even though such features include noise caused
by natural language processing tools.

Negative instance filtering
removing negative instance filtering leads to the decrease
of F-score by 2.13%. It shows that negative instance fil-
tering is beneficial to our model. The negative instance
filtering enhancement used in our model eliminates lots
of negative instances, but almost no positive instances.
6074 out of 23,371 negative instances are removed in
Fig. 4 The distribution of DLSTM1’s predicted results for each DDI types. Th
predicted type. Point (X, Y) means the ratio, where X is predicted type and
training set, while 1402 out of 4737 negative instances
are eliminated and only 4 out of 979 positive instances are
removed in test set. More than 26% negative instances are
correctly filtered out, but only 0.1% positive instances
are wrongly filtered out in the entire dataset.

Training set sampling
the training set sampling enhancement is indispensable
to the relation classification as the F-score decreases by
3.94% when it is removed. Before employing under sampling
and oversampling in Negative and Int instances, respectively,
the ratio between Negative and Int instances is 94.0:1, while
it reduces to 15.7:1 when training set sampling enhancement
is set up in our model. With this enhancement, the imbal-
anced class distribution problem of the training set can be
effectively alleviated.

Bi-LSTM outputs concatenating
replacing the averaging operation with concatenating
operation on the output of forward LSTM layer and the
output of backward LSTM layer in each channel decreases
the F-score by 3.15%. It is indicated that the new simple
rule of combining such outputs outperforms the rule used
in the previous studies. Moreover, by averaging the outputs,
the number of node in softmax layer can reduce by half,
which contributes to reduce the scale of the model directly.

Error analysis
Although our models perform better than all other
methods, there still are lots of instances are wrongly
classified. As shown in Fig. 4, we visualize the predicted
results of DLSTM1 model to analyze the errors. The
e vertical axis is the targeted type, while the horizontal axis is the
Y is targeted type. The sum of each row value equal to 1



Fig. 5 The statistic and F-score of instances with different length in test data
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master diagonal region represents that the instances are
predicted correctly, while the other regions reflect the
distribution of error instances. As we can see from the
highlighted diagonal region, DLSTM1 model provides a
good performance on each DDI type except the Int type.
Owing to the insufficient training data, the Int type is
inferior in satisfying the objective function of the
machine learning model. By further analysis, there is
around 35.42% times that our model classifies the Effect
instances into the Int instances, leading to the adverse
influence on precision of the Int type.
In addition, the distribution of predicted type is relatively

dispersed on the first column of Negative type. More
narrowly, 198 out of 975 positive instances are wrongly
detected to negative instances. It is consistent with the
intuition that most of the candidate instances would be
classified into negative instances due to the high pro-
portion of negative samples in training set. Namely, the
imbalanced class distribution are responsible for the
low recall of DDI extraction.
Furthermore, from Fig. 5, we can see that besides the

imbalanced problem, the lengths of the instances adversely
affect the performance of our model. Our model shows
poor performance by the F-score lower than 60% when the
lengths of the instances are in the range from 71 to 100,
especially from 81 to 90. We observe that almost all of the
instances, whose lengths are in the range from 81 to 90,
are negative instances and are written in complex coordin-
ate structure, which cannot be filtered out by negative
instance filtering with limited predefined rules.

Conclusions
In this paper, we propose a dependency-based bi-directional
long short term memory network model for DDI extraction.
In our model, three channels are designed to capture rela-
tion information from the distance-based features and the
dependency-based features. We concatenate the outputs of
these three channels, and then link it to the softmax layer to
learn a DDI classifier. In addition, considering the imbal-
anced class distribution of the DDI corpus, we employ two
enhancements to alleviate such problem, one is negative
instance filtering and another is training set sampling.
The experimental results have shown that our method
outperforms the existing methods by new state-of-the-
art performance on F-score. Moreover, our model also
excels at balancing the Precision and Recall values.
For future work, we aim to adjust our model by training

it on more different datasets. In addition, considering the
worse performance on long and complex instances, we
will try to improve our model to make it more robust.
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