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Abstract

Background: The dramatic development of DNA sequencing technology is generating real big data, craving for
more storage and bandwidth. To speed up data sharing and bring data to computing resource faster and cheaper,
it is necessary to develop a compression tool than can support efficient compression and transmission of
sequencing data onto the cloud storage.

Results: This paper presents GTZ, a compression and transmission tool, optimized for FASTQ files. As a reference-
free lossless FASTQ compressor, GTZ treats different lines of FASTQ separately, utilizes adaptive context modelling
to estimate their characteristic probabilities, and compresses data blocks with arithmetic coding. GTZ can also be
used to compress multiple files or directories at once. Furthermore, as a tool to be used in the cloud computing
era, it is capable of saving compressed data locally or transmitting data directly into cloud by choice. We evaluated
the performance of GTZ on some diverse FASTQ benchmarks. Results show that in most cases, it outperforms many
other tools in terms of the compression ratio, speed and stability.

Conclusions: GTZ is a tool that enables efficient lossless FASTQ data compression and simultaneous data
transmission onto to cloud. It emerges as a useful tool for NGS data storage and transmission in the cloud
environment. GTZ is freely available online at: https://github.com/Genetalks/gtz.

Keywords: FASTQ, Compression, General-purpose, Lossless, Parallel compression and transmission, Cloud
computing

Background
Next generation sequencing (NGS) has greatly facilitated
the development of genome analyses, which is vital for
reaching the goal of precision medicine. Yet the exponen-
tial growth of accumulated sequencing data poses serious
challenges to the transmission and storage of NGS data.
Efficient compression methods provide the possibility to
address this increasingly prominent problem.
Previously, general-propose compression tools, such as

gzip (http://www.gzip.org/), bzip2 (http://www.bzip.org/)
and 7z (www.7-zip.org), have been utilized to compress
NGS data. These tools do not take advantage of the

characteristics of genome data, such as a small size alpha-
bet and repeated sequences segments, which leaves space
for performance optimization. Recently, some specialized
compression tools have been developed for NGS data.
These tools are either reference-based or reference-free.
The main difference lies in whether extra genome se-
quences are used as references. Reference-based algo-
rithms encode the differences between the target and
reference sequences, and consume more memory to im-
prove compression performance. GenCompress [1] and
SimGene [2] use various entropy encoders, such as arith-
metic, Golomb and Huffman to compress integer values.
The values show properties of reads, like starting position,
length of reads, etc. A statistical compression method,
GReEn [3], uses an adaptive model to estimate probabil-
ities based on the frequencies of characters. The probabil-
ities are then compressed with an arithmetic encoder.
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QUIP [4] exploits arithmetic coding associated with
models of order-3 and high-order Markov chains in all
three parts of FASTQ data. LW-FQZip [5] utilized incre-
mental and run-length-limited encoding schemes to com-
press the metadata and quality scores, respectively. Reads
are pre-processed by a light-weight mapping model and
then three components are combined to be compressed
by a general-purpose tool, like LZMA. Fqzcomp [6] esti-
mates character probabilities by order-k context modelling
and compresses NGS data in FASTQ format with the help
of arithmetic coders.
Nevertheless, reference-based algorithms can be ineffi-

cient if the similarity between target and reference se-
quences is low. Therefore, reference-free methods were
also proposed to address this problem. Biocompress pro-
posed in [7] is a compression method dedicated to gen-
omic sequences. Its main idea is based on the classical
dictionary-based compression method –the Ziv and Lem-
pel [8] compression algorithm. Repeats and palindromes
are encoded using the length and the position of their
earliest occurrences. As an extension of biocompress [7],
biocompress-2 [9] exploits the same scheme, and uses
arithmetic coding of order-2 when no significant repeti-
tion exists. The DSRC [10] algorithm splits sequences into
blocks and compresses them independently with LZ77 [8]
and Huffman [11] encoding. It is faster than QUIP both in
compression and decompression speed, but inferior to the
later in terms of compression ratio. DSRC2 [12], the
multithreaded version of DSRC [10], splits the input into
three streams for pre-processing. After pre-processing,
metadata, reads, and quality scores are compressed separ-
ately in DRSC. A boosting algorithm, SCALCE [13], which
re-organizes the reads, can outperform other algorithms
on most datasets both in the compression ratio and the
compression speed.
Nowadays, it is evident that cloud computing has be-

come increasingly important for genomic analyses. How-
ever, above-mentioned tools were developed for local
usage. Compression has to be completed locally before a
data transmission onto the cloud can begin.
AdOC proposed in [14] is a general-propose tool that

allows the overlap of compression and communication
in the context of a distributed computing environment.
It presents a model for transport level compression with
dynamic compression level adaptation, which can be
used in an environment where resource availability and
bandwidth vary unpredictably.
Generally, the compression performances of the uni-

versal compression algorithms, such as AdOC, are un-
satisfactory for NGS datasets.
In this paper, we present a tool GTZ, it is character-

ized as a lossless and efficient compression tool to be
used jointly with cloud computing for large-scale gen-
omic data analyses:

1. GTZ exploits context model technology combined
with multiple prediction modelling schemes. It
employs paralleling processing to improve the
compression speed.

2. GTZ can compress directories or folders into a
single archive, which is called a multi stream file
system. The all-in-one scheme can satisfy purposes
of transmission, validation and storage.

3. GTZ supports random access to files or archives.
GTZ utilizes block storage, such that users can
extract some parts of genome sequences out of a
FASTQ file or some files in a folder, without a
complete decompression of the compressed archive.

4. GTZ can transfer compressed blocks to the cloud
storage while the compress is still in process, which
is a novel feature compared with other compression
tools. This feature enables the data transmission
time to be can greatly reduce the total time needed
for compression and data transmission onto the
cloud. For instance, it could compress and transit a
200GB FASTQ file to cloud storages like AWS and
Alibaba cloud storage within 14 min.

5. GTZ provides a Python API, through which users
can integrate GTZ in their own applications flexibly.

In the remaining of this paper, we will introduce how
GTZ works and evaluate its performance on several
benchmark datasets using the AWS service.

Methods
GTZ supports efficient compression in parallel, parallel
transmission and random fetching. Figure 1 demon-
strates the workflow of GTZ processing.
GTZ involves procedures on clients and the cloud end.
A client takes the following steps:

(1)Read in streams of large data files.
(2)Pre-process the input by dividing data streams into

three sub-streams: metadata, base sequence, and
quality score.

(3)Buffer sub-streams in local memories and assem-
ble them into different types of data blocks with a
fixed size.

(4)Compress assembled data blocks and their
descriptions, and then transmit output blocks into
the cloud storage.

On the cloud, the followings steps are executed:

(1)Create three types of object-oriented containers
(shown in Fig. 2), which define a tree structure.

(2)Loop and wait to receive output blocks sent by
the client.
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(3)Save received output blocks into block containers
according to their types.

(4)Stop if no more output blocks are received.

We will explain all the steps in further details about
processing FASTQ files below:

The client reading streams of large data files
Raw NGS data files are typically stored in FASTQ for-
mat for the convenience of compression. A typical
FASTQ file contains four lines per sequence: Line 1

begins with a character ‘@’ followed by a sequence iden-
tifier; Line 2 holds the raw sequence composed of A, C,
T, and G; line 3 begins with a character ‘+’ and is option-
ally followed by the same sequence identifier (and any
description) again; line 4 holds the corresponding quality
scores in ASCII characters for the sequence characters
in line 2. An example of a read is given in Table 1.

Data pre-processing
During the second step, a data stream is split into meta-
data sub-streams, base sequence sub-streams and quality

Fig. 2 The hierarchy of data containers

Fig. 1 The workflow of GTZ
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score sub-streams. (Since uninformative comment lines
normally do not provide any useful information for com-
pression, comment streams are omitted during pre-
processing.) Three types of date pre-processing control-
lers buffer sub-streams and save them in data blocks at a
fixed size respectively. Afterwards, data blocks with an-
notations (about numbers of blocks, sizes of blocks and
types of streams) are sent to corresponding compression
units. Figure 3 demonstrates how to pre-process data
files with the help of pre-processing controllers and
compression units.

Compressing data
GTZ is a general-purpose compression tool that uses
statistical modelling (http://marknelson.us/1991/02/01/
arithmetic-coding-statistical-modeling-data-compres-
sion/) and arithmetic coding.
Statistical modelling can be categorized into two types:

static and adaptive statistical modelling. Conventional
methods are normally static, which means probabilities are
calculated after sequences are scanned from the beginning
to end. A static modelling keeps a static table that records
character-frequency counts. Although they produce rela-
tively accurate results, the drawbacks are obvious:

1. It is time-consuming to read all the sequences into
main memory before compression.

2. If an input stream does not match well with the
previously accumulated sequence, the compression
ratio will be degraded, even the output stream will
become larger than the input stream.

In GTZ, we employ an adaptive statistical data compres-
sion technique based on context modelling. An adaptive
modeling needs not to scan the whole sequence and gen-
erate probabilities before coding. Instead, the adaptive

prediction technology provides on-the-fly reading and
compression, that is probabilities are calculated based on
the characters already read into the memory. Probabilities
may alter with more characters scanned. Initially, the per-
formance of adaptive statistical modelling may be poor
due to the lack of reads. However, with more sequences
processed, the prediction tends to be more accurate.
Every time the compressor encodes a character, it will

update the counter in the prediction table. When a new
character X (suppose the sequence before X is ABCD)
comes, GTZ will traverse the prediction table, find every
character that has followed ABCD before, and compare
their appearance frequencies. For instance, if both
ABCDX appears 10 times, and ABCDY only once. Then
GTZ will assign a higher probability for X.
The work flow of an adaptive model is depicted in Fig. 4.

The box ‘Update model’ means converting low-order mod-
ellings to high-order modellings (the meaning of low-order
and high-order will be discussed in the next subsection.).
Adaptive prediction modelling can effectively reduce com-

pression time. There is no need to read all sequences in a
time and it introduces overlap of scanning and compression.
GTZ utilizes specific compression units for different

kinds of data blocks: a low-order encoder for genetic se-
quences, a multi-order encoder for quality scores and
mixed encoders for metadata. Finally, the outputs in this
procedure are blocks at a fixed size.
The main idea about arithmetic coding is to convert

reads into a floating point ranging from zero to one
(precisely greater than or equal to zero and less than
one) based on the predictive probabilities of charac-
ters. If the statistical modelling estimates every single
character accurately for the compressor, we will have
high compression performance. On the contrary, a
poor prediction may result in expansion of the ori-
ginal sequence, instead of compression. Thus, the per-
formance of a compressor largely relies on the
whether the statistical modelling can output near-
optimal predictive probabilities.

A low-order encoder for reads
The simplest implementation of adaptive modeling is
order-0. Exactly, it does not consider any context

Fig. 3 Pre-process data files with pre-processing controllers and compression units

Table 1 The format of an FASTQ file

1 @ERR194147.1.HSQ1004:134:C0D8DACXX:1:1104:3874:86,238/1

2 GGTTCCTACTTNAGGGTCATTAAATAGCCCACACGTC

3 +

4 CC@FFFFFHHH#JJJFHIIJJJJJJJIJHIJJJJJJJ
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information, thus this short-sighted modeling can only
see the current character and make prediction that is in-
dependent of the previous sequences. Similarly, an
order-1 encoder makes prediction based on one preced-
ing character. Consequently, the low-order modeling
makes little contribution to the performance of com-
pressors. Its main advantage is that it is very memory ef-
ficient. Hence, for quality score streams that do not have
spatial locality, a low-order modeling is adequate for
moderate compression rate.
Our tailored low-order encoder for reads is demon-

strated in Fig. 5. The first step is to transform sequences
with the BWT algorithm. BWT (Burrows-Wheeler trans-
form) rearranges reads into runs of similar characters. In
the second step, the zero-order and the first-order pre-
diction model are used to calculate appearance probabil-
ity of each character. Since a poor probability accuracy
contributes to undesirable encoding results, we add
interpolation after quantizing the weighted average
probability, to reduce prediction errors and improve
compression ratios. In the last procedure, the bit arith-
metic coding algorithm produces decimals ranging from
zero to one as outputs to represent sequences.

A multi-order encoder for quality scores
The statistical modeling needs non-uniform probability
distribution for arithmetic algorithms. The high-order
modeling enables high probabilities for those characters
which appear frequently, and low probabilities for those
which appear infrequently. As a result, compared with

low-order encoders, higher-order encoders can enhance
adaptive modeling.
A high-order modeling considers several characters

preceding the current position. It can obtain better
compression performance at the expense of more
memory usage. Higher-order modeling was less used
due to the limited memory capacity, which is no lon-
ger a problem anymore.
Without transformation, a multi-order encoder (See

Fig. 6) for quality scores includes two procedures:
Firstly, to generate probabilities of characters, input

stream flows through an expanding character prob-
ability prediction model, which is composed of first-
order, second-order, fourth-order, sixth-order predic-
tion models and a matching model. Like a low-order
encoder, probabilities of characters undergo weighted
averaging, quantization and interpolation to obtain
final results. Secondly, we use bit arithmetic coding
algorithm for compression.

A hybrid scheme for metadata
For metadata sub-streams, GTZ first uses delimiters
(punctuations) to split them into different segments,
then uses different ways to process metadata according
to their fields:
For numbers in an ascending or descending order, we

employ incremental encoding to represent the variations
of one metadata to its preceding neighbors. For instance,
‘3458644’ will be compressed into 3,1,1,3,-2,-2,0. For
continuous identical characters, we exploit run-length
limited encoding to show their values and numbers of

Fig. 5 A low-order encoder scheme

Fig. 4 Work flow of a typical statistical modelling
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repetition. For random numbers with various precisions,
we convert their formats by UTF-8 coding without add-
ing a single separator, and then use a low-order encoder
for compression. Otherwise, use the low-order encoder
to compress metadata.
In conclusion, during this process, sub-streams are fed

into a dynamic probability prediction model and an
arithmetic encoder, and they are transformed into com-
pressed blocks at a fixed size.

Data transmission
The key objective is to transmit output blocks to a cer-
tain cloud storage platform, with annotations about
types, sizes, numbers of data blocks.
To note, different types of encoders may lead to incon-

sistency in compression speed, which can lead to a data
pipe blockage. Thus, in our system, the pipe-filter pat-
tern is designed to synchronize input and output speed,
e.g., the input flow will be blocked when the speed of in-
put stream is faster than that of the output stream; The
pipe will also be blocked when there is no input flow.

Storage at the cloud end — Creating an object-oriented
nested container system
GTZ creates containers as storage compartments that
provide a way to manage instances and store file direc-
tories. They are organized in a tree structure. Containers
can be nested to represent locations of instances: a root
container represents a complete compressed file; a block
container includes different types of sub-stream con-
tainers where specific instances are stored. The nesting
structure is showed in Fig. 2.
A root container represents a FASTQ file and it holds

N block containers, each of which includes metadata
sub-containers, base sequence sub-containers and qual-
ity score sub-containers. A metadata sub-container nests
repetitive data blocks, random data blocks, incremental
data blocks, etc. Base sequence sub-containers and qual-
ity score sub-containers nest 0 instance block to N in-
stance block. Taking base sequences for examples, the 0
to (N-1) output blocks are stored in the 0th block con-
tainer, and the N to (2 N-1) output blocks are stored in
the 1st block container, and so on.

Table 2 Descriptions of 8 FASTQ datasets used for performance evaluation

Dataset Species Reference genome size Encoding No. of quality scores in data file

ERR233152 P. aeruginosa 556 Sanger 32

SRR935126 A. thaliana 9755 Sanger 39

SRR489793 C. elegans 12,807 Illumina 1.8+ 38

SRR801793 L. pneumophila 2756 Sanger 38

SRR125858 H. sapiens 50,744 Sanger 39

SRR5419422 RNA seq (H. sapiens) 15,095 Illumina 1.8+ 6

ERR1137269 metagenomes 56,543 Illumina 1.8+ 7

NA12878 (read 2) H. sapiens 202,631 Sanger 38

Fig. 6 A multi-order encoder scheme
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This kind of hierarchy allows users to maintain a direc-
tory structure to manage compressed files, thereby facilitat-
ing random access to specific sequence. Here, we show how
to decompress and extract the target files from the com-
pressed archive: in decompression mode, the system will
index the start line number n (which is given by users
through the command line), then fetch the certain sequence
from their according block containers and compress certain
(which are also specified by users) lines of the sequence.

Receive data — Receive and store output blocks
Cloud storage platform receives output blocks and de-
scriptive information such as numbers of data blocks,
sizes of data blocks, most importantly, the line number
of every base sequence within data blocks. The descrip-
tion enables us to directly index certain sequences with
line numbers and decode their affiliated blocks rather
than extract the whole file. Output blocks are stored in
corresponding types of containers.
What is worth noting is that non-FASTQ files can also

be compressed and transmitted through GTZ. Additionally,
GTZ uses object-oriented programming, it is not restricted

to interact with a specific type of cloud storage platform,
but applicable to most existing cloud storage platforms,
such as the Amazon Web Service and the Alibaba cloud.

Results and discussion
In this section, we conducted experiments on a 32-core
AWS R4.8xlarge instance with 244GB of memory to
evaluate the performance of GTZ in terms of compres-
sion ratio and compression speed. During the experi-
ments, the following points should be noted:

(1)Considering that our method is lossless, we exclude
methods that allow losses as counterparts.

(2)NGS data can be stored in either FASTQ or SAM/
BAM formats, we only take into account tools
targeted at FASTQ format files.

(3)Comparison will be conducted among the
algorithms that do not reorder input sequences.

We carried out tests on 8 publicly accessible FASTQ data-
sets, which are downloaded from the Sequence Read Archi-
ve(SRA) initiated by NCBI and the GCTA competition
website (https://tianchi.aliyun.com/mini/challenge.htm#train-
ing-profile). To ensure the comprehensiveness of our evalu-
ation, we chose datasets that are heterogeneous: the size of
datasets ranges from 556MBs to 202, 631MBs; different spe-
cies and different types of data were chosen, including DNA
reads, one RNA-seq dataset of Homo sapiens, one metagen-
ome dataset and read 2 of NA12878 (the GCTA competition
datasets). Different quality score encoding methods, such as
Sanger and Illumina 1.8+, are selected to cover different
numbers of quality scores in datasets. Quality scores are
logarithmically linked to error probabilities, leading to a lar-
ger alphabet than meta data and reads, thus encodings with
small numbers of quality scores normally contribute to a
higher compression performance. Descriptions of the

Fig. 7 CVs for the compression ratio of different tools

Table 3 Compression ratios of different tools on 8 FASTQ datasets

Dataset Compression ratio (%)

GTZ DSRC2 QUIP LW-FQZip Fqzcomp LFQC pigz

ERR233152 15.9 16.7 19 19 16.8 8 26.4

SRR935126 18.6 19.6 17.7 20.5 17.8 9.9 30.2

SRR489793 22.8 22.7 22.6 25.5 22.5 12.8 34.4

SRR801793 21.4 21.9 21.1 21.2 20.8 12.3 34.1

SRR125858 19.4 19.5 18.9 23.1 28.9 17.6 31

SRR5419422 12.8 13.9 10.9 12.5 12 ERROR 22

ERR1137269 12.2 13.4 12.8 14.3 11.9 ERROR 21.9

NA12878 (read 2) 19.8 24 20.4 TLE 19.9 TLE 24.7

avg 17.86 18.96 17.93 19.44 18.83 12.12 28.09

SD 3.87 3.97 4.07 4.64 5.60 3.62 5.05

CV 0.22 0.21 0.23 0.24 0.30 0.30 0.18

The best results of all the tools are boldfaced
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datasets are listed in Table 2. Besides, for comparison, based
on a comprehensive literature survey, we selected four
state-of-the-art and widely-used lossless compression algo-
rithms, including DSRC2 [12] (the improved version of
DSRC [10]), quip [4], LW-FQZip [5], Fqzcomp [6], LFQC
[15] and pigz. Among them, LW-FQZip [5], Fqzcomp [15]
are representatives of reference-based tools; DSRC2 [12]
and quip [4] are reference-free methods; pigz is a general-
purpose tool for compression. All the experimental results
are included in Additional file 1.

Evaluation results
We evaluated the performance of different tools by the
following related metrics: the compression ratio, the co-
efficient of variation (CV) of compression ratios, the
compression speed, the total time of compression and
transmission to cloud storages. Specifically, the com-
pression ratio is defined as follows:
According to this definition, a smaller compression ra-

tio represents a more effective compression in terms of
size reduction; The coefficient of variation (CV) stands
for the extent of variability in relation to the mean and

it is defined as the ratio of the standard deviation (SD)
divided by the average (avg):
A smaller CV reveals better robustness and stability; add-

itionally, GTZ not only performs well in compression on
local computers, but also gains satisfactory results in trans-
mission to cloud storages. On local computers, the com-
pression speed is chosen for evaluation, and it can be
simply measured by the time used for the compression (for
different tools applied on the same data). Under the latter
circumstance, the run time of algorithms should be the
sum of compression and transmission time, namely, from
the start of compression to the completion of transmission
onto the cloud.

Compression ratio
Performance evaluation results are demonstrated in
Table 3 and the best compression ratio, the best CV,
which are the smallest, are boldfaced. Comparative re-
sults of CV are shown in Fig. 7.
To note, in Table 3, some fields on datasets NA12878

(read 2, a very large dataset) are filled with “TLE” (Time
Limit Exceeded, the threshold is empirically set as 6 h), and

Table 5 Total time of different tools on 8 FASTQ datasets with maximum bandwidth

Dataset Size
(MB)

Compression Time (s) + Data best upload time

GTZ DSRC2 QUIP LW-FQZip Fqzcomp LFQC pigz

ERR233152 556.1 19.0 13.4 10.4 284.4 13.4 297.4 3.4

SRR935126 9754.6 49.0 48.8 202.8 3973.8 198.8 3617.8 136.8

SRR489793 12,807 51.0 59.2 353.2 4903.2 299.2 4263.2 132.2

SRR801793 2756.2 43.0 30.2 61.2 1214.2 75.2 1145.2 24.2

SRR125858 50,744.2 178.0 193.6 1084.6 18,340.6 1017.6 10,242.6 521.6

SRR5419422 15,094.6 26.0 19.1 341.1 4246.1 279.1 ERROR 79.1

ERR1137269 56,543 117.0 77.2 851.2 12,063.2 896.2 ERROR 258.2

NA12878 (read 2) 202,631 820.0 862.1 4865.1 TLE 4551.1 TLE 782.1

Average speed (MB/s) 269.3 269.1 45.2 7.8 47.9 17.9 181.1

The best results of all the tools are boldfaced

Table 4 Compression time of different tools on 8 FASTQ datasets

Dataset Size
(MB)

Compression Time (s)

GTZ DSRC2 QUIP LW-FQZip Fqzcomp LFQC pigz

ERR233152 556.1 19 13 10 284 13 297 3

SRR935126 9754.6 49 40 195 3966 191 3610 129

SRR489793 12,807 51 49 343 4893 289 4253 122

SRR801793 2756.2 43 28 59 1212 73 1143 22

SRR125858 50,744.2 178 153 1044 18,300 977 10,202 481

SRR5419422 15,094.6 26 7 329 4234 267 ERROR 67

ERR1137269 56,543 117 32 806 12,018 851 ERROR 213

NA12878 (read 2) 202,631 820 700 4703 TLE 4389 TLE 620

Average speed (MB/s) 267.4 648.8 49.7 2.9 49.6 33.7 176.8

The best results of all the tools are boldfaced
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some fields of the LFQC tools on the SRR5419422,
ERR137269 datasets are filled with “Error” (Cannot decom-
press after compression, those two datasets represent
RNA sequences and metagenomics data respectively).
Those “outliers” represent a low robustness (for conveni-
ence of CV calculation, we just filter out “TLE” and
“Error”). For instance, LFQC [15] yields the best result on
5 out of 8 datasets. However, it got “TLE” on three data-
sets, which means a poor stability in compression effi-
ciency. In addition, despite the CV of pigz is the lowest,
its average compression ratio ranks at the bottom. More-
over, GTZ ranks second with an average compression ra-
tio of 17.86%, and the CV of GTZ is far below that of
LFQC [15] (which has the best compression ratio). In
summary, GTZ not only maintains a relatively good aver-
age compression ratio than most of its counterparts, but
also exhibits better stability and robustness when dealing
with different datasets.

Compression speed
Results for the compression speed tests are shown in
Table 4 and the best results are boldfaced. LFQC [15] and
LW-FQZip [5] fail to compress the GCTA dataset
NA12878 (read 2) within 6 h(21,600 s, which is empiric-
ally set). On datasets SRR5419422 and ERR137269, com-
pressed files generated by LFQC cannot be decompressed,
which are considered as errors (possibly because
SRR5419422 is a RNA dataset and ERR137269 is a meta-
genomics dataset). Table 4 reveals that the reference-
based methods LW-FQZip [5] and LFQC [15] are very
slow on large datasets like NA12878 (read 2). DSRC2 [12],
which is the representative of reference-free methods, per-
forms best in terms of the average compression speed.
GTZ ranks second in terms of compression time.
However, we are mostly interested in the total time of

compression and transmission. Under the condition where
the data transmission throughput is 10Gb/s (1.25 GB/s at
best of AWS settings), we tested and estimated the total
time of all tools and the results are listed in Table 5. To
note, this is a very optimistic optimization. Here, only GTZ
supports data upload while compressing, other tools have
to finish compression before submission. We can see the
average compression and upload speed of GTZ (269.3 MB/
s) is the highest, DSRC2 comes second with an average
speed of 269.1 MB/s. In general, if the input data size is

very large, GTZ will be even faster than DSRC2: 7% faster
in the case of the SRR125858 dataset (a 50GB dataset).
To note, the upload time are estimated with the max-

imum bandwidth, while in practice, the upload speed
could be much slower than that. To verify this, we carried
out a real upload test using the relatively big dataset,
SRR125858_2.fastq (about half of the SRR125858 dataset),
which is 25GBs in size. The compression ratios of GTZ
and DSRC2 happen to be the same on this dataset. It took
GTZ 99 s to finish compression and transmission, while it
took 122 s for DSRC2. Our optimistic estimation of a fast
upload takes only 20.3 s, whereas in practice, it took about
45 s. The details are listed in Table 6.
In Table 7, we present a qualitative performance sum-

mary of all tools. The parameters, high, moderate, and
low show the comparison between different tools. Com-
pression ratio of a tool is said to be high if it is the best
compressor or close to the known best algorithm. GTZ
achieves satisfactory results both in compression ratio
and compression speed (as well as the total time consid-
ering data upload) on tested datasets.

Compression rate on different data sections
The compression rates of GTZ on the three sections of
a FASTQ file are reported in Table 8.

Table 7 Qualitative performance summary

Algorithm Compression speed Compression ratio

GTZ High Moderate

DSRC2 High Moderate

QUIP Moderate Moderate

LW-FQZip Low Moderate

Fqzcomp Moderate Low

LFQC Moderate Low

pigz High High

Table 6 Total time of different tools on the SRR125858_2
dataset in a real test

Metrics Comparative methods

GTZ DSRC2 QUIP LW-
FQZip

Fqzcomp LFQC pigz

Compression
ratio (%)

19.2 19.2 18.7 23.2 28.7 18 30.7

Total time (s) 99 122 553 9283 549 4982 324

Table 8 The compression ratio of GTZ on the three
components of FASTQ files

Dataset Compression ratio (%)

Metadata Reads Quality scores

ERR233152 2.62 20.6 20.8

SRR935126 3.29 22.2 25.3

SRR489793 0.01 22.7 29.95

SRR801793 3.73 23.15 31.1

SRR125858 2.81 23.3 28.25

SRR5419422 0.01 22.9 9.5

ERR1137269 3.23 24.05 19.35

NA12878 (read 2) 7.59 20.4 27.3

Average 2.91 22.39 23.94
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Conclusions
The dramatic development of NGS technology has brought
about challenge to store and transmit genome sequences.
Efficient compression tools are feasible solutions to address
this problem. Therefore, an efficient lossless compression
tool for cloud computing of FASTQ files, GTZ, was pro-
posed in this paper. GTZ is the champion winning solution
of the GCTA competition (Reports can be found at http://
vcbeat.net/35028.html. GTZ integrates the context model-
ing technology with multiple prediction modelling schemes.
It also introduces the ability of paralleling processing tech-
nique for improved and steady efficiency of compression.
Moreover, it enables random access to some certain specific
reads. By virtue of block storage, users are allowed to only
compress and read some parts of genome sequences, with-
out the need for a complete decompression of the original
FASTQ file. Another important feature is that it can over-
lap the data transmission with the compression process,
which can greatly reduce the total time needed.
We evaluated the performance of GTZ on eight real-

world FASTQ datasets and compared it with other state-of-
the-art tools. Experimental results validate that GTZ per-
forms well in terms of both compression rate and compres-
sion speed and its performance is steady across different
datasets. GTZ managed to compress and transfer a 200GB
FASTQ file to cloud storages like AWS and Alibaba cloud
within 14 min.
For future work, we will investigate how DSRC2,

which exhibits a good performance of compression
alone, can be optimized for the cloud environment by
utilizing data segmentation and the optimization tech-
niques proposed in GTZ.
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Additional file 1: Compression ratios, compression time and
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