
Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45
https://doi.org/10.1186/s12859-018-2014-8

METHODOLOGY Open Access

Introducing difference recurrence
relations for faster semi-global alignment of
long sequences
Hajime Suzuki and Masahiro Kasahara*

From Proceedings of the 28th International Conference on Genome Informatics: bioinformatics
Seoul, Korea. 31 October - 3 November 2017

Abstract

Background: The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software
tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD)
operations to accelerate calculation of dynamic programming (DP) matrices in the Smith–Waterman–Gotoh (SWG)
algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for
storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full
SIMD width of modern processors.

Results: We proposed a faster semi-global alignment algorithm, “difference recurrence relations,” that runs more
rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP
matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the
matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly
involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern
processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment
programs.

Conclusions: Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide
long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming
language and available at https://github.com/ocxtal/libgaba.

Keywords: Sequence analysis, Alignment, Long read

Background
Recent advances in single-molecule sequencers enabled
researchers to obtain much longer reads than those
offered by Sanger sequencers. Since Pacific Biosciences
released its first real-time single-molecule sequencer,
PacBio RS, in 2010, the read length of single-molecule
sequencers has been increasing. The latest Sequel
sequencer can yield reads longer than 20 kbp. MinION
sequencers with the R9.4 chemistry released by Oxford
Nanopore Technology are reported to generate a read

*Correspondence: mkasa@k.u-tokyo.ac.jp
Department of Computational Biology and Medical Sciences, Graduate School
of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan

nearly a megabase long [1]. The output of these
sequencers is typically aligned against a reference genome
for downstream analyses such as quantification of gene
expression levels and identification of isoforms [2] and
structural variants [3, 4]. Another major application of
long reads is de novo assembly, where whole-genome shot-
gun reads are aligned with each other, and then contigs
and their consensus sequences are built [5, 6]. Because
sequence alignment is one of the most fundamental meth-
ods in all kinds of genomic analyses, it is important to
develop a fast and efficient sequence alignment algorithm.
Local alignments of nucleotide sequences are often iden-
tified by popular general-purpose alignment tools such as
BLAST [7], BWA-MEM [8], or LAST [9], but there are

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2014-8&domain=pdf
https://github.com/ocxtal/libgaba
mailto: mkasa@k.u-tokyo.ac.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 34 of 104

faster alignment algorithms that fully support long reads
from single-molecule sequencers. For example, BLASR
[10], DALIGNER [11], and GraphMap [12] have shown a
better balance among sensitivity, alignment quality, and
computation time for long reads with abundant indels
(insertions and deletions). Considering that the through-
put of long-read sequencers is expected to double annu-
ally in the next few years as the vendors claim, it is
conceivable that investigators will obtain terabases per
day from a single sequencing instrument. Therefore, the
sensitivity and speed of the current alignment algorithms
still need to be improved, especially for de novo assembly,
which requires huge computation time for all-versus-all
comparison of reads.

Pairwise alignment of nucleotide sequences is often
calculated by the Smith–Waterman–Gotoh (SWG) algo-
rithm [13, 14] or its variants. The original SWG algorithm
is usually used in combination with a heuristic called the
“seed-and-extend” strategy in practical applications. The
seed-and-extend strategy first detects a seed(s), which
is an exact-matching sequence or a near-exact-matching
pattern shared between two sequences, and then calcu-
lates a detailed pairwise alignment around the seed. To
find a pairwise alignment around the seed, the “semi-
global alignment” algorithm, in which one end of the
alignment is fixed and the other end is open, is often
applied. One of the efficient methods for calculating the
semi-global alignment is the X-drop cutoff algorithm in
BLAST, which terminates a search when scores drop by
a certain amount. Similar algorithms are implemented in
BLASTZ [15] and LAST. Another well-known method for
reducing computation time is called “banded DP” [16], by
which researchers calculate only a part of DP cells within
a threshold distance from the diagonal line in the DP
matrix.

Another line of research for accelerating pairwise align-
ment involves data level parallel instructions, also known
as single-instruction multiple-data (SIMD) instructions.
These methods can carry out a vector operation in a single
instruction and thus can accelerate the SWG algorithm.
Such examples include methods developed by Wozniak
[17], Rognes et al. [18], and Farrar [19]. Farrar’s striped
DP algorithm has been the fastest for protein sequences
and short nucleotide sequences, and that is the reason
why Farrar’s algorithm is adopted in the most popular
alignment programs such as BWA [20], Bowtie2 [21], and
HMMER [22] and alignment libraries such as SSW [23]
and Parasail [24].

Nonetheless, how to combine the idea of using SIMD
and the notion of reducing the search space in a semi-
global alignment for further acceleration of the semi-
global alignment is not obvious, especially when two
sequences to be aligned contain abundant indel errors
introduced by single-molecule sequencers. We need

prohibitively large band width to ensure that the optimal
alignment path is contained in the band of banded DP,
given that the read length is approaching 1 megabase. To
this end, we proposed a SIMD-enabled adaptive banded
DP algorithm [25] with constant band width for aligning
reads with abundant but stochastic indels. The algorithm
adaptively defines the band such that the band width is
a constant, and still the optimal alignment path is con-
tained in the band at a high probability at typical settings
for single-molecule sequencing reads.

A new problem that we uncovered in the adaptive
banded DP algorithm is that the number of parallelisms
(i.e., vector width) in SIMD operations is often limited to a
half or a quarter of the number of parallelisms intrinsic to
hardware. For example, recent Intel CPUs with Advanced
Vector eXtension 2 (AVX2) have SIMD operations of 32
integers of 8 bits; therefore, we expect that 32 cells in a DP
matrix should be computed in a single operation. As the
read length increases, however, the absolute values of cells
in the DP matrix increase; the number of bits required
for storing the value of a single cell becomes 16 or even
32, which means that we cannot use 8-bit integers any-
more for a DP matrix. If we use 32-bit integers, then vector
width is limited to 8 because a single AVX2 register can
hold only 8 values of 32-bit integers. Note that the prob-
lem persists even if we give up the adaptive banded DP
algorithm.

To use 8-bit integers mostly for a DP matrix, we pro-
pose a “difference recurrence relation” that is a variant of
semi-global alignment DP with an affine gap penalty, but
most computations involve only 8-bit integers under rea-
sonable conditions. Our contribution is threefold: (1) we
propose new recurrences for the semi-global alignment
suitable for 8-bit SIMD operations, (2) we present sev-
eral implementation techniques for further acceleration
of computation of the semi-global alignment, and (3) we
developed a library that is easy to integrate with genome
analysis tools. Our algorithm can be considered a gener-
alization of score parameters in the existing bit-parallel
algorithms such as Myers’ edit distance algorithm [26]
and Hyyrö’s longest common substring algorithm [27],
which inspired our idea. We demonstrate the efficiency of
our algorithm on real long reads. We compared our new
algorithm with the fastest algorithm for the semi-global
alignment of long reads (i.e., adaptive banded DP with
SIMD instructions) and several baseline algorithms that
use either SIMD instructions or bit parallelisms, showing
that our new algorithm runs 2.1-fold faster than does its
counterpart with wider integers.

Methods
The semi-global DP algorithm
Equation 1 shown below is the definition of the semi-
global DP algorithm we use throughout the paper. It is

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 35 of 104

a trivial variant of the original SWG algorithm [13, 14].
Although we focus on the semi-global alignment algo-
rithm, the same argument holds for the global alignment
algorithm.

S[i, j]=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 (i=0, j=0)

−GoV − j · GeV (i=0, j �=0)

−GoH − i · GeH (i �=0, j=0)

max

⎧
⎨

⎩

S[i − 1, j − 1] +s(ai−1, bj−1)
E[i − 1, j] −GeH
F[i, j − 1] −GeV

(i �=0, j �=0)

E[i, j]=

⎧
⎪⎪⎨

⎪⎪⎩

−GoH − i · GeH (j = 0)

− inf (i = 0)

max
{

S[i, j] −GoH
E[i − 1, j] −GeH

(i �= 0, j �= 0)

F[i, j]=

⎧
⎪⎪⎨

⎪⎪⎩

−GoV − j · GeV (i = 0)

− inf (j = 0)

max
{

S[i, j] −GoV
F[i, j − 1] −GeV

(i �= 0, j �= 0)

(1)

Two input sequences are represented as a = aoa1...a|a|−1
and b = b0b1...b|b|−1 over alphabet � = {A, C, G, T}.
The substitution matrix is described as function s(x, y),
where x, y ∈ �. M is the maximum value in the sub-
stitution matrix, and hence M = maxp,q∈� s(p, q). We
assume that M is non-negative and that minp,q∈� s(p, q) >

−(GoH + GeH + GoV + GeV). The gap penalty function is
expressed in linear form: G(k) = Go + k · Ge, where k is
the length of a contiguous gap region and Go (≥ 0) and
Ge (>0) are gap-open and gap-extension penalties. In the
formulae, the vertical and horizontal gap penalties are dis-
tinguished by H and V subscripts, respectively, although
they often have the same value in real-world applications.
The cell at the origin (0, 0) is initialized with 0, and the
other edge cells at i = 0 and at j = 0 are calculated as the
penalty score for a contiguous gap from the origin. The
traceback starts from the cell with the maximum value in
the DP matrix and terminates at the origin; this approach
ensures that the left (5’-) end of the alignment is fixed at
the origin, and that the right (3’-) end is open.

Naïve difference recurrence relations
Next, we explain a naïve version of our algorithm to
navigate readers smoothly to the final version of the algo-
rithm that we propose. In the original SWG algorithm,
the recurrence contains a comparison operation with an
absolute value; in every cell in the DP matrix, the score is
compared with zero, which is an absolute value. In con-
trast, the semi-global alignment algorithm and its variants
do not have any comparison operation with an absolute
value, so that the recurrences can be transformed into the
ones in difference form, where the matrix can be perfectly

reconstructed from a set of difference values between ver-
tically or horizontally adjacent cells and the initial value
(i.e., 0) of the cell at the origin, (0, 0). We introduce four
difference matrices, �H for i ≥ 1, �V for j ≥ 1, and
�E and �F across the whole matrix as follows. Figure 1
illustrates these difference matrices.

�H[i, j] = S[i, j] −S[i − 1, j] (i ≥ 1)

�V [i, j] = S[i, j] −S[i, j − 1] (j ≥ 1)

�E[i, j] = E[i, j] −S[i, j]
�F[i, j] = F[i, j] −S[i, j]

With these four difference matrices, the recurrences for
the original semi-global alignment can be transformed
into those in difference form. To simplify the recurrences,
we introduce intermediate variable A[i, j], which repre-
sents diagonal difference S[i, j] −S[i − 1, j − 1]. Then, the
recurrences can be expressed as in Eq. 2 (where i ≥ 1 and
j ≥ 1). Note that the right-hand sides of the recurrences
keep symmetry with respect to the two coordinates,
i and j, as those in the original SWG algorithm do. The
complete process of derivation of the difference recur-
rences is described in Additional file 1: Section S1.1 .

A[i, j] = max

⎧
⎨

⎩

s(ai−1, bj−1)
�E[i − 1, j] +�V [i − 1, j] −GeH
�F[i, j − 1] +�H[i, j − 1] −GeV

�H[i, j] = A[i, j] −�V [i − 1, j]
�V [i, j] = A[i, j] −�H[i, j − 1]

�E[i, j] = max
{ −GoH

�E[i − 1, j] −�H[i, j] −GeH

�F[i, j] = max
{ −GoV

�F[i, j − 1] −�V [i, j] −GeV

(2)

The initial conditions for the recurrences (i.e., the cell val-
ues in the column i = 0 and the row j = 0) will be shown
shortly. The differences from − inf are clipped to −GoH
and −GoV for �E and �F , respectively, without a loss of

Fig. 1 Four difference matrices. �H and �V represent the differences
between horizontally and vertically adjacent cells in S. �E and �F are
the differences between a pair of cells at the same i, j-coordinates in E
and S, and F and S, respectively

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 36 of 104

generality. This clipping makes it easier to compute the
values of cells using a small integer type such as 8-bit inte-
ger, while this clipping does not cause a gap-penalization
error at the edges as pointed out by Rognes [28] because
it guarantees that E[0, j] −GeH ≤ S [0, j] −GoH − GeH and
F [i, 0] −GeV ≤ S [i, 0] −GoV − GeV for the first update of
�E (where i = 1) and �F (j = 1).

�H[i, j] =
{

GoH + GeH
GeH

(i = 1, j = 0)

(i ≥ 2, j = 0)

�V [i, j] =
{

GoV + GeV
GeV

(i = 0, j = 1)

(i = 0, j ≥ 2)

�E[i, j] =
{

0
−GoH

(j = 0)

(i = 0)

�F[i, j] =
{

0
−GoV

(i = 0)

(j = 0)

The difference values are bounded by certain ranges that
can be computed from the gap penalty scores and M (the
maximum value in the substitution matrix) when the ini-
tial conditions are defined as above. This property enables
us to use integers of a smaller number of bits for calculat-
ing and storing the difference values. For example, a 4-bit
signed integer is sufficient when M = 2, GoH = GoV = 4,
and GeH = GeV = 1. The proof of the bounding formulae
shown below is provided in Additional file 1: Section S1.2.

−GoH − GeH ≤ �H ≤ M + GoV + GeV

−GoV − GeV ≤ �V ≤ M + GoH + GeH

−GoH ≤ �E ≤ 0
−GoV ≤ �F ≤ 0

The difference recurrence relations, under the proper
initial conditions, do not lose any information from the
original recurrences (hereafter: nondifference recurrences);
therefore, we can obtain alignments exactly the same as
those produced by the nondifference recurrences. The use
of smaller integer types allows us not only to compute
values in the DP matrix faster but also to reduce the mem-
ory requirements because we need smaller memory for
storing the DP matrix. Arbitrarily long alignments can be
computed using only integers of a small number of bits,
aside from a small part of the DP matrix needs to be stored
in absolute values to find the cell with the maximum value
(score). This method enables us to take advantage of the
full width of SIMD operations on modern processors,
which is 16 for Streaming SIMD Extension 2 (SSE2) and
32 for AVX2. In contrast, Farrar [19] suggests retrying to
fill the DP matrix with a larger integer type when a value
in the DP matrix overflows.

The proposed algorithm
The difference recurrence relations that we proposed in
the previous subsection are already suitable for reducing
computation time, but we tried to further optimize the
recurrences. First, we transformed �E, �V , �F , and �H
into four new matrices, �HG, �VG, �E′

G, and �F ′
G, which

are defined as follows. Note that �E, �V , �F , and �H
can be calculated from the new matrices; therefore, cal-
culating the new matrices is mathematically equivalent to
calculating �E, �V , �F , and �H . We also defined sG and
AG as a substitution matrix and an intermediate matrix
with offsets, respectively. sG can be precomputed so that
introducing sG does not increase computation time.

AG[i, j] = A[i, j] +GoH + GeH + GoV + GeV

�HG[i, j] = �H[i, j] +GoH + GeH

�VG[i, j] = �V [i, j] +GoV + GeV

�E′
G[i, j] = �E[i, j] +�V [i, j] +GoH + GoV + GeV

�F ′
G[i, j] = �F[i, j] +�H[i, j] +GoV + GoH + GeH

sG(x, y) = s(x, y) + GoH + GeH + GoV + GeV

With these definitions, the recurrence relations can be
written as in Eq. 3.

AG[i, j] = max

⎧
⎨

⎩

sG(ai−1, bj−1)
�E′

G[i − 1, j]
�F ′

G[i, j − 1]
�HG[i, j] = AG[i, j] −�VG[i − 1, j]
�VG[i, j] = AG[i, j] −�HG[i, j − 1]

�E′
G[i, j] = max

{
AG[i, j]
�E′

G[i − 1, j] +GoH

}

− �HG[i, j − 1]

�F ′
G[i, j] = max

{
AG[i, j]
�F ′

G[i, j − 1] +GoV

}

− �VG[i − 1, j]

(3)

The initial conditions for the new matrices are not
shown because they are trivial; they are simply the sum
of the gap penalties and the initial values in the origi-
nal matrices. The bounding formulae for the values in the
new difference matrices are shown below (see Additional
file 1: Sections S1.3 and S1.4 for more details). In the new
bounding formulae, the lower bounds are all zero and the
upper bounds are a single constant; the values in the new
matrices can be stored as an array of unsigned integers.

0 ≤ �HG, �VG, �E′
G, �F ′

G ≤ M+GoH +GeH +GoV + GeV

Lastly, we investigated the critical path in the recur-
rences. The length of a critical path is defined as the length
of the longest operation dependency chain, where unit
operations are basic binary operations such as addition,
subtraction, and maximum. The critical path length of
the new difference recurrences is reduced to 4 from 8 in

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 37 of 104

the original difference recurrences and even from 5 in the
original nondifference semi-global alignment algorithm.
The shorter critical path is preferred on modern pro-
cessors that can perform multiple arithmetic operations
in a single clock cycle because independent operations
can be executed in parallel by the superscalar instruction
execution mechanism.

Relation to other DP algorithms
The difference recurrence relations are interpreted as
a generalization of the existing approximate string-
matching algorithms as mentioned in the background.
Certain edit distance algorithms and longest common
substring (LCS) algorithms express the DP matrix in dif-
ference form. The negated �H and �V in this paper are
equivalent to �h and �v in the article by Myers [26] if the
substitution matrix is defined as s(x, y) = 0 when x = y
and −1 otherwise, and gap penalties GoH = GoV = 0 and
GeH = GeV = 1. Similarly, �V [i, j] in this paper is equiv-
alent to Vj[i] in the bit-parallel LCS algorithm authored
by Hyyrö [27] when the substitution matrix is defined as
s(x, y) = 1 when x = y and 0 otherwise, and all the
gap penalties are zero. Further explanation is provided in
the LCS paper describing the conversion of bit variables
between the three existing algorithms designed by Allison
and Dix [29], by Crochemore et al. [30], and Hyyrö [27].
We also should say that the bit-parallel global alignment
algorithm proposed by Loving et al. [31] was the first algo-
rithm that adopted difference recurrences for the SWG
algorithm with a linear gap penalty. Our algorithm can be
considered a generalization of theirs with an affine gap
penalty and maintenance of the symmetry in relation to
the coordinates, i and j.

Library implementation
We implemented our algorithm as an independent library,
libgaba, so that developers can easily integrate our algo-
rithm into alignment tools or other genome analysis soft-
ware. It is implemented purely in the C language so that
it can be called from virtually any programming language.
Although our difference recurrences can be applied to
global alignments or any variants of semi-global align-
ments in theory, libgaba is designed specifically for com-
puting semi-global alignment by means of the adaptive
banded DP algorithm, because we believe that the com-
bination of our algorithm with the banded DP algorithm
takes the best balance between speed and sensitivity for
long-read alignment.

The adaptive banded DP algorithm [25] is a variant
of the traditional banded DP algorithm that reduces the
search space by only calculating a part of the DP matri-
ces in which an optimal alignment path is expected to be
contained. Instead of determining the band statically, the
adaptive banded DP determines the band dynamically as

it calculates values in DP matrices (Fig. 2a, b). A fore-
front vector of constant width departs from the origin,
iteratively moves right or down, and forms the band. The
forefront vector tries to move away from cells with lower
scores (Fig. 2a), ensuring that alignment paths with higher
scores are retained in the band at a high probability. The
values of the cells in a forefront vector are computed in
parallel using SIMD instructions.

So far, we have explained how to fill the cells in the DP
matrices, but we have not yet described how to find the
position of the cell with the maximum value (score) or
how to traceback when base-to-base pairwise alignments
are performed.

Finding the cell with the maximum value
The absolute values of the cells in DP matrices are basi-
cally lost in the difference recurrences. Nonetheless, in
semi-global alignment, we need to find the cell with the
maximum value so that we can find a position from which
the traceback starts; you could say that we need the abso-
lute values for this purpose. Our implementation stores
the absolute values of cells in a DP matrix in compressed
form.

Before we move on to the data structure that helps us
find the maximum value in DP matrices, we will define
several terms. First, the band in the DP matrices is divided
into smaller “blocks,” each of which contains vectors cal-
culated in 32 successive updates (Fig. 2b). The kth block is
designated as Bk . Assuming that band width W is 32, the
number of cells in a single block of the DP matrix is 1024.
To illustrate how exactly our algorithm stores values, we
introduce another coordinate, (p, q): p along the diagonal
direction and q for the antidiagonal direction in the DP
matrix (to specify vectors and lanes; Fig. 2a, b). The loca-
tion of each vector, which is represented by coordinates
(i, j) of the top right cell of the vector, is being tracked
during vector updates. Coordinates (i, j) and (p, q) in the
different coordinate systems are easily converted into each
other. In the text that follows, we use either coordinate
system to specify the position of a cell depending on
which is more convenient for explanation; p-q coordinates
are mainly used to describe vectors and lanes, whereas
i-j coordinates are used to describe the relation between
adjacent cells.

Figure 3a and b explains how the vectors are updated
and how to traceback. Several performance-tuning tech-
niques are omitted in the pseudocode for simplicity. We
need to use 32-bit integers or wider to store values in the
DP matrices if we store them in a naïve fashion. Given that
the difference between the maximum value and minimum
value of the cells in a single block fits into 16 bits with the
assumption that M is small, we subtract (potentially) large
offset value L[k] from every cell in the block. L[k] is a sin-
gle 64-bit integer stored in memory. After subtraction, the

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 38 of 104

(a) (b)

Fig. 2 a A schematic view of vectors, coordinates, and an adaptive band in the proposed algorithm: Vectors have parallelisms in the antidiagonal
direction. W denotes the band width in adaptive banded DP. A set of four vectors, �HGV , �VGV , �E′

GV
, and �F′

GV
, retains the forefront vectors in the

four difference DP matrices �HG , �VG , �E′
G , and �F′

G . Two additional coordinates, p and q, are introduced to index vectors and vector lanes in
addition to the horizontal and vertical coordinates, i and j, in the DP matrix. The p coordinate, defined as p = i + j, specifies the location of the
vectors, whereas q is a local position within a vector; the upper rightmost lane has an index number 0, and the lower leftmost lane W − 1. The
advancing direction is determined by comparing the values of the two edge cells, SV [0] and SV [W − 1], such that the difference of the two cells is
kept smaller, where the vectorized original S matrix is denoted as SV . See our article [25] for further details about the adaptive banded DP algorithm.
b Data structure for reconstructing the absolute values in the original DP matrices from difference DP matrices, and a schematic view of prefetching
a part of the sequences: Each block consists of a set of 32 vectors (or 1024 cells) and is indexed by a block number, k. The absolute value of a cell can
be calculated as the sum of 64-bit large offset L[k], constant 16-bit value (middle delta) D[q], and 8-bit small delta d[p, q] of the cell. Input sequences
are converted to a 2-bit encoded string before processing of a block. Subsequences of 32 bases are loaded from the buffers using an unaligned
vector load instruction

values in the DP matrices can be represented as signed
16-bit integers. We then noticed that the values in the
same lane of a block tend to be more similar than val-
ues in distant lanes (i.e., q-coordinates are distant) because
the values of cells tend to be somewhat greater toward
the center of the vectors. To further reduce the number
of bits required for storing values of cells, we subtracted
the D[q] constant (as well as L[k]) from the cells in
the qth lane.

In all, we decompose a value of a cell into three
values: a 64-bit integer that represents a potentially large
offset (L[k]), a constant 16-bit signed integer we call a
middle delta (D[q]), and an 8-bit signed integer that we
call a small delta (d[p, q], where k = �p/32�). The abso-
lute value of a cell is the sum of the three values. The
small delta values are calculated on every vector update
(i.e., on every move of the forefront vector). The maxi-
mum values for the small deltas in all the lanes of a block
are updated using a SIMD operation. The vector of small
deltas represented as a vector of 8-bit integers may over-
flow with a certain substitution matrix containing large
values, but it will not overflow when M is relatively small,
which is the assumption. We cannot explicitly show how
small M should be because the algorithm is too complex
for rigorous analysis, but we did not see any problems with

the combination of parameters typical for the existing
long-read aligners.

The initial conditions for the three variables are defined
across the k = −1 block, which we call the “phantom
block,” and its last vector (“phantom vector” at p = −1)
as shown below. Term |q − W/2| represents the distance
from the center of the band. Coefficient −(M+GeH +GeV)

in the middle delta denotes the lower bounds of the cell
values with an assumption that the center cell has the
highest score in each vector. We introduced additional
inclined offset |q − W/2| ∗ 128/W into the middle delta
to decrease overflow errors, which are often caused by a
reduced gradient due to a low-identity region.

L[−1]=0
D[q]=−GoH +|q −W/2| ∗ −(M+GeH +GeV −128/W)

d[−1, q]=|q − W/2| ∗ −128/W

A variant of the X-drop algorithm is implemented using
two variables, d[p, q] and dmax[p, q]; we compared the
difference of the two values (the amount of the drop)
with threshold X. The large offset is calculated immedi-
ately after the last vector of each block becomes avail-
able, after which the values in the small-delta vector are
shifted accordingly. In the current implementation, the

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 39 of 104

(a)

(b)
Fig. 3 a The core of the vectorized update loop: The pseudocode describes a simplified version of the update procedure for the (antidiagonally)
vectorized difference recurrence algorithm; dh, dv, df, dh, and Av denote vectors �HG , �VG , �E′

G , �F′
G , and AG , respectively; av and bv are input

sequence vectors that hold 2-bit-encoded nucleotide sequences. The binary operators for vectors—or, max, add, and sub—are bitwise OR and
elementwise maximum, addition, and subtraction, respectively. The unary operators, shiftr and shiftl, are elementwise rightward and
leftward shift operations, respectively. The shuffle operation (shuffle) takes an element table as the first argument and an index vector as the
second argument. b The core of the traceback loop: Traceback is executed by comparing difference values. In our implementation, the vertical
transition is preferred over both the horizontal and diagonal transition in the DP matrix. The horizontal transition is preferred over the diagonal
transition. The diagonal transition is chosen only when the other transitions are impossible (See “Traceback flags and generating alignment path
strings” section for details). Note that MATCH indicates the diagonal transition including a mismatch

large offset is the average of W/4th and 3W/4th values in
the last vector of a previous block. The large offset, the last
small-delta vector, and the maximal small-delta vector are
stored for later use in the traceback. All the other small-
delta vectors are recalculated on demand in the traceback
phase to reduce memory use.

A bonus for combining the difference recurrence rela-
tions with the adaptive band algorithm is that this
approach eliminates the dependence on the second pre-
vious vector (S[i − 1, j − 1] in Eq. 1) in the recurrences.
The elimination of the dependence on the second previ-
ous vector leads to more efficient calculations because it
removes a branch in the execution path when the band

moves in the same direction twice in a row. Avoiding a
branch misprediction penalty, which is quite large (e.g.,
16–17 cycles per prediction failure for the Intel Sky-
lake architecture) in the innermost loop has a noticeable
impact on computation time.

Traceback flags and generating alignment path strings
The final part necessary for finishing the complete pair-
wise alignment is to generate an alignment path string
(a.k.a. an edit path). We introduce another data struc-
ture, traceback flags, which are sets of four 32-bit-wide
bit vectors that we denote by MH , MV , ME , and MF ,
where each bit in the vectors represents the possibility

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 40 of 104

of transition (in the traceback) to the corresponding cell.
MH [i, j] is set iff a horizontal transition is possible from
S[i, j] to E[i − 1, j], and ME[i, j] is set iff a horizon-
tal transition is possible from E[i, j] to E[i − 1, j]. The
other two vectors for vertical transitions are defined sim-
ilarly. The four sets of vectors, MH [i, j], MV [i, j], ME[i, j],
and MF [i, j], are calculated simultaneously as the DP
matrices are being filled. For reasons we will describe
shortly, we decided to prefer vertical transitions over
horizontal transitions when both transitions are possi-
ble. In addition, the diagonal transition is chosen only
when both the vertical and horizontal transitions are
impossible. Figure 3b describes the traceback algorithm in
pseudocode.

We encoded the alignment path in a series of bits. A
single bit of “1” represents the vertical transition, “0” the
horizontal transition, and “10” the diagonal transition.
The final alignment path string is a concatenation of the
encoded transitions. You might think that it is impossible
to tell “10” from “1” followed by “0”; however, the transi-
tion priority we mentioned above enabled us to uniquely
determine which interpretation is correct when we read
the final alignment path string either from left to right
or from right to left. This path string encoding ensures
high memory efficiency while retaining several preferable
properties: (1) the alignment path string is obtained by
concatenating the bit-encoded strings, and (2) the length
of any part of the alignment path string of an alignment
is the sum of the lengths of the aligned part of one of
the aligned sequences and that for the other sequence.
That is, the length of the alignment path is calculated
from the lengths of the two sequences to be aligned.
These properties enable more efficient implementations
of several higher-layer algorithms such as breakpoint cor-
rection in a split-read alignment. A bonus of this approach
is that the traceback implementation can be performed
by means of logical operations so that it can reduce the
number of branches as compared to a naïve implemen-
tation of the SWG algorithm or semi-global alignment
algorithm (Eq. 1).

Additionally, we present an efficient method for con-
version of the bit-encoded alignment path string to the
corresponding CIGAR string. A contiguous deletion is
observed as contiguous zeros in the bit-encoded string.
Modern processors provide an instruction that counts the
contiguous zeros from the least significant (or most sig-
nificant) bit in a register, which is called “trailing (leading)
zero count.” The trailing zero count instruction calculates
the length of the deletion block in a single instruction.
Determining the length of a region of diagonal transitions
only is also possible for the trailing zero count instruction
with some trick; taking bitwise XOR with repeated “10”
bits, or 0xAAAA...AA, reduces the problem to simple bit
counting.

Computation of score profile vectors and prefetching
sequences
Retrieval of scores from the substitution matrix, or cal-
culation of the score profile vector, can be performed in
parallel using the 16-element vector shuffle operation as
described by Suzuki and Kasahara [25], but we will give
a brief overview. The vector shuffle operation is a paral-
lel table lookup on a SIMD register, where the table of
integers of fixed size is “shuffled” with the index vector
that has indices between 0 and “vector width minus 1”
(15 for the 16-element vector). In order to utilize the
shuffle operation to calculate the score profile vector, an
index value in the index vector is assumed to be a con-
catenation of two bases each of which is encoded in 2
bits. The element vector holds a 16-element vector or
a flattened substitution matrix. The substitution matrix
vector is retained on a SIMD register during the com-
putation, and the index vector is calculated on the fly
from 32-base-long subsequences. To mitigate the over-
head of the index vector construction, conversion from
an ASCII character to a 2-bit encoded integer is done
outside the innermost loop, and the conversion is done
in parallel using SIMD operations at the beginning of
the process for a block. The encoded sequences, both of
which are 64 bp, are stored in sequence prefetch buffers
(Fig. 2b).

Miscellaneous implementation techniques
We describe miscellaneous implementation techniques
that exploit common features of modern CPUs. We
believe the techniques are applicable to the processors,
though, we mainly adopt the x86_64 architectures in
the explanation because we only provided implementa-
tions for them (SSE4.1 and AVX2 SIMD instructions,
available on x86_64 processors by Intel and AMD). Fur-
ther portability issues that come with the techniques are
not discussed here, but discussed in Additional file 1:
Section S2.

Register usage: The fill-in and traceback algorithms have
small loops that are executed a huge number of times.
Therefore, optimization of the register use in the inten-
sive loops is expected to improve the overall calculation
performance. Here, we carefully tuned the implementa-
tion to make the number of register spill-reload pairs as
small as possible and the number of concurrently exe-
cutable instructions as large as possible (the latter can
be accomplished by relaxing a chain of result-to-source
register dependences).

The matrix calculation loop of a 32-cell-wide band
requires four 32-byte vectors for the four difference vari-
ables and a pair of 32-byte vectors for the small delta and
maximal small delta variables. These vectors are mapped
to a set of twelve 128-bit-wide or six 256-bit-wide SIMD

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 41 of 104

registers. Given that the SSE instruction sets of x86_64
processors give us only sixteen 128-bit-wide registers,
we had to implement the fill-in loop carefully to make
sure that the number of temporary registers required at
the same time does not exceed 4. For this reason, the
query sequence buffers were allocated in memory, and the
unaligned load operation was adopted to imitate elemen-
twise shift operations on the vectors. The order of several
operations from the naïve implementation was reassigned
(based on the pseudocode shown in Fig. 3a, b) for the
major compiler backends (clang, gcc, and Intel C Com-
piler) so that we can place scalar and SIMD instructions
in an alternating manner. We further optimized the recur-
rence relations for CPU architectures that do not support
three-operand operations. Our implementation for the
SSE4.1 instruction sets calculates −�HG instead of �HG
using the commutativity of addition, i.e., AG + (−�HG)

is calculated instead of AG − �HG; this approach reduces
computation time slightly.

In the traceback loop, we applied similar considera-
tions. Several variables, especially the ones that are refer-
enced few times in the loop (e.g., the length of sequences,
indices on the sequences, and the counters for the num-
ber of gaps) were moved from the general-purpose reg-
isters to SIMD registers. This modification eliminated
the register spill/reload pairs almost completely from the
innermost loop.

Branch predictor consideration: Modern processors
have speculative branch selection and instruction exe-
cution mechanisms, called branch prediction. A failure
in the branch prediction causes a fairly large execution
path recovery penalty (16–17 cycles for Intel Skylake and
18 cycles for AMD Ryzen architectures; [32]). Conse-
quently, we made the control flow of the algorithm as
easily predictable as possible, extracting and reassigning
simple patterns for each branch for the patternable ones or
making the branch probability sufficiently biased for the
stochastic ones.

With regards to the fill-in loop, we noticed as a result of
observation that the two advancing directions, rightward
and downward, repeat alternately in most cases, espe-
cially during alignment of high-identity sequence pairs.
We unrolled the matrix fill-in loop into 4 blocks, assign-
ing downward direction to the odd ones and rightward
to the even ones. This composition eliminates internal
branching execution paths for each block and enables
efficient streaming instruction execution without control
transfer to distant addresses. Rare patterns—two or more
contiguous right (or down) advances—are handled by
skipping the middle downward-advancing (or rightward-
advancing) blocks. Because the longer contiguous identi-
cal directions occur more rarely, the 4-fold unrolled loop
successfully avoids the pollution of the prediction states

due to double or triple contiguous identical directions that
sometimes occur between normal zigzag patterns.

The traceback loop was unrolled into three blocks
in accordance with the traceback directions—diagonal,
vertical, and horizontal—to assign a dedicated pre-
diction state to each inter- and intrablock transition.
It was effective at keeping branch prediction states
clean, especially for the transitions into the diag-
onal block (diagonal-to-diagonal, vertical-to-diagonal,
and horizontal-to-diagonal) because they have much
higher probabilities than the others. The direction-based
unrolling was also effective in eliminating unnecessary
memory accesses.

Results
We implemented the proposed affine gap penalty algo-
rithm (Eq. 3) for x86_64 processors using AVX2 SIMD
instructions with the optimization techniques described
in the “Library implementation” section (libgaba; com-
mit 7648c72). We also provided the difference algorithm
implementation without deformation of the recurrences
(Eq. 2) or optimization (diff-raw). As comparison base-
line, we prepared another implementation, the adaptive
banded DP algorithm with affine gap penalty without the
use of the difference recurrence relations (non-diff). We
chose these algorithms because we wanted to measure the
performance gain provided by the difference recurrence
relations. The difference recurrences may also be useful
for nonbanded DP algorithms, but we excluded such algo-
rithms because they run too slowly when input sequences
are long owing to their time complexity of O

(
n2) in con-

trast to O(n) for adaptive banded DP algorithms, where
n is the length of input sequences. To compare our algo-
rithm with the fastest alignment algorithm for a unit
score matrix, we also implemented an alignment algo-
rithm based on Myers’ bit-parallel edit distance algorithm
(editdist) with an adaptive band, which is a slightly mod-
ified version of the algorithm authored by Kimura [33].
The editdist algorithm is a special case of the adaptive
banded DP where the score matrix is a unit matrix. It was
expected to run faster than our algorithm because it is a
restricted version of our algorithm. The vector width (W)
was set to 32 in the three affine gap penalty implementa-
tions because it is the width of SIMD registers in AVX2
and therefore we can expect the highest efficiency. We set
W to 64 in the adaptive edit distance algorithm because
it is the width of general-purpose registers. Note that the
band for editdist is twice as wide as that for the other three
algorithms. Bit widths for the DP variables were set to 8 in
the two difference algorithms, to 16 in non-diff, and to 1
in editdist. Every algorithm was composed of three stages:
matrix fill-in, traceback, and path-to-CIGAR conversion.
The benchmark programs were compiled by gcc-5.4.1
with the O3-level optimization with the SIMD instruction

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 42 of 104

enabled (-march=native) and were then executed on an
Intel Core i5 6260U processor (Skylake; 2.8 GHz at boost;
4 MB L3 cache) with 32 GB RAM (DDR4; 2,133 MHz)
running Ubuntu Linux 16.10.

As input data, query sequence pairs were generated
from three runs of Oxford Nanopore MinION reads from
the whole-genome sequencing experiments of a human
sample, NA12878 (accession No.: FAB45271, FAB42316,
and FAB49164; [1]). A thousand subsequence pairs rang-
ing within 25±2 kbp were taken from the SAM file gener-
ated by BWA-MEM (version 0.7.15-r1142-dirty) with the
ONT 2D setting (-xont2d). The sequence pairs that con-
tained a contiguous gap region longer than 20 bp were
filtered out to compare purely the matrix fill-in speed of
the algorithms because gaps larger than 20 bp may not
be captured by the adaptive banded algorithm at non-
negligible probability [25]. Without filtering, algorithms
may sometimes terminate alignments long before they
reach the ends of input sequences, which would com-
plicate the interpretation of results. The generated input
data had the mean read length of 24,691 bp, insertion and
deletion rates of 0.014 and 0.091, respectively, and a mis-
match rate of 0.061 (Additional file 2). We first determined
what percentage of the alignments was largely repro-
duced by the 32-cell-wide adaptive banded algorithm. The
three implementations failed to reproduce the full align-
ment obtained by BWA-MEM for 2.6% of the pairs in the
input. We found that almost all the failed pairs contained
homopolymers or tandem-repeat sequences around the
point where the alignment was terminated prematurely,
suggesting that further improvement is needed to success-
fully align over 99% of raw reads. The other major failure
mode was due to low-identity regions.

Table 1 shows the computation time for aligning the
input sequence pairs. The Fill, Trace, Conv, and Total
columns present the computation time for filling the DP
matrices including time for filling the data for finding the
maximum value, computation time for alignment path
calculation including the time for finding the position
of the cell with the maximum score, the computation
time for path-to-CIGAR conversion, and total computa-
tion time, respectively. The score parameters employed
in the affine gap penalty algorithms were the same as in
the BWA-MEM alignment; the match score (s(x, y) when
x = y), the mismatch score (s(x, y) when x �= y), the
gap-open penalties (GoH and GoV), and the gap-extension
penalties (GeH and GeV) were set to 1, −1, 1, and 1, respec-
tively. X-drop threshold X = 50 was input into the three
affine gap penalty algorithms. Maximal edit distance k was
set to k = 10, 000 for editdist.

As expected, libgaba runs faster than diff-raw, and diff-
raw runs faster than non-diff at any of the Fill, Trace, or
Conv steps. The total computation speed for libgaba is
2.1-fold higher than that of non-diff, which has been the

fastest implementation for the semi-global alignment of
long reads.

Although the libgaba implementation ran slower than
editdist in terms of per-cell performance, libgaba ran
faster than editdist in terms of per-vector performance.
This is remarkable given that editdist can take only the
unit score matrix and therefore can be considered a spe-
cial version of libgaba, and given that editdist would
need wider band width to obtain alignments of qual-
ity similar to libgaba due to the restriction on the score
matrix. To be precise, libgaba spends mere 22 clock cycles
per vector update; this speed outperforms editdist. The
improvement of the update performance of libgaba can be
explained by two factors: a reduction in the critical path
length (by ∼ 4 cycles) and the prefetch and conversion
of query sequences (∼ 3 cycles). It should also be noted
that libgaba makes the maximal use of the available execu-
tion units (several scalar units and several SIMD pipelines)
in the innermost loop. We observed that libgaba stalls
rarely, presumably because all the computation context is
kept only on registers; the DP vectors are on the SIMD
registers and the others on the general-purpose registers.
On the other hand, the editdist implementation generated
several register spill/reload pairs that resulted in execu-
tion pipeline stalls, which led to a performance loss. The
performance of libgaba and editdist on the traceback was
significantly faster than that of non-diff and diff-raw. The
reason why the performance on the traceback is clustered
into two groups may be that the traceback algorithms for
both methods are similar in that logical operations are uti-
lized. The speed for the path-to-CIGAR conversion was
also improved by a factor of ∼ 2.5 with the proposed
bit-counting-based conversion algorithm when compared
with the naïve one. We also conducted the same experi-
ment on other machines with different SIMD instruction
sets and compilers. The results were generally consistent
among all the tested settings, the editdist being the fastest
and the libgaba being the second fastest. The machine
specifications and complete results are shown in Table S1
and S2, respectively, in Additional file 1: Section S3.

Next, we measured scalability with respect to the length
of input sequences. Figure 4a and b shows the average
computation time for a single call of the fill or for the
traceback and conversion steps for the NA12878 dataset.
Sequence length l varied between 1 and 25,000 bp except
that we cut off the tail longer than 25 kbp in the input
sequences. The maximal edit distance was set to k = 0.6 · l
for editdist. The results were largely consistent with the
results in Table 1, as expected. We can see that libgaba
scales linearly when sequences are longer than a certain
threshold, where the overhead can be ignored as com-
pared to total computation time. The overhead at the
fill-in step was presumably due to the extra extension
(100–200 bp) until the end of alignment was detected by

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 43 of 104

Table 1 Performance comparison in terms of filling the matrix, traceback, conversion to CIGAR strings, total computation time, and
GCUPS

Calc. time (sec.) Fill Trace Conv Total GCUPS

Editdist 0.436 0.104 0.076 0.616 7.19

Non-diff 0.565 0.399 0.073 1.037 2.77

Diff-raw 0.516 0.316 0.073 0.905 3.03

Libgaba 0.377 0.097 0.028 0.502 4.15

Edlib 26.0 18.8 0.109 44.9 13.23

SeqAn EDa 77.2 7.97

BWA-MEM globalb 354 0.381 355 0.12

BLAST X-dropc 250 0.18

Parasailc 886 0.69

Results of comparison to existing implementations. Four adaptive banded DP implementations of ours (editdist, non-diff, diff-raw, and libgaba; top four rows) and four
existing implementations (edlib, SeqAn ED, BWA-MEM global, BLAST X-drop, and Parasail; bottom five rows) were compared. See the main text for the details of the
implementations. Columns: The average computation time per cell is shown in the Fill column. The time for traceback and CIGAR string conversion is shown in the Trace and
Conv columns. The Total column presents the sum of Fill, Trace, and Conv. The GCUPS column shows the matrix fill-in performance in billion cell updates per second (GCUPS)
aThe traceback and path-to-CIGAR conversion time for the SeqAn ED were not measured
bThe path-to-CIGAR conversion field for the BWA-MEM global is blank because the implementation directly generates final CIGAR string
cThe traceback and the path-to-CIGAR conversion fields are blank because the traceback routines were not implemented for the BLAST X-drop DP and the Farrar’s algorithm
implementations that we used

the X-drop-like heuristic. The large overhead observed
at the traceback and conversion step for diff-raw was
caused by the additional step involving searching for the
cell with the maximum value, which is not a necessary
step for other algorithms. We can see that libgaba success-
fully reduced overhead presumably with the data structure

described in the “Library implementation” section despite
the large overhead for diff-raw.

Comparison to existing implementations
We tried to compare our algorithms with previous align-
ment algorithms used in popular nucleotide sequence

(a) (b)
Fig. 4 The average computation time in microseconds for (a) a single call of the fill function and (b) a single call of the trace function and the
path-to-CIGAR conversion function, for the four implementations: editdist, non-diff, diff-raw, and libgaba. The length of query sequence pair l is
tested for each value in the geometric series from 1 to 33,000, with the geometric ratio of approximately 1.25. The gray lines, t = 0.0145 · l in the fill
and t = 0.0045 · l in (b), are depicted as regression lines for the results of libgaba

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 44 of 104

aligners, but it was not straightforward as we expected.
We found that alignment routines in existing stand-alone
long-read aligners or general-purpose alignment libraries
cannot be directly compared to our algorithm in a fair
manner. Here are some examples: (1) the Farrar’s algo-
rithm [19] is not suited for banded alignment, whereas
ours can be used for banded alignment; (2) BWA-MEM
[8], NCBI-BLAST+ [34], LAST [9] or NanoBLASTer [35]
do not use SIMD, whereas ours use SIMD, although using
SIMD (alone) is not our contribution here; (3) GraphMap
[12] extensively use the Myers’ edit-distance algorithm
that is a kind of data-level parallel algorithm, but the
Myers’ algorithm allows us to use the unit score matrix
only, although our algorithm accepts a more general score
matrix with affine-gap penalty. (4) BLASR [10] relies heav-
ily on seed chaining for reducing the computation time,
but does not use SIMD nor bit-parallel algorithms.

Considering those situations, instead of showing a rigid
comparison between the existing methods, the baseline
algorithm (non-diff), and our algorithm (libgaba), we
will show an indirect evidence that the baseline algo-
rithm (non-diff) we used is already well optimized. Other
less-optimized SWG algorithms and stand-alone aligners
should be easier to optimize, so that they will eventually
benefit from our algorithm.

Because our primary contribution is that we doubled
(or quadrupled in some cases) the width of SIMD vector-
ization and that our algorithm still allows tracing back,
we decided to evaluate the performance of existing algo-
rithms and ours by measuring the billion cell updates per
second (GCUPS), which is how many DP cells are updated
per second in the extension alignment.

To that end, we compared the DP matrix calculation
performance of our implementation, libgaba and non-
diff, the baseline algorithm, with several existing DP
matrix calculation routines. We selected five implemen-
tations, each of which represents a certain category of
existing algorithms: (1) an implementation of the Far-
rar’s algorithm in the Parasail library (hereafter: Parasail;
commit 3d8b4ee; [24]), (2) the global alignment rou-
tine in the BWA-MEM algorithm (BWA-MEM global;
commit b582816), (3) re-implementation of the BLAST
X-drop DP algorithm found in NCBI BLAST+ package
(version 2.2.31+), (4, 5) the Myers’ bit-parallel edit dis-
tance algorithms [26] in the edlib and the SeqAn libraries
(edlib; commit 0c6fe0f; [36] and SeqAn ED; version 1.4.2;
[37], respectively). To our knowledge, other tools and
libraries for long-read alignment fall largely on one of
these categories.

The Parasail implementation we used was a semi-global
variant of the full-sized (non-banded) SWG algorithm
proposed by Farrar [19]. The implementation uses 256-
bit-wide SIMD registers for calculating 16-bit-wide DP
cells. The register width and the DP variable width were

the same as our non-diff implementation, which achieves
the highest parallelism on the machine we used. Although
it was unclear whether the implementation also performs
well on long nucleotide reads, the Farrar’s algorithm is
reported to be the fastest SIMD-vectorized alignment
algorithm for protein sequences [19, 23, 24].

The global alignment algorithm in BWA-MEM is a
static banded SWG implementation with vertical matrix
slicing without SIMD vectorization. Out of the two DP-
based alignment implementations (global alignment and
semi-global alignment) in BWA-MEM, we chose the
global alignment implementation for the following two
reasons: (1) The number of the updated cells is easier
to calculate for the global alignment implementation; the
semi-global alignment routine may stop evaluating cells in
the DP-matrix due to the X-drop-like heuristic algorithm
(called Z-drop); (2) The semi-global alignment algorithm
used in BWA-MEM does not store the whole DP matrix
nor the whole traceback information; it only stores the
position of the cell where the maximum score is given.
This hinders direct comparison with other implementa-
tions. The global alignment routine, “ksw_global2” found
in ksw.c, calculates the SWG DP matrices with 32-bit-
wide variables and stores 8-bit-wide traceback direction
flags. We set the bandwidth to the default of the BWA-
MEM algorithm, three plus the antidiagonal distance of
the two end positions of the alignment for each query-
reference pair. This is because the global alignment rou-
tine in BWA-MEM is invoked after semi-global alignment
finds an approximate region in the DP matrices where an
optimal path travels through.

The BLAST X-drop DP is a SWG-based semi-global
alignment extension algorithm adopted in the BLAST
package. Since the current implementation of the algo-
rithm in the NCBI BLAST+ package was highly compli-
cated in terms of the input and output data structures
and the control flows, we used a modified version used in
our adaptive banded DP paper [25]. Briefly, we extracted
a part of the source code from the NCBI BLAST+ pack-
age, optimized the part of the source code for aligning
only nucleotide sequences for the benchmark. The control
flows were not largely modified form the original imple-
mentation, while the score matrix retrieval was simplified
by removing branches for protein sequences and position-
specific score matrices. The X-drop threshold was set to
X = 70, which is the default value of the blastn program.

The Myers’ edit-distance algorithm utilizes 64-bit gen-
eral purpose registers to handle 64 DP cells simultane-
ously. The Myers’ edit-distance algorithm only takes the
unit score matrix; it is a special case of the general SWG
algorithm. The SeqAn edit-distance implementation cal-
culates a full-sized DP matrix without any heuristic, but
again it only takes the unit score matrix. The edlib library
adopts a space-reduction technique similar to the BLAST

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 45 of 104

X-drop algorithm for efficiently detecting alignment paths
around the diagonal line of the DP matrices. We estimated
the number of updated cells by counting the number of
calls to “calculateBlock” function, which updates a set of
four 64-bit-wide difference vectors of the Myers’ algo-
rithm that consists of a set of information for 64 cells. The
number of updated cells were counted using a separate
implementation such that the counting does not affect the
computation speed measurement. The maximal edit dis-
tance parameter was set to k = 10, 000 for the algorithm
to capture the full length alignments from the dataset.

We used the same experiment setting as the previous
experiment. The 1000 subsequence pairs of the Nanopore
dataset of 25 kbp and its corresponding GRCh38 refer-
ence subsequence, were input to the five implementations.
These implementations were compiled and linked into
a single binary. As for the billion cell updates per sec-
onds (GCUPS) metrics, the fastest implementation was
the edlib (13.2 GCUPS; Table 1). The SeqAn edit-distance
algorithm and our adaptive edit-distance algorithm per-
formed largely equally, at 8.0 and 7.2 GCUPS, respec-
tively. This is what we expected because they accept the
unit score matrix only, and therefore they solve only a
special case of the SWG problem that the other algo-
rithms solve. Among the SWG implementations (libgaba,
BWA-MEM global, and Parasail), the fastest was libgaba
(4.15 GCUPS). The Parasail marked 0.69 GCUPS, show-
ing that libgaba fills more cells per second than the state-
of-the-art parallel SWG implementation. We speculate
that there are two reasons for the performance decline:
(1) Cache miss occurs more frequently on long reads due
to the large DP matrix, that is, a full-sized DP matrix
for 1000 bp sequence pairs becomes 6 MB for the SWG
algorithm when 16-bit-wide variable is adopted, which is
larger than the last-level cache of current typical proces-
sors (e.g., 3 MB for Intel Skylake). (2) The algorithm incor-
porates dependences between cells inside each SIMD
vector, which becomes additional computational overhead
compared to the dependence-free vectorization of ours.
Both of the BWA-MEM global and the BLAST X-drop
DP implementations were much slower than the SIMD-
vectorized SWG implementations (0.12 and 0.18 GCUPS,
respectively), which is due to the serial (not parallelized)
DP matrix calculation. Considering that (1) the imple-
mentations write DP cell values (scores) or traceback
directions to memory, (2) the implementation accesses
memory for loading query and reference bases, the
results for the two implementations are likely to represent
the performance for a typical serial (non-parallel) SWG
implementation.

In all, the edit-distance algorithm in edlib is the fastest
in terms of GCUPS. However, the edit-distance algorithm
is a special case of the SWG algorithm because it can
only take the unit score matrix and because it does not

accept affine-gap penalty. Among the SWG algorithm or
its variants, libgaba is the fastest in terms of GCUPS.
Considering that the theoretical maximum GCUPS after
applying 8-way SIMD operations (32-bit-wide variables)
to the BLAST X-drop DP alignment algorithm is roughly
0.18 × 8 = 1.44, which is far below the GCUPS of libgaba,
we conclude that libgaba is the fastest extension alignment
algorithm in practice for long reads.

Discussion
The difference recurrence relations utilize the full width of
SIMD instructions available on modern processors using
8-bit integers in most operations during computation of
a semi-global alignment. The difference recurrence rela-
tions can be easily extended to the global alignment. In
addition, we released the implementation of our algorithm
as a pure C library so that tool developers can immediately
benefit from the difference recurrence relations. Because
libgaba is, to the best of our knowledge, the fastest affine
gap penalty alignment library suitable for aligning long
nucleotide sequences from single-molecule sequencers,
we hope that libgaba is incorporated into many existing
alignment tools and other tools in the near future.

In addition, our benchmark indicates that the combi-
nation of difference recurrence relations and the adap-
tive banded DP algorithm is highly effective at aligning
real reads generated by single-molecule sequencers. Our
benchmark also revealed a limitation of the adaptive
banded algorithm: large indels (> 20 bp), homopolymers,
and tandem repeats must be handled with care in order
to calculate more accurate alignments. This may be done
by an algorithm in a higher layer. One possible design
for the seed-and-extend–based alignment algorithm may
be to combine the seed-chaining algorithm with a special
extension step. The seed-chaining step enumerates seeds,
and then the seeds are chained to estimate the approx-
imate region through which the optimal alignment path
should go. The extension step can benefit directly from
adaptive banded DP, but a researcher may want to add an
extra step that iterates the extension until the alignment
covers the full chain when the input sequence contains
problematic sequences that cause premature termination
of the alignment. Another design may use a nonadap-
tive (static) banded DP algorithm to overcome problems
with tandem-repeat or homopolymer regions by means of
static banded DP with a wider band. Be that as it may, we
believe that libgaba is already useful for most applications.
Indeed, Minimap2 [38] already uses a variant of our differ-
ence recurrences, achieving much improved speed over its
predecessor. We are also developing a stand-alone aligner.

Alignment of long protein sequences might be also
accelerated by the proposed difference recurrence rela-
tions. Nevertheless, how to do it efficiently is an open
question; our algorithm assumes that the score matrix fits

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 46 of 104

in a single SIMD register [25], but a normal score matrix
for amino acids (e.g., 20 × 20) does not. There might also
be an option to combine the difference recurrences with
horizontally placed vectors (as in the Farrar’s algorithm),
where score profile vectors can be precalculated for each
query residue.

Finally, we would like to mention that it is easy to
port our algorithm to other flavors of processors such
as graphical processing units or manycore processors,
where a per-core memory quota or the local memory
size is relatively small as compared to the ones in nor-
mal CPUs. Our algorithm is also likely to run efficiently
on field-programmable gate arrays or application-specific
integrated circuits because it can lead to a smaller circuit
size of arithmetic units (addition, subtraction, and maxi-
mum) and to better timing requirements because of the
shorter critical-path length.

Conclusions
We proposed a novel algorithm “difference recurrence relations”
that computes a semi-global Smith-Waterman-Gotoh
alignment in a SIMD-friendly manner, as a general-
ization of existing bit-parallel string comparing algo-
rithms [26, 27]. We also proposed several implementation
techniques that are effective on accelerating semi-global
alignment algorithms. We released a portable library
implementation of our algorithm, libgaba. Our differ-
ence recurrence algorithm accelerated constant-width
banded DP calculation of nucleotide semi-global align-
ment. Our library implementation will facilitate accelerat-
ing many long-read analysis algorithms that uses pairwise
alignment.

Additional files

Additional file 1: This file contains supplementary sections describing the
derivation processes of the difference recurrence relations and the proofs
of the bounding formulae (Section S1), library design and portability
issues (Section S2), and benchmark results on different machines
(Section S3). (PDF 231 kb)

Additional file 2: This archive file contains input nucleotide sequences
used in the benchmark and raw outputs of the benchmarking programs.
(ZIP 26,419 kb)

Abbreviations
AVX: Advanced vector eXtension; DP: Dynamic programming; ED: Edit
distance; LCS: Longest common substring; GCUPS: Giga cell updates per
seconds; SIMD: Single-instruction multiple-data; SSE: Streaming SIMD
extension; SWG: Smith-Waterman-Gotoh

Acknowledgments
The computing resources were provided in part by the Human Genome
Center, the University of Tokyo.

Funding
This work was in part supported by MEXT KAKENHI Grant Number 16H06279
and by Science and technology research promotion program for agriculture,
forestry, fisheries and food industry, by which the publication costs were
funded.

Availability of data and materials
Datasets
The datasets (input sequences, benchmark codes, and raw outputs)
supporting the conclusions of this article are included within Additional file 2.
The benchmark codes used in the experiments are also available in the
diffbench repository (https://github.com/ocxtal/diffbench.git; benchmarking
scripts) and the libgaba repository (https://github.com/ocxtal/libgaba.git;
library implementation). The whole-genome sequencing samples used in the
benchmark (accession No.: FAB45271, FAB42316, and FAB49164; [1]) are
available in the nanopore-human-wgs repository (downloaded on Dec 16th,
2016, with the following links: http://s3.amazonaws.com/nanopore-human-
wgs/rel3-nanopore-wgs-152889212-FAB45271.fastq.gz, http://s3.amazonaws.
com/nanopore-human-wgs/rel3-nanopore-wgs-216722908-FAB42316.fastq.
gz, and http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-
wgs-4045668814-FAB49164.fastq.gz; the links were retrieved from their github
repository (https://github.com/nanopore-wgs-consortium/NA12878) on the
same day).

Software
The information on the library implementation (libgaba) is as follows:
Project name: libgaba
Project home page: https://github.com/ocxtal/libgaba
Archived version: commit: 7648c7288a4e1a7f85b2ad7471cdbbd07e223443
Operating systems: Linux and Unix
Programming language: C
Other requirements: x86_64 processors with SSE4.2 or AVX2 SIMD
instruction support
License: Apache v2
Any restrictions to use by non-academics: None

About this supplement
This article has been published as part of BMC Bioinformatics Volume 19
Supplement 1, 2018: Proceedings of the 28th International Conference on
Genome Informatics: bioinformatics. The full contents of the supplement are
available online at https://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-19-supplement-1.

Authors’ contributions
SH conceived the core formula, wrote the code, and did all the experiments.
Both authors analyzed and interpreted the results, wrote the paper. Both
authors have read and approved the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 19 February 2018

References
1. Jain M, Koren S, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD,

Dilthey AT, Fiddes IT, Malla S, et al. Nanopore sequencing and assembly
of a human genome with ultra-long reads. bioRxiv. 2017;128835. https://
doi.org/10.1101/128835.

2. Deonovic B, Wang Y, Weirather J, Wang XJ, Au KF. IDP-ASE: haplotyping
and quantifying allele-specific expression at the gene and gene isoform
level by hybrid sequencing. Nucleic Acids Res. 2017;45(5):32–2.

3. English AC, Salerno WJ, Reid JG. PBHoney: identifying genomic variants
via long-read discordance and interrupted mapping. BMC Bioinformatics.
2014;15(1):180.

4. Huddleston J, Chaisson MJ, Steinberg KM, Warren W, Hoekzema K,
Gordon D, Graves-Lindsay TA, Munson KM, Kronenberg ZN, Vives L,

https://doi.org/10.1186/s12859-018-2014-8
https://doi.org/10.1186/s12859-018-2014-8
https://github.com/ocxtal/diffbench.git
https://github.com/ocxtal/libgaba.git
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-152889212-FAB45271.fastq.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-152889212-FAB45271.fastq.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-216722908-FAB42316.fastq.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-216722908-FAB42316.fastq.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-216722908-FAB42316.fastq.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-4045668814-FAB49164.fastq.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-4045668814-FAB49164.fastq.gz
https://github.com/nanopore-wgs-consortium/NA12878
https://github.com/ocxtal/libgaba
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-1
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-19-supplement-1
https://doi.org/10.1101/128835
https://doi.org/10.1101/128835

Suzuki and Kasahara BMC Bioinformatics 2018, 19(Suppl 1):45 Page 47 of 104

et al. Discovery and genotyping of structural variation from long-read
haploid genome sequence data. Genome Res. 2017;27(5):677–85.

5. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G,
Wang Z, Rasko DA, McCombie WR, Jarvis ED, et al. Hybrid error
correction and de novo assembly of single-molecule sequencing reads.
Nat Biotechnol. 2012;30(7):693–700.

6. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM.
Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nat Biotechnol. 2015;33(6):623–30.

7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215(3):403–10.

8. Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv e-prints. 2013.

9. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame
genomic sequence comparison. Genome Res. 2011;21(3):487–93.

10. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application
and theory. BMC Bioinformatics. 2012;13(1):238.

11. Myers G. Efficient local alignment discovery amongst noisy long reads.
In: Brown D, Morgenstern B, editors. Algorithms in Bioinformatics. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2014. p. 52–67.

12. Sović I, Šikić M, Wilm A, Fenlon SN, Chen S, Nagarajan N. Fast and
sensitive mapping of nanopore sequencing reads with GraphMap. Nat
Commun. 2016;7:11307.

13. Smith TF, Waterman MS. Identification of common molecular
subsequences. J Mol Biol. 1981;147(1):195–7.

14. Gotoh O. An improved algorithm for matching biological sequences.
J Mol Biol. 1982;162(3):705–8.

15. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC,
Haussler D, Miller W. Human–mouse alignments with BLASTZ. Genome
Res. 2003;13(1):103–7.

16. Chao KM, Pearson WR, Miller W. Aligning two sequences within a
specified diagonal band. Comput Appl Biosci: CABIOS. 1992;8(5):481–7.

17. Wozniak A. Using video-oriented instructions to speed up sequence
comparison. Comput Appl Biosci: CABIOS. 1997;13(2):145–50.

18. Rognes T, Seeberg E. Six-fold speed-up of Smith–Waterman sequence
database searches using parallel processing on common
microprocessors. Bioinformatics. 2000;16(8):699–706.

19. Farrar M. Striped Smith–Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics. 2007;23(2):156–61.

20. Li H, Durbin R. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

21. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012;9(4):357–9.

22. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence
similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):29–37.

23. Zhao M, Lee W-P, Garrison EP, Marth GT. SSW library: An SIMD
Smith-Waterman C/C++ library for use in genomic applications.
PLOS ONE. 2013;8(12):e82138.

24. Daily J. Parasail: SIMD C library for global, semi-global, and local pairwise
sequence alignments. BMC Bioinformatics. 2016;17(1):81.

25. Suzuki H, Kasahara M. Acceleration of nucleotide semi-global alignment
with adaptive banded dynamic programming. bioRxiv. 2017. https://doi.
org/10.1101/130633.

26. Myers G. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. J ACM (JACM). 1999;46(3):395–415.

27. Hyyrö H. Bit-parallel LCS-length computation revisited. In: Hong S-H,
editor. 15th Australasian Workshop on Combinatorial Algorithms
(AWOCA 2004). Alexandria, New South Wales: NICTA; 2004. p. 16–27.

28. Flouri T, Kobert K, Rognes T, Stamatakis A. Are all global alignment
algorithms and implementations correct? bioRxiv. 2015. https://doi.org/
10.1101/031500.

29. Allison L, Dix TI. A bit-string longest-common-subsequence algorithm.
Inf Process Lett. 1986;23(5):305–10.

30. Crochemore M, Iliopoulos CS, Pinzon YJ, Reid JF. A fast and practical
bit-vector algorithm for the longest common subsequence problem.
Inf Process Lett. 2001;80(6):279–85.

31. Loving J, Hernandez Y, Benson G. BitPAl: a bit-parallel, general
integer-scoring sequence alignment algorithm. Bioinformatics.
2014;30(22):3166–73.

32. Fog A. Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs. http://www.
agner.org/optimize/instruction_tables.pdf. Accessed 15 May 2017.

33. Kimura K, Koike A, Nakai K. A bit-parallel dynamic programming
algorithm suitable for DNA sequence alignment. J Bioinforma Comput
Biol. 2012;10(04):1250002.

34. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. BLAST+: architecture and applications. BMC Bioinformatics.
2009;10(1):421.

35. Amin MR, Skiena S, Schatz MC. NanoBLASTer: Fast alignment and
characterization of Oxford Nanopore single molecule sequencing reads.
In: 6th International Conference on Computational Advances in Bio and
Medical Sciences (ICCABS). IEEE; 2016. p. 1–6.

36. Šošić M, Šikić M. Edlib: a C/C++ library for fast, exact sequence alignment
using edit distance. Bioinformatics. 2017;33(9):1394–1395.

37. Döring A, Weese D, Rausch T, Reinert K. SeqAn an efficient, generic C++
library for sequence analysis. BMC Bioinformatics. 2008;9(1):11.

38. Li H. Minimap2: versatile pairwise alignment for nucleotide sequences.
arXiv e-prints. 2017.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://doi.org/10.1101/130633
https://doi.org/10.1101/130633
https://doi.org/10.1101/031500
https://doi.org/10.1101/031500
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	The semi-global DP algorithm
	Naïve difference recurrence relations
	The proposed algorithm
	Relation to other DP algorithms
	Library implementation
	Finding the cell with the maximum value
	Traceback flags and generating alignment path strings
	Computation of score profile vectors and prefetching sequences
	Miscellaneous implementation techniques
	Register usage:
	Branch predictor consideration:

	Results
	Comparison to existing implementations

	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

