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Abstract

Background: Differential co-expression (DCX) signifies change in degree of co-expression of a set of genes
among different biological conditions. It has been used to identify differential co-expression networks or
interactomes. Many algorithms have been developed for single-factor differential co-expression analysis and
applied in a variety of studies. However, in many studies, the samples are characterized by multiple factors such
as genetic markers, clinical variables and treatments. No algorithm or methodology is available for multi-factor
analysis of differential co-expression.

Results: We developed a novel formulation and a computationally efficient greedy search algorithm called
MultiDCoX to perform multi-factor differential co-expression analysis. Simulated data analysis demonstrates that
the algorithm can effectively elicit differentially co-expressed (DCX) gene sets and quantify the influence of each
factor on co-expression. MultiDCoX analysis of a breast cancer dataset identified interesting biologically
meaningful differentially co-expressed (DCX) gene sets along with genetic and clinical factors that influenced the
respective differential co-expression.

Conclusions: MultiDCoX is a space and time efficient procedure to identify differentially co-expressed gene sets
and successfully identify influence of individual factors on differential co-expression.

Keywords: Differential co-expression, Gene expression, MultiDCoX, Multi-factor analysis

Background
Differential co-expression of a set of genes is the change
in their degree of co-expression among two or more rele-
vant biological conditions [1], illustrated in Fig. 1 for two
conditions. Differential co-expression signifies loss of con-
trol of factor(s) over the respective downstream genes in a
set of samples compared to the samples in which the gene
set is co-expressed or variable influence of a factor in one
set of samples over the other. This could also be due to a
latent factor which had a significant influence on gene
expression in a particular condition [2].
Since the proposal by Kostka & Spang [1], many

algorithms have been developed to identify differentially

co-expressed (referred as DCX throughout the paper)
gene sets and quantify differential co-expression. The
algorithms can be classified based on two criteria: (1)
method of identification of DCX gene sets (targeted,
semi-targeted and untargeted); and (2) scoring method
of differential co-expression (gene set scoring and gene-
pair scoring).
Based on the method of identification, similar to the

one described by Tesson et al. [3], the algorithms can be
classified into targeted, semi-targeted and untargeted
algorithms. The Targeted algorithms [4] perform differ-
ential co-expression analysis on predefined sets of genes.
The candidate gene sets may be obtained from public
databases such as GO categories and KEGG pathways.
They do not find novel DCX gene sets. Another disad-
vantage of targeted methods is their reduced sensitivity
if only a subset of the given gene set is differentially co-
expressed which results in the DCX signal diluted. In
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addition, the DCX gene sets that are composed of genes
of multiple biological processes or functions may not be
identified at all [2]. The semi-targeted algorithms [5, 6]
work on the observation that the DCX genes are co-
expressed in one group of samples. Hence, they perform
clustering of genes in one set of samples, identify gene
sets tightly co-expressed and test for their differential
co-expression using the remaining group of samples. Al-
though semi-targeted algorithms can identify novel gene
sets, their applicability is limited to the co-expressed sets
identified by the clustering algorithm. In addition, this
approach also may suffer from lower sensitivity due to
diluted DCX signal, similar to in targeted approach. On
the other hand, the untargeted algorithms [1, 3, 7, 8] as-
sume no prior candidate sets of genes and instead find the
gene sets de novo and therefore have a high potential to
identify novel gene sets without diluting DCX signal. The
major drawback of untargeted approach is higher false dis-
covery rate and computational requirements.
The second aspect of DCX gene set identification

algorithms is the methodology employed in scoring dif-
ferential co-expression of a given gene set: (1) gene set
scoring or set-wise method, and (2) gene pair scoring. In
gene set scoring, all genes are considered in the scoring
at once such as in the linear modelling used in Kostka &
Spang [1] and Prieto et al. [7]. On the other hand, gene-
pair scoring, as used in DiffFNs [8] and DiffCoEx [3],
computes differential correlation of each pair of genes in
the gene set and summarizes them to obtain DCX score
for the gene set. Gene pair scoring is intuitive and
amenable to network like visualization and interpret-
ation in single factor analysis settings. The first few
methods (e.g. Kostka & Spang [1] and Prieto et al. [7])
are untargeted set-wise methods, while DiffFNs [8] is
an untargeted gene-pair scoring method. However,
many later methods, including an early method (DCA
[5]) are predominantly targeted or semi-targeted algo-
rithms using gene pair scoring. Differential co-
expression has been used in various disease studies and
identified many interesting changed interactomes of
genes among different disease conditions. DiffFNs [8],
Differential co-expression analysis [9], TSPG [10], and
Topology-based cancer classification [11] were applied

for the classification of tumor samples using interactome
features identified using differential co-expression and
shown good results over using individual gene features.
The application of Ray and Zhang’s co-expression net-
work using PCC and topological overlap on Alzheimer’s
data helped identify gene sets whose co-expression
changes in Alzheimer’s patients [12]. The multi-group
time-course study on ageing [13] has identified gene sets
whose co-expression is modulated by ageing. Applica-
tion on data of Shewanella oneidens identified a network
of transcriptional regulatory relationships between
chemotaxis and electron transfer pathways [14]. Many
other studies have also shown the significant utility of
application of differential co-expression analysis [15–18].
However, none of the existing algorithms allow direct
multi-factor analysis of differential co-expression, i.e.
deconvolving and quantifying the influence of different
biological, environmental and clinical factors of rele-
vance on the change in co-expression of gene sets.
Multi-factor differential co-expression analysis is import-
ant in many practical settings since each sample is char-
acterized by many factors (a.k.a. co-factors) such as
environmental variables, genetic markers, genotypes,
phenotypes and treatments. For example, a lung cancer
sample may be characterized by EGFR expression [19],
smoking status of the patient, KRAS mutation and age.
Similarly, ageing of skin may depend on age, exposure to
sun, race and sex [20]. Deconvolving and quantifying the
effects of these factors on gene set’s co-expression and
eliciting relevant regulatory pathways is an important
task towards understanding the change in the cellular
state and the underlying biology of interest. In such a
case, single-factor differential co-expression analysis suf-
fers from multitude of tests and the interpretation of the
gene sets may be cumbersome and misleading. Hence,
we propose a very first methodology for such purpose
called Multi-Factor Analysis of Differential Co-eXpres-
sion or MultiDCoX, a gene set scoring based untargeted
algorithm. MultiDCoX performs greedy search for gene
sets that maximize absolute coefficients of co-factors (as
suggested in our earlier work [21]) in a linear model,
while minimizing residuals for each geneset. The analysis
of several simulated datasets demonstrate that the algo-
rithm can be used to reliably identify DCX gene sets,
and deconvolve and quantify the influence of multiple
cofactors on the co-expression of a DCX geneset in the
background of large set of non-DCX gene sets. The al-
gorithm performed well even for genesets with weak
signal-to-noise ratio. The analysis of a breast cancer
gene expression dataset revealed interesting biologically
meaningful DCX gene sets and their relationship with
the relevant co-factors. Furthermore, we have shown
that the co-expression of CXCL13 is not only due to the
Grade of the tumor as identified in [22], but also could

Fig. 1 Differential Co-Expression. Geneset is co-expressed in normal
samples but not in disease samples
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be influenced by ER status. Similarly, MMP1 appears to
play role in two different contexts defined by more than
one co-factor. These together demonstrate the import-
ance of multi-factor analysis.

Methods
MultiDCoX formulation and algorithm
MultiDCoX procedure consists of two major steps:
(1) identifying DCX gene sets and obtaining respect-
ive DCX profiles; and (2) identifying covariates that
influence differential co-expression of each DCX gene
set. The formulation essential to carry out these two
steps is as follows.
Let Eim denote expression of gene gi in sample Sm.

The co-factor vector characterizing Sm is denoted by
Bm = (Bm1, Bm2, Bm3,…,Bmz) where Bmk is the value of
kth factor for Sm which is either a binary or an
ordinal variable. A categorical co-factor can be
converted into as many binary variables as one less
the number of categories of the factor. A real valued
cofactor can be discretized into reasonably number of
levels and be treated as ordinal variable.
We define a new variable Amn(I) to summarize co-

expression of gene set I between sample pair Sm and Sn
for which Bm = Bn as

Amn Ið Þ ¼ 1
Ij j
X Ij j

i¼1
Eim−Einð Þ

0
@

1
A

2

Bmn ¼ Bm ¼ Bn

ð1Þ

Amn(I) measures square of mean change of expression
of all genes in I from Sm to Sn, i.e. measuring correlation
between two samples over geneset I. Most of Amn(I)‘s are
expected to be non-zero among a group of samples in
which I is co-expressed. On the other hand, if genes in I
are not co-expressed in a group of samples then Amn(I)‘s
tend to be closer to zero as illustrated in Fig. 2.
We quantify the influence of the co-factors by

fitting a linear model between Amn(I)s and Bmns. In
other words, Amn(I)s are the instances of the
response variable A(I), Bmns form design matrix (B)
and factors in the Bmns are explanatory variables or
co-factors (F).

A Ið ÞeBF ð2Þ
The coefficient vector obtained from the above model-

ling (Eq2) is called differential co-expression profile of
the gene set I, denoted by F(I). A(I), B and F are of ax1,
axz and zx1 dimensions respectively. Where ‘a’ is num-
ber of sample pairs which satisfy the condition in Eq1 or
subset of these sample pairs sampled for modelling,
whichever is lower; z is number of factors in the model.

The MultiDCoX algorithm identifies DCX gene sets by
iteratively optimizing coefficient of a co-factor as outlined
in Fig. 3: (1) setting significance threshold for co-factor co-
efficients; (2) choosing seed pairs of genes that demon-
strate significant coefficient for the co-factor under
consideration, i.e. the gene pairs may be differentially co-
expressed for the co-factor; (3) expanding each chosen
seed gene pair into a conservative multi-gene set by
optimizing the respective coefficient; (4) augmenting the
geneset to increase sensitivity or reduce false negatives
while keeping the respective co-factor coefficient signifi-
cant; and, (5) filtering out weak contributing genes from
each geneset to increase specificity or reduce false posi-
tives. Each of these steps is explained in detail below.
1. Setting threshold of significance for cofactor coefficients:

We generate the distribution of coefficients of the co-
factors in F by random sampling of gene pairs: randomly
sample large number of gene pairs, fit the linear model in
Eq2 for each pair and obtain the coefficients in the linear
models. Pool absolute values of coefficients of all factors of
all gene pairs, and set half of the mth (m = 10 in our experi-
ments) highest value as absolute threshold of significance
for all co-factors. In other words,

CT ¼ mth Max ⋃l ⋃k jFk Ilð Þ j=2f g
where Fk(Il) is coefficient on gene set (a pair of genes in
this case) Il for k

th factor.
Toi is the threshold for co-factor ‘i’ for geneset I and ‘o’

stands for ‘original’, derived from CT as follows

Toi ¼ CT if Fi Ið Þ > 0

¼ −CT if Fi Ið Þ < 0

The division by 2 is necessary to avoid damagingly strict
threshold and lay wider net at the beginning of the algo-
rithm. m > 1 is required as some of the sampled gene pairs
could belong to DCX genesets which may overestimate the
threshold and reduce sensitivity of the algorithm.
2. Identifying DCX seed gene pairs: For each gene,

search is performed throughout the dataset to find its
partner gene whose pair can result in a linear model
(Eq2) with at least one significant cofactor. A cofactor is
considered to be significant if its linear model F-test p-
value is <0.01 and absolute value of its coefficient >CT.
If no partner gene could be found, then the gene will be
filtered out from the dataset to improve the computa-
tional speed at later stages of the algorithm. We have
implemented this step using the procedure: (a) batch
application of qr.coef() in R-package which computes
only linear model coefficients using one QR decompos-
ition, (b) filter out gene pairs whose linear model coeffi-
cients are in the range [−CT, CT], (c) apply lm() on the
gene pairs remaining after step ‘b’ to compute F-test p-
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values, and (d) further filter out gene pairs which do not
meet requirements for the coefficient p-value. The batch
application of qr.coef() is multi-fold faster than lm(). We
use similar strategy in the steps 3.A-3.C below to reduce
computational requirements compared to the direct
application of lm().
3. Identifying DCX gene sets: We optimize coefficient

of each significant co-factor for each gene pair in the
direction, in positive or negative direction, depending on
the sign of the coefficient i.e. if the coefficient is negative
(positive) its minimized (maximized). To do so, for each
factor, the steps 3.A-3.C are iterated until all seed pairs
for which the factor is significant are exhausted from the
seed pairs obtained in the step 2.
3.A. Expanding top gene pair to a multi-gene set: We

choose the gene pair whose constituent genes are not
part of any of the multi-gene sets identified and whose
linear model fit resulted in the highest coefficient for the
co-factor of interest. It will be expanded to multi-gene
set by adding genes that improve the coefficient of that
co-factor in the direction of its coefficient for the gene
pair. A sequential search is performed from first gene to
the last gene in the data (the order of the genes will be
randomized prior to this search). A gene is added to the
set if it improved the coefficient of the co-factor under
consideration i.e. the threshold to add a gene thereby
the stringency increases as the search proceeds. The
final set obtained at the end of this step is denoted by J.
This step results in a most conservative DCX gene set.

Factor profile FP(J) of J is defined as set of (fi,hi) pairs as
follows:

FP J ;Toið Þ ¼ f f i; 1ð Þ j Fi Jð Þ > Toi AND

P−vali Jð Þ < 0:01g⋃fðf i; 0Þj jFi Jð Þj≤jToij OR
P−vali Jð Þ≥0:01g⋃f f i;−1ð Þ j Fi Jð Þ < −Toi AND

P−vali Jð Þ < 0:01g

Where fi is factor ‘i’ and hi denotes whether it is
positively (hi = 1) or negatively (hi = −1) significant or
insignificant (hi = 0):
Fi(J) is coefficient of factor fi for gene set J.
P-vali(J) is p-value of Fi(J).
3.B. Augmenting gene set J: As we tried to improve the

coefficient of the co-factor for each addition of a gene in
the expansion step (3.A), we may have missed many true
positives which are not as strong constituents of J, but
could be significant contributors. Therefore, we perform
augmentation step to elicit some of the potential not-so
strong constituents of J while preserving the factor
profile of J. As the gene set identified in step (3.A) is
conservative, we set a new threshold Tni(J) or simply Tni

for the coefficient Fi(J) of each fias

Tni Jð Þ ¼ Sign Fi Jð Þð Þ αjToij þ 1−αð Þj Fi Jð Þ jð Þ; 0≤α≤1 if ∣hi∣ ¼ 1;

¼ ∣Toi∣; otherwise:

Tni(J) will be as stringent as Toi and at most equal to
Fi(J) which is the coefficient obtained at the end of step

Fig. 2 Illustration of Amn(I) for co-expression and non co-expression. Amn(I) tends to be higher for tighter co-expression of a geneset, while it is
close to 0 for no co-expression as illustrated by the boxplots for presence and absence of co-expression of genesets

Liany et al. BMC Bioinformatics 2017, 18(Suppl 16):576 Page 114 of 259



(3.A). Moreover, we define centroid EC(J) = {ECm(J)} of
J as

Ecm Jð Þ ¼ 1
Jj j
X

i∈J
Eim

EC(J) = [Ec1(J), Ec2(J),…,Ecs(J)] is treated as a representa-
tive gene expression profile of J and find a gene sub set
K such that each gene in K, gk, the pair Kk = (gk, EC(J))
satisfies the condition

FP Kk; Tni
� � ¼ FP J ;Toið Þ i:e:

K ¼ gk j FP Kk ;Tnið Þ ¼ FP J ;Toið Þ� �

Then the augmented set L = J ⋃ K as new DCX gene set.
3. C. Filtering gene set L: The set L obtained after the

step (3.B) may contain false positives which can be fil-
tered out as follows: As in the augmentation step, we

compute EC(Lk), Lk = L-{k}, and evaluate each gene pair
Qk ∈ {(gk, EC(Lk)) | gk ∈ L} for F(Qk). gk is removed from
the set if |Fi(Qk)| > |Fi(L)| for all |hi| = 1. Then the final
gene set R = {gk| gk ∈ L and |F(Qk)| < |F(L)|}. R is the final
set output for the run.
4. Identifying cofactors significantly influencing DCX of

each gene set: It is important to identify the factors
influencing the DCX of a geneset (i.e. FP(R)) to elicit
underlying biology. The F-test p-value obtained for each
cofactor by the linear model fit (in Eq2) in the above
procedure need to be further examined owing to the
dependencies among the gene sets explored. Therefore,
we mark a co-factor to be influential (|hi| =1) on co-
expression of R if it satisfies the following two criteria:

(a)Effect size criterion: We pool coefficients of all
factors on all gene sets identified (denoted as CR)

Fig. 3 Flowchart of MultiDCoX algorithm. It captures all four steps of the algorithm, which are applied on a dataset until no additional DCX
geneset is identified
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and examine their distribution. The valleys close to
zero on either side of the central peak are chosen as
the significance threshold Tf+ and Tf-, see Fig. 4 for
illustration. The central peak is the result of the tests
that signify chance association between the

respective co-factor and co-expression of genesets.
Whereas, the peaks on either side of the central peak
signify coefficients of significant effects in testing/
model-fitting. The valleys are identified by Tf+ and
Tf-, which are good thresholds to call coefficients

Fig. 4 Illustration of selection of thresholds of significance for coefficients. Density plots of all coefficients (of the simulation data) resulted by
MultiDCoX model fitting for varying number of sample/stratum. Thresholds are chosen to be first valleys either side of the central peak
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significant i.e. Fi(R) is considered to be significant if
it is > Tf+ or < Tf-. The underlying assumption is that
not all factors influence all gene sets and the
coefficients of the co-factors with no or little
influence on certain gene sets will be suggestive of the
distribution of the coefficients under null hypothesis.

(b)Permutation p-value criterion: We permute the
factor values of a DCX gene set (i.e. permute
columns of Bmk matrix) and fit the linear model in
Eq2 for each gene set R. We repeat this procedure
for a predefined number of iterations. A factor is
said to be non-influential on the co-expression of
the gene set under consideration if a minimum
predefined fraction of permutations (0.01 in this
paper) resulted in a fit in which the coefficient is
better than Fi(R) and its F-test p-value is better than
the F-test p-value of the coefficient without
permutation or 0.01 whichever is lower.

Finally, the gene sets with at least one significant co-
factor and of predefined size (i.e. at least 6 genes in the
set) will be output as DCX gene sets along with their
factor profiles.

Reducing computational and space requirements
Computational and space requirements can be further re-
duced using the following strategies: (1) Filter out genes
with no detectable signals among almost all samples and
genes that demonstrate very little variance across the sam-
ples. This can filter out up to 50% of the genes from the
analysis. As a result, we can accomplish modest reduction
in space requirement and substantial reduction in compu-
tational requirement as the search procedure is at least of
quadratic complexity in time; (2) Further reduction in
computational time can be achieved in the step 2 i.e. iden-
tifying seed gene pairs. Randomly split the genes into two
halves and search for possible pairs where one belongs to
one half and the other belongs to the other half, instead of
all possible gene pairs. As many DCX genesets are ex-
pected to be sufficiently large, >10 genes, each split set is
expected to contain >2 genes from each DCX geneset.
This reduces computational time to find seed gene pairs
by 2 fold. (3) Another possibility is to consider only a sub-
set of sample pairs by randomly sampling a small fraction
of (m,n)s for the linear model, it could be as small as 10%
of all (m,n)s. These three strategies put together with the
optimization described in the step 2 of MultiDCoX can
massively reduce the space and computational require-
ment by several folds and make the algorithm practical.

Results
Simulation results
To evaluate efficacy of MultiDCoX, we analyzed simu-
lated datasets of varying degrees of signal-to-noise ratio

and sample size. Each simulated dataset consists of
50,000 probes as in a typical microarray and three
factors of 12 stratums. Sample sizes were chosen to be
either 60 or 120 or 240 i.e. 5, 10 and 20 samples per
stratum respectively. Two factors B1 and B2 were binary
(∈ {−1, 1}) and the other (B3) is an ordinal variable of
three levels (∈ {−1, 0, 1}). Sample labels were randomly
chosen for each factor and gene expression (Eim) was
simulated as described below:

Eim ¼ B1im þ B2im þ B3im þ Oim þ eim

B1im = B1m ~ N(0,1) if Sm is in co-expressed group of
B1 and gi is in DCX gene set for the factor B1, 0 other-
wise. Similar interpretation holds for the remaining
factors, B2 and B3, too. Oim = Om ~ N(0,1) indicates co-
expression over all samples if gi belongs to set of genes
co-expressed across all samples irrespective of the factor
values. Eim~ N(0,σ 2) is noise term and σ2 is the extant of
noise in the data.
We simulated 20 genes which show co-expression for

B1m = 1 and B2m = 1, 20 genes co-expressed for B1m =
−1 only, and another 20 genes with Oi = 1 only. With
this we have two sets of negative controls: large number
of genes with no co-expression and a set of 20 genes co-
expressed across all samples. Ideally, a DCX geneset
identification algorithm should be able to discriminate
the first two sets of genes from the two control
(negative) sets. Furthermore, we have tested our
MultiDCoX for three different values of σ ∈ {0.2, 0.5,
0.8} i.e. from low noise to the noise comparable to
the signal. We carried out 10 simulations for each
choice of σ.
The simulation results are summarized in the panel of

plots in Fig. 5: plots of average numbers of false positives
(FPs) and false negatives (FNs) over 10 independent simu-
lation runs for each choice of σ and sample size. Multi-
DCoX performed well in terms of both false positives and
false negatives for low to medium values of σ. Moreover,
the algorithm exhibited reasonable performance even at
the noise (σ) comparable to the signal (i.e. σ = 0.8). The
simulation results also demonstrate that MultiDCoX is
sensitive even at small sample size for low to medium
noise level. The failure rate of identifying genesets and
their profiles are dependent not only on the sample size
and noise level, but also on the type of set identified, espe-
cially for low sample size and high noise: the single factor
influenced geneset has better chance of being identified
with right factor profile, whereas the set influenced by 2
factors has higher chance of being identified. The effect of
noise on FNR also depended on the number of factors in-
fluencing the DCX gene set. However, FDR is less
dependent on both noise level and the number of factors
influencing co-expression. Number of simulations that
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Fig. 5 Simulation results. The simulations were carried out for 5 samples/stratum, 10 samples/stratum and 20 samples/stratum. Set 1 represents gene set
simulated to be co-expressed only in samples B1m =−1, while Set 2 represents gene set simulated to be co-expressed for B1m = 1 and B2m = 1 (a) FDR, (b)
FNR, (c) Failure rate of identifying DCX genesets, (d) Failure rate of identifying DCX profile of DCX genesets, and (e) FPR of DCX genesets (non-DCX genesets)
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identified false gene sets increased with increased noise
and reduced sample size. It is the lowest for 5 samples/
stratum and high noise (σ = 0.8). The computational time
for MultiDCoX analysis, to optimize each cofactor in both
directions (maximization and minimization), was ~12–
15 h for one simulated data of 240 samples using 1 node
of a typical HPC cluster.

MultiDCoX analysis of breast tumor data
We analyzed a breast tumor gene expression data pub-
lished by Miller et al. [23]. It contains expression profiles
of tumors from 258 breast cancer patients on U133A
and U133B Affymetrix arrays i.e. ~44,000 probes. Tu-
mors were annotated for their oestrogen receptor (ER)
status (1 for recognizable level of ER or ER+, −1 other-
wise or ER-), p53 mutational status (1 for mutation or
p53+, and −1 for wild type or p53-) and grade of tumor
(−1 for grade 1, 0 for grade 2, and 1 for grade 3). ER and
p53 status are important markers used to guide treat-
ment and prognosis of breast cancer patients. Hence it
is important to identify the genesets regulated and
thereby co-expressed by these factors while accounting
for the effect of the tumor status as indicated by its
grade and strong association between these three co-
factors. For example, p53-mutant tumors are typically of
higher grade (grades 2 or 3) tumors with correlation of
~ 63% [24] and ER-positive tumors are typically of low

grade (grade 1) [25]. In the presence of these correla-
tions among the co-factors, it is important to identify
and quantify their effects on co-expression of gene sets.
We applied MultiDCoX on this dataset using ER status,
p53 mutational status and tumor grade as co-factors.
We discuss a few DCX genesets here and the remaining
DCX gene sets are given in the Additional file 1.
Co-expression of ER pathway and the genes associ-

ated with relevant processes is modulated in p53 mu-
tated tumors: A DCX gene set is shown in Table 1. The
set is co-expressed only in p53 mutant tumors. The co-
expression plot of p53 mutant tumors is shown in Fig. 6.
The set includes ESR1 (which encodes ERα), its co-

factor GATA3 and pioneering factor FOXA1 [26] along
with ER downstream targets CA12, SPDEF and AGR2.
We retrieved a total of 1349 p53 binding sites’ associated
genes data from Botcheva K et al. [27] and Wei CL et al.
[28]. p53 binding sites are reported to be close to the
promoters of ESR1 [29] as well as GATA3. Furthermore,
GATA3 binds to FOXA1 [30]. Our finding reinforces the
observations made by Rasti et al. [29] that different p53
mutations may have varying effect on the expression of
ESR1 gene, it’s co-factor GATA3, pioneering factor
FOXA1 and SAM-dependent Mythyltransferase & p53
interacting GAMT which could have resulted in the dif-
ferential co-expression of the ER pathway. In addition,
co-modulation of chromatin structure alternating & ER

Table 1 A gene set differentially co-expressed by p53-mutational status (p-value = 2.75E-231 and coefficient = 1.137) only and
insignificant for the other co-factors: coefficients/p-values for ER and Grade are 0.087/0.114 and −0.063/0.028 respectively.
Co-expression of the set occurs in p53 mutated tumors only. ER dependent differential expression, ER binding sites and
p53 binding sites are also given for the geneset

No. Gene ER (DE) ER Binding Site p53 Binding Site Gene Description

1. GFRA1 Yes (up) Yes (dist = 58.5 kb) No TGF-beta related neurotrophic factor receptor

2. FOXA1 No Yes (dist = 4.79 kb) No Forkhead box protein A1

3. GATA3 No Yes (dist = 30.33 kb) Yes GATA binding protein 3

4. SPDEF No Yes (dist = 1.15 kb) No SAM pointed domain containing ets transcription factor

5. ESR1 Yes (up) Yes (dist = 32.24 kb) Yes Estrogen receptor 1

6. GAMT No dist >100 kb Yes guanidinoacetate N- methyltransferase

7. TOX3 No dist >100 kb No TOX high mobility group box family member 3

8. AGR3 Yes (up) Yes (dist = 54.06 kb) No anterior gradient 3 homolog (Xenopus laevis)

9. SDR16C5 No dist >100 kb No Short-chain dehydrogenase/reductase family 16C member 5

10. PIP No dist >100 kb No prolactin-induced protein

11. CYP2B7P1 No dist >100 kb No cytochrome P450, family 2, subfamily B, polypeptide 7 pseudogene 1

12. SYTL5 Yes (up) Yes (dist = 94.21 kb) No synaptotagmin-like protein 5

13. MKX No Yes (dist = 35.21 kb) No mohawk homeobox

14. REEP6 No dist >100 kb No receptor accessory protein 6

15. AGR2 Yes (up) Yes (dist = 2.15 kb) No anterior gradient 2 homolog (Xenopus laevis)

16. ANKRD30A No dist >100 kb No ankyrin repeat domain 30A

17. CA12 Yes (up) Yes (dist = 56.69 kb) Yes Carbonate dehydratase XII

18. SCGB2A1 No dist >100 kb No secretoglobin, family 2A, member 1
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promoter stimulating TOX3 and Protein transfer associ-
ated REEP6 appears to be required to modulate ER path-
way by p53.

Genes co-expressed with BRCA2 in ER-negative tumors are
associated with Her2-neu status:
Another gene set of interest is co-expressed in ER-nega-
tive tumors only and its details are given in Table 2. The
co-expression plot of the gene set in ER-negative tumors
is shown in Fig. 7. The gene set includes tumor suppres-
sor gene BRCA2. We have investigated ER binding sites
published by Carroll et al. [31] and Lin et al. [32] for ER
binding sites close (within ±35Kb from TSS) to these
genes. The ~4800 binding sites mapped to ~1500 genes.
Significantly, 10 of the 21 genes in this DCX gene set
have ER binding sites mapped to them which is statisti-
cally significant at F-test p-value <0.01. Interestingly,
most of these genes have not been identified to be ER
regulated in the earlier studies using differential expres-
sion methodologies, possibly owing to the complexity of
regulatory mechanisms. However, many of these genes
are down regulated in ER-negative tumors. Testing for
association of expression of this set with Her2-neu status
revealed that higher expression in ER-negative tumors is
associated with Her2-neu positivity which must have led
to co-expression in ER- negative tumors. Odds ratio of
such an association is 18 which is much higher than that
of ER positive tumors (OR = 4).

DCX of CXCL13 is modulated by grade as well as ER status
Analysis of Grade1 and Grade3 tumors using GGMs
[22] helped identify CXCL13 in breast cancer as hub
gene. It emerged as one of the hub genes in our analysis

too, contributing to multiple DCX gene sets (see
Additional file 1, sheet:maxGrade). Although they are
significant for Grade, they are significant for ER status
too. It shows that CXCL13’s differential co-expression
appears to be influenced by ER status, in addition to
Grade. This couldn’t be identified in the previous study
as it was restricted to single-factor (Grade) analysis.

DCX of MMP1 is modulated by factor subspace associated
with poor survival
MMP1 is another gene we have examined whose family
of genes are associated with poor survival [33]. MMP1 is
co-expressed among tumors which are P53+ (mutant)
and ER-negative or hi-grade tumors which are ER-
postive (see Additional file 1, sheets: maxP53, maxGrade
and minER). Both these categories are known to be as-
sociated with poor survival of patients. This couldn’t
have been revealed in single factor analyses.

DCX Modulated by Multiple Factors
Co-expression of many genesets is modulated by
more than one factor. The genesets discussed for
MMP1 and CXCL13 are examples of such multi-
factor DCX i.e. co-expression of these genesets is
modulated by ER status and Grade of the tumors.
One such set is shown in the 1st row of Table 3. In
addition, we presented one geneset whose co-
expression is modulated by all factors (covariates): ER
status, p53 mutational status and Grade of tumors
(ER+ & P53- & Grade+); and, another gene set whose
co-expression is modulated by ER status and p53
status (ER- & p53+), Table 3.

Fig. 6 The co-expression plot of set 1 (Table 1) in p53+ tumors in the breast cancer data. a Co-expression of geneset 1 (18 genes) across p53 mu-
tant tumor (p53+) samples; gray color line indicates mean expression value of geneset 1. b The geneset 1 showed no co-expression in p53 wild-
type samples (p53-); gray color line indicates mean expression value of geneset 1
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Fig. 7 The co-expression plot of set 2 (Table 2) tumors in breast cancer data. a Co-expression of geneset 2 (21 genes) in ER-negative tumor
samples; gray color line indicates sample-wise mean expression value of the geneset. b The geneset 2 showed no co-expression in ER-positive
tumor samples; gray line indicates mean expression value

Table 2 A gene set differentially co-expressed by ER-status (p-value = 1.34 × 10−252 and coefficient = −1.117) only and insignificant
for the other cofactors: coefficients/p-values for p53 and Grade are 0.294/1.05E-51 and 0.095/9.33E-09 respectively. Co-expression of
the set occurs in ER-negative tumors only ER dependent differential expression, ER binding sites and p53 binding sites are also given for
the gene set

No. Gene ER (DE) ER Binding Site Gene Description

1. BRCA2 Yes (up) dist >100 kb breast cancer 2, early onset

2. ABCC3 Yes (down) Yes(dist = 20.96 kb) ATP-binding cassette, sub-family C
(CFTR/MRP), member 3

3. ITGB6 Yes (down) dist >100 kb integrin, beta 6

4. ABCC11 No Yes(dist = 68.96 kb) ATP-binding cassette, sub-family C (CFTR/MRP), member 11

5. SNED1 No Yes(dist = 94.62 kb) Insulin-responsive sequence DNA- binding protein 1

6. NQO1 Yes (down) Yes(dist = 32.63 kb) NAD(P)H dehydrogenase, quinone 1

7. LOC254057 No NA uncharacterized LOC254057

8. SPDEF No Yes(dist = 1.159 kb) SAM pointed domain containing ets transcription factor

9. FABP4 No Yes(dist = 1.159 kb) fatty acid binding protein 4, adipocyte

10. CEACAM6 Yes (down) Yes(dist = 19.05 kb) carcinoembryonic antigen-related cell adhesion molecule 6

11. DUSP4 No Yes(dist = 19.138 kb) dual specificity phosphatase 4

12. SERHL2 No Yes(dist = 32.63 kb) serine hydrolase-like 2

13. RBP4 No Yes(dist = 20.489 kb) retinol binding protein 4, plasma

14. PTK6 Yes (down) dist >100 kb PTK6 protein tyrosine kinase 6

15. TMC5 No dist >100 kb transmembrane channel-like 5

16. EEF1A2 No dist >100 kb eukaryotic translation elongation factor 1 alpha 2

17. CLIC3 Yes (down) Yes(dist = 0.317 kb) chloride intracellular channel 3

18. LBP No dist >100 kb lipopolysaccharide binding protein

19. MMP1 No dist >100 kb matrix metallopeptidase 1 (interstitial collagenase)

20. FAM5C No dist >100 kb family with sequence similarity 5, member C

21. AGR2 Yes (up) Yes(dist = 2.154 kb) anterior gradient 2 homolog (Xenopus laevis)
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Functional analysis of DCX profiles
To elucidate the biological function of different DCX
profiles (ER+, ER- & p53+, etc.), we pooled all genes
from gene sets of same DCX profile and used Cluster-
Profiler [34], Huang et al. [35] to identify GO terms and
pathways enriched. Results for co-expression influenced
by individual factors as well as selected two factor
combinations are tabulated in Additional file 2. It shows
a clear distinction of GO functional categories and
pathways enriched between different DCX profiles. For
example, many pathways and GO terms are uniquely
enriched for single factors. Strikingly, numerous
pathways and biological processes/functions are modu-
lated by more than one factor. It couldn’t have been
easily deciphered by univariate analyses. Both these
observations assert the need for multi-variate analysis of
co-expression and such need met by MultiDCoX.

Conclusions
MultiDCoX is a space and time efficient algorithm
which successfully elicits quantitative influence of co-
factors on co-expression of gene sets. It required only
12hr of computation on a typical HPC node to identify
DCX gene sets for each factor for a dataset of 240 sam-
ples and ~44,000 probes. The simulation results demon-
strated that MultiDCoX has tolerable false discovery
rates even at 5 samples/stratum and noise (σ) of 0.8.
However, false negative rate (FNR) was affected by both
sample size and noise level: FNR is very low for large
sample size (20 samples per stratum) and low noise level
(σ = 0.2). Interestingly, both FDR and FNR did not
greatly depended on the type of the gene set to be dis-
covered, or whether it is influenced by single factor or
multi-factors. The discovery of a gene set whose DCX is
driven by two cofactors is less affected by noise and
sample size than the gene sets influenced by a single co-
factor. On the other hand, at low sample size and high

noise, the set influenced by 2-cofactors has higher likeli-
hood of arriving at the incomplete profile compared to
that of a 1-cofactor driven DCX. Occurrence of false
DCX sets increased substantially at high noise level and
small sample size. This is a major issue to be addressed
in the future improvements of MultiDCoX. Moreover,
the performance of the algorithm needs to be studied
for varying parameter settings and further reductions in
computational time. It is possible to reduce the compu-
tational time by 2-fold by filtering out 50% of probes of
low variance in expression. Though we have not used this
strategy as we needed to study its impact on the discovery
and profiling of DCX gene sets, the current implementa-
tion could complete the analysis within half a day of com-
puting for each factor. The massive parallel processing
allows us to complete all analyses within a day.
Though the current implementation of MultiDCoX

is limited to linear model, we can easily augment the
implementation to use any link function to transform
A(I) and then using linear function. However, we need
to test the performance of the algorithm for various
link functions.
By MultiDCoX formulation, we identify DCX gene

sets exhibiting B-type co-expression only [22]. The other
two types of differential co-expression may be identified
using multivariate differential expression analysis
followed by clustering.
MultiDCoX algorithm can be applied to different clin-

ical data to quantify the influence of co-factors on the
co-expression and its associated phenotypes.
Multiple aspects of the formulation and the algorithm

need to be studied in our future improvements: Robust-
ness of Amn(I) to outliers is an important aspect of the
performance of the algorithm and impact of the thresh-
olds used in the algorithm also to be studied. However,
without tuning, the choice of parameters appears to be
effective enough for both simulated and real data sets.

Table 3 Examples of genesets whose co-expression is influenced by more than one factor. (1) geneset in the 1st row, containing
CXCL13 and MMP1, is differentially co-expressed by ER and Grade covariates

Co-expression Genes ER coefficient ER pvalue p53 coefficient p53 pvalue Grade coefficient Grade pvalue

ER+ & Grade+ HORMAD1,SCGB1D2, ABCB1,IGHM,CXCL13,
FAM20B,IGK,CCL18, LOC100291464,FCRL5,
IGHA1,LOC100293440, IGL,IGLV1–44,IGH,
IGKV4–1, IGHD, LOC100130100,FABP7,
NKG7,MMP1,PIGR, LOC652493

0.592 3.64E-05 −0.343 0.000
658

1.525 5.05E-24

ER+ & P53- &
Grade+

CLEC3A, MUC5B, RAD51C,CYP2A6,CHGB,
CARTPT,GRIA2,INSM1, NTS,PCSK1

0.662 3.16E-05 −0.818 4.14E-17 1.124 1.77E-40

ER- & p53+ FMO5, VGLL1, FABP7, GABRP, PKP1,TFCP2L1,
NRTN,KRT15, PTX3, KRT16, MIA,CTAG1A,
ELF5,HORMAD1,C8orf4 6,FAM150B

−0.906 7.80E-14 0.844 8.84E-23 0.127 0.305

The co-expression of the set occurs in ER-positive tumors and higher grade tumors (referred to as Grade+) only. Joint occurrence of ER+ and Grade3 will result in
higher co-expression. (2) Geneset in the 2nd row is differentially co-expressed by all covariates. The co-expression of the set occurs in ER-positive tumors, p53-
negative tumors and higher grade tumors (referred to as Grade+). Joint occurrence of ER+, p53- and Grade3 will result in higher co-expression. (3) Gene set in the
3rd row is differentially co-expressed by ER and p53 covariates. The co-expression of the set occurs in ER-negative tumors, p53-positive tumors. Joint occurrence
of ER- and p53+ will result in higher co-expression

Liany et al. BMC Bioinformatics 2017, 18(Suppl 16):576 Page 122 of 259



The application of MultiDCoX on a breast cancer data
has revealed interesting sets of DCX genes: the set of
ESR1, its cofactors along with downstream genes of
ESR1 and genes associated with relevant ESR1
dependent transcriptional regulation; the set of genes
containing ER binding site in their cis region. Further-
more, we have shown that the co-expression of gene sets
that contain CXCL13 and the gene sets that contain
MMP1 is affected by ER status too, in addition to tumor
grade which couldn’t have been elicited in a typical
univariate DCX analysis. The utility of MultiDCoX is
further demonstrated by revelation of co-expression
modulated by multiple factors for numerous genesets
and pathways.

Additional files

Additional file 1: Results of Analysis of Breast Cancer Data. Contains all
differentially co-expressed genesets with respective differential co-
expression model fit (F-test p-value, coefficient value), gene counts, and
permutation results over three factors (ER, p53 and Grade) in breast
cancer data. Remarks: Grade + indicates higher grade tumor i.e. 2 and 3,
while Grade– indicates lower grade tumour i.e. 1. (XLS 804 kb)

Additional file 2: Functional analysis of joint and individual influence of
co-factors on co-expression of genesets. Summary of GO terms and
pathways enriched for joint and individual influence of different cofactors
on co-expression of genests. Joint influence of co-factors is evident from
the number of pathways and GO terms enriched for genesets whose co-
expression is affected by more than one co-factor. (DOC 66 kb)
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