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Abstract

Background: Completion of genome-scale flux-balance models using computational reaction gap-filling is a widely
used approach, but its accuracy is not well known.

Results: We report on computational experiments of reaction gap filling in which we generated degraded versions
of the EcoCyc-20.0-GEM model by randomly removing flux-carrying reactions from a growing model. We gap-filled
the degraded models and compared the resulting gap-filled models with the original model. Gap-filling was
performed by the Pathway Tools MetaFlux software using its General Development Mode (GenDev) and its Fast
Development Mode (FastDev). We explored 12 GenDev variants including two linear solvers (SCIP and CPLEX) for
solving the Mixed Integer Linear Programming (MILP) problems for gap filling; three different sets of linear constraints
were applied; and two MILP methods were implemented. We compared these 13 variants according to accuracy,
speed, and amount of information returned to the user.

Conclusions: We observed large variation among the performance of the 13 gap-filling variants. Although no variant
was best in all dimensions, we found one variant that was fast, accurate, and returned more information to the user.
Some gap-filling variants were inaccurate, producing solutions that were non-minimum or invalid (did not enable
model growth). The best GenDev variant showed a best average precision of 87% and a best average recall of 61%.
FastDev showed an average precision of 71% and an average recall of 59%. Thus, using the most accurate variant,
approximately 13% of the gap-filled reactions were incorrect (were not the reactions removed from the model), and
39% of gap-filled reactions were not found, suggesting that curation is still an important aspect of metabolic-model
development.
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Background
The plethora of genomes sequenced in recent years has
given rise to a large number of genome-scale metabolic
models. Flux Balance Analysis (FBA) [1, 2] is a steady-
state constraint-based modeling approach that has seen
widespread application in genome-scale metabolic mod-
els. FBA models a condition of growth for an organism
by defining four sets: (1) the metabolic reactions of the
organism; (2) its nutrients; (3) its secretions (i.e., the
metabolites that are secreted); and (4) its biomassmetabo-
lites (the biosynthetic products of the metabolic network).
The model is said to show growth if all the biomass
metabolites can be produced from the nutrients via the
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metabolic-reaction network. A model may not grow for
many reasons, but a common one is missing reactions in
the reaction network, or “reaction gaps,” that result from
incompleteness in the genome annotation from which the
reaction network was inferred. For an introduction on
FBA, we refer the reader to [3–6].
Reaction gap-filling, applied to a non-growing FBA

model given a specific growth condition (i.e., nutrients
and secretions), consists of adding reactions to the reac-
tion network to enable growth (i.e., production of all
biomass metabolites). Automatic gap-filling uses an algo-
rithm, a “gap-filler,” to find these reactions to add. But how
effective are such gap-fillers? Past publications on reaction
gap-filling have performed very limited evaluations, and
they have not directly asked how accurately gap-fillers can
reconstruct a known metabolic network.
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The central idea behind our approach to testing gap-
filler accuracy is to randomly remove a set of reactions �

from a metabolic network R to produce a modified net-
work R′. We then run a gap-filler on R′ and ask: to what
degree do the reactions suggested by the gap-filler match
�? We call solutions that exactly match � ideal solu-
tions because they exactly recover the original network
R— that is, had a gap-filler encountered R′ in a real-world
run, it would have perfectly reconstructed the biologically
correct starting network R. For our experiments, R is the
EcoCyc-20.0-GEM metabolic model for Escherichia coli
derived from the EcoCyc database. EcoCyc is likely to con-
tain the most accurate genome annotation and metabolic
network of any free-living organism because EcoCyc has
been curated from 32,000 publications. Starting with an
accurate model means we have more confidence in eval-
uating a gap-filler’s solutions than if we started with an
inaccurate model, if all other factors are kept the same.
We also compute the precision and recall metrics on

the results obtained. Precision tells us what fraction of
the reactions predicted by the algorithm were in the set
of reactions removed. Recall tells us what fraction of the
reactions removed were recovered by the algorithm.
MetaFlux is the metabolic modeling component of the

Pathway Tools software [7, 8]. MetaFlux contains two
gap-filling algorithms, both of which run within the Path-
way Tools environment only. Because both algorithms
aid the user in developing metabolic models, we refer to
them as development modes of MetaFlux. One gap-filler
uses mixed-integer linear programming (MILP) and is
called General Development Mode (GenDev); the second
uses linear programming (LP) and is called Fast Devel-
opment Mode (FastDev). We implemented 12 variants of
GenDev during the course of this work using two linear
solvers (SCIP and CPLEX) for solving the Mixed Integer
Linear Programming (MILP) problems for gap filling;
three different objectives were applied; and two MILP
methods were implemented. We found large variation
among the performance of these 12 variants in terms of
speed, accuracy, and value of the information returned to
the user.
Although the gap-filling algorithm is an important

determinant of gap-filling performance, the accuracy of a
gap-filler will also be highly dependent on both the size
and the quality of the reaction database from which it
draws. GenDev and FastDev both draw their reactions
from the MetaCyc database [9]. MetaCyc contains sig-
nificantly more reactions than is used by some other
gap-fillers (13,924 reactions in MetaCyc version 20.5
from December 2016 versus, for example, the compara-
ble KEGG database with 10,411 reactions in its version
81.0 from January 2017). MetaCyc curators attempt to
balance all MetaCyc reactions, although a small num-
ber of reactions (249) are unbalanced because they were

unbalanced when published and it is unclear how to
balance them (our gap fillers automatically ignore unbal-
anced reactions). MetaCyc curators also annotate reaction
direction carefully since correct directionality is impor-
tant to gap filling [10]. MetaCyc also contains much more
extensive curation and explanation than does the KEGG
database, including 7800 textbook-equivalent pages of
mini-review summaries (compared with a negligible num-
ber in KEGG), and 51,000 citations to the literature
(compared with a negligible number in KEGG).
We note that although a number of other algorithms

are described as performing gap filling, they actually
solve a range of different problems from enabling flux of
just the biomass metabolites in a model to enabling flux
through all metabolites in a model. Although enabling
flux through all metabolites in a model is in general a
worthy scientific goal, we see it as a problematic goal
for evaluation purposes because we do not yet have any
gold-standard, highly curatedmodel for which all metabo-
lites are unblocked — even for E. coli. Previous gap-filling
algorithms are as follows.
ModelSEED [11] uses a technique similar to Tech-

nique B, using Big M with CPLEX. They reported several
hours of execution time to solve some of the gap-filling
problems. To increase gap-filling speed, the current
(November 2017) gap-filling algorithm provided by
the ModelSEED website uses a modified version of the
FastDev technique.
The GapFind/GapFill [12] applications use MILP to

find blocked metabolites and gap-fill a reaction network,
respectively. GapFill uses KEGG or MetaCyc as a source
of candidate reactions to add to the reaction network such
that a specific metabolite becomes unblocked.
FastGapFill [13] gap-fills a compartmentalized reaction

network. It has been tested using the KEGG database as
a source of candidate reactions. Its algorithm is based on
LP and greedily expands a set of candidate reactions. The
algorithm does not guarantee a minimum set of suggested
reactions to add, that is, the result is not necessarily the
smallest possible set of reactions to gap-fill the reaction
network.
Mirage [14] gap-fills a reaction network by using phy-

logenetic and expression profiles besides a set of candi-
date reactions. It uses the KEGG database for the set of
candidate reactions. Its algorithm combines randomized
selection of reactions and a greedy heuristic to prune this
selection.
Ponce de Leo et al. use gap filling to unblock the blocked

reactions in many metabolic models [10] using the fast-
core algorithm [15].
A recent paper by Prigent [16] is most similar to our

work. They also take the approach of randomly degrad-
ing an E. coli metabolic model (the iJR904 model [17]).
Several differences exist between our approaches. Prigent
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et al. use randomly generated biomass functions rather
than the actual biomass function; whether their results
will be applicable to real biomass functions is unclear.
Further, Prigent et al. use topological gap-filling, which
ensures topological reachability of a set of metabolites,
but in some cases does not enable flux through the spec-
ified biomass metabolites, which from our perspective is
the primary purpose of gap-filling. Finally, Prigent et al.
do not report correctness statistics for their algorithm or
the others that they evaluate, in terms of either precision
or recall against the set of reactions that were originally
removed.
In the following sections, we present the two MetaFlux

gap-fillers, our computational gap-filling experiments,
and a discussion of the results.

Methods
General development mode
Given a metabolic network, a set of nutrients for growth,
and a set of biomass metabolites, the GenDev gap-filler
[18] is called when the current set of reactions within
the metabolic network cannot produce a positive flux for
every biomass metabolite given those nutrients.
We implemented three GenDev techniques, and for

each technique we studied four variations of it using
CPLEX or SCIP as the solver, and using indicators or
Big M. In Technique A, each biomass metabolite par-
ticipates independently in the objective function and no
biomass reaction is involved. Technique A [18] reports in
its output the largest number of biomass metabolites that
can be synthesized by the metabolic network, either with
no reactions added to the network, or with the addition of
a minimum-cost set of candidate reactions. Thus, Tech-
nique A identifies to the user what biomass metabolites
cannot be produced by the model even with the addition
of all reactions from MetaCyc, which is important infor-
mation when developing a model. We call this metabolite
set the non-producible biomass metabolites.
Technique B determines the minimum-cost set of reac-

tions that must be added to the network to produce all
the biomass metabolites. In Technique B, the biomass
metabolites do not directly participate in the objective
function of the MILP formulation, but the biomass reac-
tion, in which all biomass metabolites participate, is con-
strained to have a flux greater than 10−3. This value is
constant, that is, it does not depend on the model or any
of the parameters specified in the model. This value has
been selected such that a model is considered growing
if and only if the model can produce a flux greater than
this value. Technique Bwas implemented during this work
because, as we will show, it yields more solutions that
show growth when the model is solved than does Tech-
nique A. This increase in valid solutions is mostly due to
constraining the biomass reaction to have a flux of at least

10−3. Technique B does not identify the non-producible
biomass metabolites to the user.
Finally, Technique C is a combination of Technique A

and Technique B, that is, a biomass reaction exists, which
is constrained to have at least a flux of 10−3 (as in Tech-
nique B), and the biomass metabolites participate in the
objective function. Technique C does identify the non-
producible biomass metabolites to the user.
For the three techniques, the candidate reactions are all

the metabolic reactions of MetaCyc version 20.5. In addi-
tion to gap-filling reactions, GenDev can also [18] gap-fill
the nutrients set and the secretions set.
The minimum-cost set is computed based on weights

assigned to the biomass metabolites and the candidate
reactions. Four weights are used in the experiment done
in this paper and in our previous work [18]:

1 10,000 is assigned to any biomass metabolite (used
only in Technique A)

2 30 is assigned to candidate reactions in the taxonomic
range of the organism being gap-filled (E. coli )

3 40 is assigned to candidate reactions of unknown
taxonomic range

4 50 is assigned to candidate reactions outside the
taxonomic range of the organism being gap-filled

In the GenDev MILP implementation, a Boolean variable
ar having only values 0 or 1 is used to decide if a can-
didate reaction r should be added to the model. If the
value is 1 (interpreted as “true”), the candidate reaction
r is added; if not (that is, its value is 0 (interpreted as
“false”)), the candidate reaction r is not added. Similarly,
for Technique A, variables sb, one per biomass metabo-
lite b to produce, control whether b can be produced
or not.
Moreover, in GenDev, each boolean variable ar controls

the flux vr of each candidate reaction r. To do so, two
methods are well-known, one called “Big M”, the other
using the more direct notation of indicator constraints,
which we often simply called the “indicators method” (dis-
cussed below). For Big M, two constraints are applied to
each candidate reaction:

vr − Buar ≤ 0 (1)
Blar − vr ≤ 0 (2)

where the Boolean variable ar has value 0 or 1 to control
the activation of candidate reaction r; continuous variable
vr is for the flux of candidate reaction r; Bl and Bu are the
lower and upper bounds, respectively, for the flux of any
reaction considered to be active. Notice that when ar is
1, the variable vr has a value between Bl and Bu; whereas
when ar is 0, vr has value 01. That is, when ar is 1, the
flux of a candidate reaction is forced to be equal to or
greater than Bl. In our computational experiments, the
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values used for Bl and Bu were 10−5 and 30,000, respec-
tively (these were the best values we found after some
experimentation). The bound Bl ensures that the reactions
have a minimum acceptable flux to be considered active,
whereas Bu limits the flux of any reaction when it is active
to avoid numerical overflow.
The indicators notation accepted by most MILP solvers

is a more direct way to express the control of each boolean
variable ar over the flux vr of each candidate reaction r.
This notation has the form

ar = 0 → vr = 0 (3)
ar = 1 → vr ≥ Bl (4)
ar = 1 → vr ≤ Bu (5)

where ar , vr , Bl, and Bu have the same meaning as for the
Big M method. The symbol → means “implies”. The indi-
cators are such that when ar = 0 then the flux of reaction
r is zero, whereas if ar = 1 then the flux of r is between
Bl and Bu. As can be seen, no numerical operations, such
as multiplication or addition, are involved in these con-
straints. That approach reduces explicit numerical errors.
But more importantly, there is an explicit indication to the
solver that variable ar directly controls the values of vari-
able vr , which is hidden in the Big M method. Solvers will
typically treat these indicators in such a way that when
a solution is found, these implications are true. On the
other hand, as will be seen in the experimental results
of “Computational experiments” section, indicators are
more computationally expensive compared to the Big M
method.
The objective function of the MILP formulation in

Technique A and Technique C is

max
(∑

b
10000sb

)
−

(∑
r

wrar

)
(6)

where the Boolean variable sb controls the inclusion of the
biomass metabolite b and wr is one of the three reaction
weights (i.e., 30, 40, 50). With such a high value of 10,000,
the objective is to synthesize as many biomass metabolites
as possible by using a minimum weighted set of candidate
reactions.
The objective function in Technique B is

max −
(∑

r
wrar

)
(7)

where the variables wr and ar are the same as in Tech-
nique A. A constraint vbiomass > 10−3 is also added to the
formulation to ensure that the biomass reaction, involv-
ing all biomass metabolites, is sufficiently above zero. This
constraint is also applied by Technique C, but where the
number of biomass metabolites in the biomass reaction is
variable (see next paragraph).

In Technique C, the constraints to enforce the FBA
steady state for the biomass metabolites are handled dif-
ferently than the other two Techniques. Recall that an
FBA LP (or MILP) formulation constrains each metabo-
lite to be flux balanced to obtain a steady state, that is, the
sum of all production fluxes are constrained to be equal
to the sum of all consumption fluxes for that metabolite.
Such a constraint is also applied to the biomass metabo-
lites. However, Technique C allows a variable number of
biomass metabolites to participate in the biomass reac-
tion, that is, once theMILP formulation is solved, the solu-
tion may contain a subset of the original list of biomass
metabolites provided (such a solution points to the impos-
sibility of producing some biomass metabolites even when
considering candidate reactions to add to the reaction net-
work). Therefore, a steady state constraint must be written
to allow this dynamic behavior of the biomass reaction.
Using indicators, such a constraint for a metabolite M is
formed by two conditional constraints of the form

sM = 1 → cbvbiomass + ∑
crvr = 0 (8)

sM = 0 → ∑
crvr = 0 (9)

where sM is a binary variable controling the inclusion or
exclusion ofmetaboliteM in the biomass reaction, cr is the
stoichiometric coefficient ofM in reaction r producing or
using metaboliteM (with the appropriate positive or neg-
ative sign according to whetherM is used or produced by
r) and cb is the coefficient ofM in the biomass reaction. As
can be seen, when M is included in the biomass reaction
(i.e., sM = 1), the constraint includes the biomass reaction
flux, but when M is excluded (i.e., sM = 0), the biomass
reaction flux is not constrained by the production ofM.
When using Big M, the previous two constraints are

instead written using four constraints, two constraints per
sM value (values 0 or 1), that is, we use:

cbvbiomass +
∑

crvr + 10sM ≤ 10 (10)

cbvbiomass +
∑

crvr − 10sM ≥ −10 (11)∑
crvr − 10sM ≤ 0 (12)∑
crvr + 10sM ≥ 0 (13)

The first two constraints implement the case when
sM = 1, that is, when sM = 1 the first two constraints
translate to cbvbiomass+∑

crvr = 0 while the last two con-
straints translate to − 10 ≤ ∑

crvr ≤ 10. The last two
constraints implement the case when sM = 0 by a similar
reasoning. The value 10 used in this Big M method was
experimentaly chosen. If that value is too large, it appears
that numerical imprecision of the solver cannot enforce
properly the equality to zero.
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Fast development mode
MetaFlux’s FastDev mode uses LP instead of MILP to
gap-fill a reaction network. The running time of FastDev
is therefore more predictable and, in most cases, faster
than GenDev. The running time of FastDev is more pre-
dictable, because it always solves a limited number of
linear programs; whereas GenDev, using MILP, might try
to solve a very large number or even an unlimited number
of linear programs. The complete algorithm of FastDev
is described in [19], but the following gives a simplified
description.
The main objective of FastDev is not finding the

minimum-cost set of reactions to enable production of all
biomass metabolites; rather, it is maximizing flux through
the biomass reaction. In some cases, fulfilling that objec-
tive is equivalent to enabling production of all biomass
metabolites; but in other cases, FastDev will find solutions
that increase biomass flux beyond a solution that GenDev
(Technique A) would find.
The objective function of the FastDev LP formulation is

max gvbiomass −
(∑

r
wrvr

)
(14)

where g is a numerical parameter, integer or not, selected
by the FastDev algorithm; vbiomass is the flux of the
biomass; the weightswr are the same as in GenDev; and vr
is the flux of the candidate reaction r. Using binary search,
the FastDev algorithm tries several values of g between 0
and n, where n is the number of candidate reactions. That
means that �log n� values are tried, which is currently 14
(for MetaCyc 20.5, �log 15, 000� = 14) and will unlikely
be more than 17 for the foreseeable future, because that
would require more than �217.5	 = 185, 364 reactions in
MetaCyc. All the constraints of FastDev have the same
form as in the LP formulation, but more such constraints
exist in FastDev because the candidate reactions are also
in the LP formulation.
The objective function above includes all candidate

reactions as in GenDev, but no integer variables are used
to turn the reactions on or off; instead, the non-integer
variables vr for the flux of the reaction r have a similar
role. After this LP formulation is solved, if the flux vr is set
to a non-zero value, the candidate reaction r is active and
suggested to be added to the model.
Assume that only one set of candidate reactions R such

that, once added to the model, the biomass flux vbiomass
becomes a non-zero value (i.e., adding the reactions of R
makes the model grow). We can show that objective func-
tion (14) is strictly positive when the variables vr > 0
are set to the fluxes of the reactions R that shows the
model growing, and for a large enough positive value of
g. The FastDev algorithm does find such a value for g.

Because this would be the only case where objective func-
tion (14) is non-zero (that is, its maximum value), the LP
formulation would suggest adding the reactions R.
If two sets R1 and R2 of candidate reactions make the

model grow, and R1 is a strict subset of R2, then R1 would
be selected if g is smaller than all weights wr . The selec-
tion of R1 is considered better as it provides a smaller set
of reactions to add. In general, keeping g smaller than the
weights wr ensures that FastDev finds a minimal set of
reactions (i.e., a set of reactions from which no reaction
can be removed and still obtain growth). A minimal set
is not necessarily a set with the smallest number of reac-
tions that can make the model grow (i.e., a minimum set),
because another minimal set may have a smaller number
of reactions that also does so. On the other hand, keeping
g smaller than all weights wr and finding a set of suggested
reactions showing growth are not always possible. This is
typically the case when setting g to a large enough value
such that enough candidate reactions become active and
setting vbiomass to a non-zero value are necessary.
In summary, FastDev may find the smallest set of reac-

tions to enable production of all biomass metabolites, but
such an outcome is not guaranteed.

Computational experiments
We have performed the following computational experi-
ments using MetaFlux version 21.5 to study the strengths
and weaknesses of GenDev (Techniques A, B and C)
and FastDev. The publicly released version of MetaFlux
uses Technique A with SCIP and Big M; all other gap-
filler variations are not in the public release. We used
version 20.0 of the genome-scale metabolic model [20]
derived from the EcoCyc database [21] (EcoCyc-20.0-
GEM). The model grows aerobically on glucose and
produces 87 biomass metabolites. We solved the model
(meaning we solved a flux balance analysis formula-
tion for the model) to determine the set of active,
non-generic, reactions2. When solved, the biomass flux
of the model was 1.0030 mmol/gDW/hr, with 476
active reactions (that is, reactions that carry flux). We
define the set of restricted active reactions as the sub-
set of the active reactions that are not transport reac-
tions and where instantiated reactions are replaced by
their generic reactions. There were 400 restricted active
reactions.
Each computational experiment consisted of remov-

ing, from the reaction network R of the model, a set of
randomly selected restricted active reactions to create a
perturbed reaction network R′. We then separately used
GenDev (Techniques A, B and C) and FastDev to gap-fill
the resulting networks R′. We ran 100 cases for each of
six different numbers of removed reactions, (i.e., for 1, 2,
5, 10, 20, and 50 randomly selected active reactions) for
a total of 600 cases. Gap-filling was performed separately
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on those 600 cases by GenDev (Techniques A, B and C)
and FastDev. The sets of nutrients, secreted metabolites,
and biomass metabolites were held constant for all these
cases.
For each of the 600 GenDev cases for each of Tech-

niques A, B and C, we ran both Big M and the indi-
cators method on each of two solvers, SCIP (version
2.0.1) and CPLEX (version 12.6.3.0), for a total of 7200
computational experiments3. A maximum of 30 min
of elapsed time was allowed for each GenDev run.
For CPLEX, it was not possible to control the total
amount of CPU time used because CPLEX uses multi-
ple cores, whereas SCIP does not. This difference did
favor CPLEX, but it is not the intention of this work
to compare these two solvers, but to be able to use
the indicators method for which only CPLEX, as we
will see, could solve most cases in a reasobale amount
of time.
All the 7200 gap-filler experiments for GenDev (Tech-

niques A, B and C) and the 600 experiments of FastDev
(a total of 7800 experiments) considered all the metabolic
reactions ofMetaCyc (version 20.5) as candidate reactions
for gap-filling, which includes all the reactions of EcoCyc.
Therefore, we expected to find a solution with growth
for all 7800 experiments (that is, a set of suggested reac-
tions to add to R′ to obtain growth), because the randomly
deleted active reactions were among the 13,469 metabolic
reactions of MetaCyc.
For GenDev and FastDev, we used the default values for

the weight parameters. More specifically, for the weights
on the candidate reactions to add, the weights 30, 40, and
50 were used for in taxonomic range, for unknown taxo-
nomic range, and for outside taxonomic range reactions,
respectively. No reactions from the model or from the
candidate reactions were tried in the reverse direction for
the non-reversible reactions.
For GenDev using Big M, for Technique A, B and C,

each solution was found in less than 120 s by the SCIP
solver used byMetaFlux4. For the samemethods and tech-
niques, CPLEX found each solution in less than 30 s. For
FastDev, each solution was found in less than 60 s by the
SCIP solver5. CPLEX was not used with FastDev.
For GenDev using indicators, for all three Techniques,

the SCIP solver could not solve in less than 30 min of
computation most of the 600 cases. This fact is noted
by “na” in Tables 1, 2 and 3, because we had too few
solutions for SCIP using indicators to present meaning-
ful statistics. The CPLEX solver was able to solve almost
all cases using the indicators, although the running time
was much higher than for the Big M method. For cases
where 10 or fewer reactions were removed, CPLEX was
able to find a solution in less than one minute, but many
cases where 20 or more reactions were removed CPLEX
reached the time limit of 30 min, although in almost all

cases a solution was returned that was feasible and where
all biomass metabolites were produced.

Results
A statistical summary of the results of applying GenDev
Technique A on the 600 cases is presented in Table 1.
Each cell of that table has a small 2x2 matrix for the
four experiments for each case. The matrix values are
described in the table caption. Similarly for Technique B
and Technique C, the results are presented in Tables 2
and 3, respectively. For FastDev, the results are presented
in Table 4. There are only single values in each cell for
FastDev because it was applied using only SCIP, and the
Big M and indicators method do not apply to FastDev,
which uses LP, not MILP. We did not use CPLEX for Fast-
Dev because we chose to focus on the MILP capability
of CPLEX, in particular its indicators method. Each table
has eight rows labelled 1 to 8, rows for precisions and
recalls, and the number of solutions that show no growth
once the model was modified according to the suggested
reactions to add. The first column gives short descrip-
tions of the meaning of each row, but more explanations
follow.
Row 1 is simply the number of reactions removed for

each column. Each column contains 100 cases applied
using the two solvers SCIP and CPLEX and the two
methods Big M and indicators.
Row 2 shows the number of cases where the set of

suggested reactions is the same as the set of removed reac-
tions. For column one, with one reaction removed, this
happens about half the time over the 100 cases, whichever
solver or method is used, but with Technique B slightly
higher than Technique A. Technique B is better on this
account.
In Table 1, the number of ideal solutions (row 2, sug-

gesting to add the same set of reactions as those removed)
degrades (e.g., for SCIP using no-indicators, 48, 22, 3, 0,
0, 0) when the number of reactions removed increases
(i.e., 1, 2, 5, 10, 20, 50). In parallel, the number of solu-
tions suggesting a smaller set of reactions to add (row 6),
increases (i.e., 0, 8, 40, 64, 91, 98). This result is sim-
ple to explain, because, assuming that the reactions have
the same weight, GenDev tends to find the smallest set
of reactions that enables growth and such smaller sets,
which are different than the reactions removed, are more
likely to exist as more reactions are removed. We study
two such cases of smaller sets in “Solutions with smaller
sets of reactions suggested to be added than the reactions
removed” section.
Row 3 shows the number of cases where no reactions

are suggested to be added to the model. The number of
such cases rapidly decreases as the number of reactions
removed increases, which is normal because more essen-
tial reactions are removed as more reactions are removed.
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Table 1 GenDev Technique A: Results for 2400 computational experiments using the General Development Mode (GenDev) with each
biomass metabolite as an independent part of the objective function, that is, no constraint is applied to the overall biomass reaction

(1) # rxns removed 1 2 5 10 20 50

(2) Rxns suggested are identical to rxns removed 48 na 22 na 3 na 0 na 0 na 0 na

52 50 22 23 3 7 0 0 0 0 0 0

(3) No rxns suggested 36 na 15 na 0 na 0 na 0 na 0 na

36 25 17 13 1 0 0 0 0 0 0 0

(4) Rxns suggested are a strict subset of rxns removed 0 na 40 na 43 na 27 na 8 na 0 na

0 0 42 35 40 7 21 36 9 23 0 4

(5) # rxns suggested is equal to # rxns re-moved 11 na 9 na 11 na 4 na 0 na 0 na

9 18 8 20 13 51 7 4 2 0 0 0

(6) # rxns suggested is less than # rxns re-moved 0 na 8 na 40 na 64 na 91 na 98 na

0 0 9 5 37 6 63 60 89 77 99 96

(7) # rxns suggested is greater than # rxns removed 5 na 6 na 3 na 5 na 1 na 0 na

3 7 2 4 6 33 9 0 0 0 0 0

(8) # cases where no solution was found 0 na 0 na 0 na 0 na 0 na 2 na

0 0 0 0 0 3 0 0 0 0 1 0

Precision (%) 77 na 81 na 79 na 80 na 79 na 77 na

83 69 83 78 75 84 79 85 79 89 76 89

Average precision (%) 79 na

79 82

Recall (%) 52 na 51 na 54 na 52 na 52 na 52 na

54 54 48 51 50 59 57 57 57 59 57 59

Average recall (%) 52 na

54 56

193 (32%) na

223 (37%) 144 (24%)

A GenDev solution is a set of suggested reactions to add to a degraded model to obtain growth. Each cell of this table is a 2x2 matrix whose first row is for the SCIP solver; the
second row is for the CPLEX solver; the first column is for the Big M method; the second column is for the indicators method. For example, the cell on the first row and first
column, has a matrix with value 48, which corresponds to SCIP using the Big M method, whereas the value 52 is for CPLEX (using the same method) and the value 50 is for
CPLEX using indicators. A result “na” (not available) applies to SCIP using indicators — in most cases that solver could not find a solution in less than 30 min of computation.
Each column of the table represents 400 computational experiments based on randomly removing the same number of active reactions from a base model (in each cell of
the table, 100 experiments were run for each of the four cells in the matrix). The first row “# rxns Removed” lists the number of active reactions randomly removed. The other
rows divide the 100 cases in each column into solutions of different types; for each cell of the small matrices, rows 2-8 of every column sum to 100. The best numbers are in
bold, which could be the maximum or the minimum value depending on the row

Examples of such cases are discussed in “Solutions with
no reactions suggested” section.
Row 4 presents the frequency at which the sets of

suggested reactions are strictly contained in the sets of
reactions removed. These numbers do not count the cases
where no reactions were suggested (i.e., the empty sets),
because these cases are given in row 3. The numbers are
high when removing two and five reactions but quickly
fall to zero when 20 or more reactions are removed. This
quick fall occurs because, in many cases, only one or
two suggested reactions are outside the set of removed
reactions.
Row 5 shows the number of cases where the num-

ber of reactions suggested is the same as the numbers of
reactions removed, but the actual reactions differ. This

difference is acceptable because other reactions than the
one removed can enable growth of the model. GenDev
computes only one optimal solution, but several optimal
solutions may exist.
Row 7 shows the number of cases where the num-

ber of reactions suggested is larger than the num-
ber of reactions removed. We would expect that each
set of suggested reactions has at most the number
of removed reactions, because GenDev searches for
a minimum cost set of reactions to add to obtain
growth, and because the reactions removed exist in
the set of candidate reactions. For many cases, though,
the number of reactions suggested to be added to
obtain growth is larger than the number of removed
reactions.
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Table 2 GenDev Technique B: Results for 2400 computational experiments when using the General Development Mode (GenDev)
with the biomass reaction constrained to a minimum flux of 10−3 but not as part of the objective function

(1) # rxns removed 1 2 5 10 20 50

(2) Rxns suggested are identical to rxns removed 58 na 29 na 4 na 0 na 0 na 0 na

59 65 26 32 4 8 0 1 0 0 0 0

(3) No rxns suggested 25 na 12 na 0 na 0 na 0 na 0 na

25 25 12 12 0 1 0 0 0 0 0 0

(4) Rxns suggested are a strict subset of rxns removed 0 na 35 na 37 na 21 na 8 na 0 na

0 0 32 37 38 53 20 49 7 20 0 1

(5) # rxns suggested is equal to # rxns re-moved 10 na 9 na 16 na 8 na 3 na 0 na

9 9 13 11 17 9 10 3 1 0 0 0

(6) # rxns suggested is less than # rxns re-moved 0 na 8 na 29 na 58 na 83 na 97 na

0 0 8 8 29 28 62 47 90 80 100 99

(7) # rxns suggested is greater than # rxns removed 7 na 7 na 14 na 13 na 6 na 2 na

7 1 7 0 12 1 8 0 2 0 0 0

(8) # cases where no solution was found 0 na 0 na 0 na 0 na 0 na 1 na

0 0 0 0 0 0 0 0 0 0 0 0

Precision (%) 81 na 80 na 75 na 78 na 80 na 77 na

83 87 76 84 77 86 78 90 78 87 77 88

Average precision (%) 78 na

78 87

Recall (%) 64 na 55 na 58 na 58 na 60 na 59 na

65 66 54 55 60 61 59 62 58 60 59 60

Average recall (%) 59 na

59 61

# Solutions that do not show growth 0 na

0 4 (0.6%)

The meaning of rows and columns are the same as in Table 1

Row 8 shows the number of cases where the solver could
not find any solution. It rarely happens. We explain in
“Solutions with larger sets of reactions suggested to be
added than the reactions removed” section that impreci-
sion of floating point numbers is likely the cause of these
issues.
The rows on precisions and recalls give an overall eva-

lution of the results.
Finally, the last rows of the tables give the number of

cases where model growth was in fact not obtained once
the suggested solutions were applied to the model. For
Technique A the results are very high suggesting that this
Technique has a major issue. For Technique B the results
are close to zero and for Technique C, for only one case
was no growth obtained, due to the time limit reached by
the CPLEX solver using indicators.
For FastDev, the results are presented in Table 4. The

number of solutions that exactly match the set of reac-
tions removed has the same behavior as GenDev (that is,
it decreases as the number of reactions removed increases

(e.g., 60, 25, 4, 0, 0, 0) (row 2)). FastDev always suggests
adding at least one reaction, no matter the number of
reactions removed (row 3 is all zeros). This behavior is
expected, because FastDev tries to increase biomass flux
and may suggest adding a reaction to reach that goal, as
discussed in the first three paragraphs of “Fast develop-
ment mode” section. That behavior is also reflected by
the number of solutions suggesting adding more reactions
than the number of reactions removed, as given by row 7
of the table.

Discussion
What properties does the E. coli metabolic network
have that make it an appropriate subject for this study?
The network is above average in size for a bacterium:
EcoCyc 20.0 contains 1637 reactions versus the aver-
age network size of 1065 reactions across the 11,000
organisms in BioCyc; EcoCyc contains 4506 genes ver-
sus the average genome size of 3488 genes across all of
BioCyc. The E. coli network has been very highly studied,
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Table 3 GenDev Technique C: Results for 2400 computational experiments when using the General Development Mode (GenDev)
with a dynamic biomass reaction constrained to a minimum flux of 10−3 but not as part of the objective function

(1) # rxns removed 1 2 5 10 20 50

(2) Rxns suggested are identical to rxns removed 63 na 28 na 6 na 0 na 0 na 0 na

59 54 24 27 5 7 0 1 0 0 0 0

(3) No rxns suggested 25 na 12 na 0 na 0 na 0 na 0 na

25 25 12 12 0 0 0 0 0 0 0 0

(4) Rxns suggested are a strict subset of rxns removed 0 na 34 na 38 na 23 na 7 na 0 na

0 0 34 33 35 49 19 37 8 20 0 0

(5) # rxns suggested is equal to # rxns re-moved 7 na 11 na 15 na 6 na 5 na 2 na

9 9 14 13 19 10 10 3 3 0 0 0

(6) # rxns suggested is less than # rxns re-moved 0 na 7 na 25 na 59 na 82 na 97 na

0 0 6 9 29 32 64 59 88 80 99 100

(7) # rxns suggested is greater than # rxns removed 5 na 8 na 16 na 12 na 6 na 1 na

7 12 10 6 12 2 7 0 1 0 1 0

(8) # cases where no solution was found 0 na 0 na 0 na 0 na 0 na 0 na

0 0 0 0 0 0 0 0 0 0 0 0

Precision (%) 87 na 80 na 76 na 78 na 77 na 74 na

83 75 77 76 76 82 78 87 78 87 75 88

Average precision (%) 79 na

78 83

Recall (%) 67 na 56 na 61 na 59 na 59 na 59 na

53 59 53 51 60 60 59 60 58 60 58 60

Average recall (%) 60 na

57 58

# Solutions that do not show growth 0 na

0 1

The meaning of rows and columns are the same as in Table 1

and has been the subject of multiple modeling efforts
[17, 20, 22, 23]. The set of biomass metabolites for the
EcoCyc model is large (71 metabolites) compared to
most models, meaning that a large subset of the reac-
tions carries non-zero flux. In addition, the MetaCyc
DB used as the reference for gap filling contains all of
the reactions of EcoCyc, therefore we know it will be
able to gap-fill the EcoCyc network when reactions are
removed.

Examination of gap-filling results for GenDev
Solutions with larger sets of reactions suggested to be added
than the reactions removed
GenDev should theoretically always find solutions with
a number of reactions suggested to be added that is not
greater than the number of reactions removed. In prac-
tice this is not the case as row seven of Tables 1, 2
and 3 shows. The only reason we can find for the non-
minimal solutions is numerical imprecision. For example,
we think that some of the reactions are made active

with a very low flux to enforce some of the constraints
although if an exact (integer arithmetic) solver were used,
these reactions would not need to be active. A more
thorough discussion of the impact of numerical impre-
cision of non-exact solvers, in the context of FBA, is
presented in [24].

Solutions with no reactions suggested
When a small number of reactions were removed, Gen-
Dev would propose some solutions where no reactions
were suggested to be added. These null solutions mean
that even when some active reactions are removed, the
model still grows. This is not necessarily an error, because
some reactions are not essential as the fluxes of other
reactions of the model can compensate for the removed
reactions. For example, when the reaction RXN0-5461
was removed, no reaction was suggested to be added,
and indeed this reaction was inessential. According to
Table 1, using SCIP with Big M, this scenario occurred 36
times when one reaction was removed, 15 times when two
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Table 4 Results for 600 computational experiments using the Fast Development mode (FastDev)

(1) # rxns removed 1 2 5 10 20 50

(2) Rxns suggested are identical to rxns removed 60 25 4 0 0 0

(3) No rxns suggested 0 0 0 0 0 0

(4) Rxns suggested are a strict subset of rxns removed 0 33 34 17 5 0

(5) # rxns suggested is equal to # rxns re-moved 31 11 16 9 8 0

(6) # rxns suggested is less than # rxns re-moved 0 19 32 59 80 98

(7) # rxns suggested is greater than # rxns removed 9 12 14 15 7 2

(8) # cases where no solution was found 0 0 0 0 0 0

Precision (%) 63 68 75 76 74 72

Average precision (%) 71

Recall (%) 65 54 59 59 58 58

Average recall (%) 59

# Solutions that do not show growth 28 (5%)

The meaning of rows and columns are the same as in Table 1 but using only the SCIP solver without using Big M or indicators because these methods do not apply to FastDev

reactions were removed, while no such cases exist for five
or more reactions removed, for a total of 51 such cases.
Some of these cases are possibly in error (that is, once

the reactions are removed from the model, the model
does not grow when solved). Note that solving a model
from which some reactions were removed is different
than gap-filling the same model with the same reactions
removed because the former used LP, whereas the latter
used MILP. These errors occurred for Technique A, but
not for Techniques B and C.

Solutions with smaller sets of reactions suggested to be
added than the reactions removed
Table 1, for SCIP using Big M, shows a total of 301 cases
(rows 2, 3, 4, 6) with solutions suggesting a smaller num-
ber of reactions than the number of reactions removed,
without being strict subsets of the reactions removed. As
in the previous section on solutions with no reactions sug-
gested to be added, these 301 cases may contain solutions
that are invalid (that is, if we remove the reactions from
the model and add the reactions suggested, the model
might not show growth).
Similarly as in the previous section, the correct solutions

rerouted the fluxes of removed reactions to possibly other
reactions, but this time through the suggested reactions
to be added, to obtain growth. These errors occurred for
Technique A, but not for Techniques B and C.

Overall performance of the three gap-filling techniques
Tables 1, 2 and 4 show that for both gap-fillers, when as
few as 10 reactions are removed, the gap-filler does not
find in almost all cases any solutions (across 100 attempts)
that exactly match the removed set of reactions. There-
fore, we need to treat gap-filler solutions with significant
skepticism, and the more reactions that are gap-filled, the
lower the probability that the solution will be correct.

On the other hand, how serious is the gap-filler’s solu-
tion being not exactly the same as the set of reactions
removed? MetaFlux gap-filling is based on the nearly
14,000 candidate reactions present in MetaCyc version
20.5. In general, MetaFlux solutions are not unique —
multiple subsets of reactions with the same cost may exist.
The number of alternative solutions tends to increase as
the number of reactions needed to enable model growth
increases. For example, if there is a solution with 10 reac-
tions to gap-fill the network, and each reaction has two
equivalent reactions that can substitute for it, the number
of solutions would be 310, which is more than 59,000 solu-
tions, a very large number. On the other hand, the found
solution likely overlaps to some degree with the reactions
within the “correct solution.”
To estimate these overlaps, the recall and precision of

the results were calculated as shown in Tables 1, 2 and 4.
The precision is the number of reactions removed that
were suggested back by the gap filler, divided by the num-
ber of reactions suggested. The recall is the number of
reactions removed that were suggested back by the gap
filler, divided by the number of reactions removed.
The best average precisions are obtained by CPLEX

using indicators either for Technique A (82%), Tech-
nique B (87%) or Technique C (83%). FastDev has an
average precision of 71%. This means that for all four tech-
niques, on average, at least 71% of the reactions suggested
were in the correct solution. Conversely, this result means
that about one quarter of the reactions suggested were
incorrect. We were surprised to see that for Techniques A
and B precision (and recall) were essentially constant no
matter how many reactions were initially removed from
the model.
The best average recalls are obtained by CPLEX using

indicators for GenDev Technique A (56%), and B (61%),
but for Technique C, SCIP using Big M has the best
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average recall (60%). FastDev has an average recall of 59%.
That means that more than half of the correct reactions
were recovered by the four gap-fillers. These percentages
would have been higher if the sets of reactions removed
had been essential for growth, rather than being active
reactions. However, we feel these results are representa-
tive because presumably the genome-annotation errors
that cause reaction gaps do not preferentially target essen-
tial reactions.
Tables 1, 2, and 4 also show that gap-filler solutions

are much more commonly smaller than the true set of
reactions removed (row 6) than larger than the correct
reaction set (row 7). Many gap-fillers intentionally seek
a minimum set of reactions and will, therefore, fail to
include some correct reactions in their solutions. That is,
the cell does not always use a minimum set of reactions.
The most important aspect that differentiates the appli-

cability of Technique A and Technique B is the number
of solutions that do not show growth (see the last row
of 1). That is, when tested for growth using flux-balance
analysis, solutions proposed by the gap filler are not true
solutions because they do not enable cell growth. For
Technique A, the number of solutions found without
growth is experimentally at least 24%. For Technique B, it
is less than 1% and Technique C has only one case whith
no growth. This result puts Technique A at a strong disad-
vantage. Technique C combines the best of Techniques A
and B to resolve this issue.
In summary, the solutions computed by Technique A

show too many errors (no growth) for Technique A to
be a viable approach; Technique B has a large precision
using indicators but lacks the flexibility of Technique A;
and Technique C using indicators provides a good average
precision, avoids errors (shows growth in almost all cases)
and has the flexibility of Technique A.

GenDev vs FastDev
Considering the computational experiences described
here, what are the different strengths and weaknesses of
GenDev and FastDev? One general difference between
the two approaches is their objectives. For GenDev, if no
numerical errors occurred, it outputs a minimum-cost set
of reactions to add to obtain growth, but no such guar-
antee exists for FastDev because its method is based on
a heuristic. GenDev uses MILP, which in general is an
NP-hard optimization problem, whereas FastDev uses LP,
which is solvable in polynomial time. These are two very
different computational complexity classes, where Gen-
Dev could take a large amount of time (e.g., hours) to find
its answer compared to FastDev (e.g., one minute). The
computational time, though, also depends on themethods
used, that is, either Big M or indicators. If the Big M
method is used the computational time of GenDev and
FastDev are similar.

As given in Tables 1, 2, 3 and 4, the recall metrics
between GenDev and FastDev are not far apart when
using Big M, and GenDev Technique B is closer to Fast-
Dev than is Technique A. But for precision, GenDev is
superior to FastDev. The difference in precision is under-
standable, because FastDev tends to propose larger sets of
reactions that increase biomass flux. Overall, Technique B
using indicators with CPLEX is superior to FastDev and
Technique A, but as already mentioned, indicators tend to
use substantialy more computational time than FastDev
on average.

Conclusions
We performed an empirical study of the two gap-filling
tools — called GenDev and FastDev — within MetaFlux,
the metabolic-modeling component of the Pathway Tools
software. We compared FastDev and 12 different varia-
tions of GenDev based on three techniques, A, B and C;
using two solvers, SCIP and CPLEX; and using two meth-
ods for MILP formulation, called Big M and indicators.
We randomly removed reactions from the EcoCyc-20.0-
GEMmetabolic model, ran each of the 13 gap-filler varia-
tions on the resulting reaction network, and assessed how
closely the resulting set of reactions matched the removed
set of reactions, which we take to be biologically cor-
rect given the large amount of curation and experimental
knowledge behind EcoCyc.
Technique A was shown to have a major accuracy

issue, because a large percentage (over 24%) of solutions
found, using either solvers or methods, did not show
growth when the solutions were tested on the model
using FBA. However, Technique A provides high flexibil-
ity because it identifies to the user the non-producible
biomass metabolites.
Technique B was shown to be very accurate — its solu-

tions show growth 99% of the time. On the other, hand,
this technique assumes that all themetabolites can be pro-
duced with some candidate reactions, which is not always
the case when trying to gap-fill a model. Technique A can
find a solution even when not all biomass metabolites can
be produced.
Technique C produces almost no errors, and has the

flexibility of Technique A to identify to the user the non-
producible biomass metabolites. However, its accuracy is
less than that of Technique B. We intend to use Tech-
nique C, most likely with Big M, in the next MetaFlux
release in 2018.
Using indicators resulted in better average accuracy

when using the CPLEX solver, but the computational cost
increased substantially compared to the Big M method.
This cost might not always be worth the time to wait for
a solution, which makes the Big M method viable. On a
solver such as SCIP, the computational cost of indicators
becomes prohibitive and is not practically usable.
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In general, metabolic models that have been purely
automatically gap-filled with no subsequent curation
should be treated with caution because of the precisions
and recalls found in our study. The best MILP-based
GenDev gap-filler using Technique B (CPLEX using indi-
cators) had an average precision of 87% (82% for Tech-
nique A), and the LP-based FastDev gap-filler had an
average precision of 71%. The best average recall was 61%
for GenDev Technique B (CPLEX using indicators) ( 56%
for Technique A) versus 59% for FastDev, meaning that
both gap-fillers recovered more than half of the correct
reactions.
Many gap-fillers are based on a minimality criterion

inspired by the Occam’s razor principle: “More things
should not be used than are necessary.” Yet we found
that this minimality criterion is sometimes too strong
because the GenDev minimality-based gap-filler some-
times recovers only a subset of the reactions deleted in our
experiments. That subset is the subset necessary to enable
growth of the model, not the set necessary to restore
all the deleted reactions. Similarly, real-world gap-filling
probably restores only a fraction of the reactions omitted
by incomplete genome annotations.

Endnotes
1Negative flux cannot occur because any reversible

reaction was converted to two irreversible reactions and
all reactions are bounded by 0.

2A non-generic reaction applies to specific compounds
only (that is, no class compounds are involved in such a
reaction). A generic reaction has at least one class com-
pound as a reactant or product. All generic reactions are
instantiated before the model is solved. Instantiating a
generic reaction generally adds one or more reactions to
the model, that is, one reaction for each compound that
exists in the database as an instance of the compound class
of the generic reaction.

3To be more precise, 7200 computational experiments
were attempted, but for SCIP we have not reported the
detailed results using indicators because the large major-
ity of them timed out.

4 This time does not include the time for MetaFlux to
generate the LP file, which is less than 30 s.

5 In FastDev, the SCIP solver was called 10 times to find
each solution, which took an overall of less than 180 s for
each solution.
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