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Abstract

Background: Protein dihedral angles provide a detailed description of protein local conformation. Predicted
dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly,
thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging.

Results: In this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining
clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of
protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of
Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear
relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well
approximated by our estimated bounds.

Conclusions: Our study provides an alternative and more accurate prediction of dihedral angles, which may facilitate
protein structure prediction and functional study.
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Background
It has been shown that sequences contain rich informa-
tion for protein tertiary structure prediction as well as
functional study [1, 2]. But it is challenging to directly
predict tertiary structure from primary sequence, so the
hierarchical approach has been widely accepted as one
of the most efficient methods. That means to transform
the ultimate goal into several sub-problems, such as sec-
ondary structure prediction, solvent accessibility predic-
tion, residue-residue contact prediction, etc. [3] reviewed
the progress in the field of intermediate state or one-
dimensional property prediction. It has been shown that
predicted secondary structure is useful in the prediction
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of disordered and flexible regions, fold recognition and
function prediction. However, secondary structure states
are described as discrete classes and there is no clear
boundary between coil and helical/strand states. It is a
significant step towards establishing the structure and
function of a protein to predict local conformation of the
polypeptide chain. The local structural bias information
restricts the possible conformations of a sequence seg-
ment and therefore narrows down the conformation space
of the whole polypeptide chain significantly. Thus, pre-
diction of dihedral angles is especially useful for protein
tertiary structure prediction.
On the whole, dihedral angle prediction may benefit

protein tertiary structure prediction in several aspects.
Firstly, dihedral angle prediction may act as substitute or
supplement for secondary structure prediction [4–6]. Sec-
ondly, It can be used in generation of sequence/structure
alignment. For one thing, it can be directly applied to
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structure alignment methods based on dihedral angles
[7, 8] and may aid refinement of target-template structure
alignment. For another, considering predicted angles to
refine multiple sequence alignment may narrow the gap
between sequence and structure alignment, thus aiding
de novo prediction of structural properties. In addition,
dihedral angle prediction may also find applications in
protein structure prediction that includes but not lim-
its to fold recognition approaches [9, 10], fragment-free
tertiary structure prediction [11], tertiary structure refine-
ment and structure quality assessment [12] and functional
study, such as ligand-binding site prediction [13].
There are mainly two kinds of problems in dihedral

angle prediction: angle region prediction and real value
prediction, which corresponds to two different represen-
tations of protein backbone local structural bias.
Initially, Ramachandran basin is an intuitive descrip-

tion of local structural bias [14]. A Ramachandran basin
is a specific region of a Ramachandran plot and illus-
trates the preference of torsion angle values. Each angle
pair can be assigned a basin label. With more basins, the
assignment would be harder but the representation would
be more accurate and vice versa. Colubri et al. tested
the ability to recover the native structure from a given
basin assignment for each residue to investigate the level
of representation required to simulate folding and pre-
dict structure, resulting in five basins [15]. Gong et al.
partitioned φ,ψ-space into a uniform grid of 36 squares,
each 60°× 60°, thus resulting in 36 basins, and showed
that they successfully reconstructed six proteins solely
from their mesostate (basin label) sequences [16]. There
are also some other methods to define basins and do
angle region prediction with different definitions of basins
[17–20]. Although it is vital to determine the proper
number of regions and clearly define the boundary, a uni-
versal algorithm to generate Ramachandran basins and
assign basin labels remains to be developed. In our study,
k-means clustering serves as the basin generator and label
assigner.
While Ramachandran basin provides an overall descrip-

tion of conformation, it is a coarse-grained representation
and lacks statistical explanations describing the torsion
angle distributions of each basin. In consideration of
the circular nature of angles, traditional parametric or
non-parametric density estimation methods cannot work
properly to approximate Ramachandran distributions.
Fortunately, directional distributions such as von Mises
distribution could solve the problem [21]. Bivariate von
Mises distribution (mixtures) has been used tomodel pro-
tein dihedral angle distribution [22, 23], which removes
arbitrariness in defining the boundary between discrete
states. In this study, we assume angle pairs in each basin
follow a bivariate von Mises distribution to derive the
log-likelihood of each clustering.

Thanks to the rapid growth of Protein Data Bank and
computational and algorithmic development in machine
learning (especially deep learning), several supervised
machine learning methods have been proposed to pre-
dict real values of dihedral angles. As φ values in α-helices
and β-sheets are quite similar, ψ seems more informa-
tive. Wood et al. first developed a method DESTRUCT
for prediction of real-valued dihedral angle ψ and used
this information for prediction of the protein secondary
structure with high accuracy [4]. Wu et al.proposed a
composite machine-learning algorithm called ANGLOR
to predict real-value protein backbone torsion angles from
protein sequences [24]. The input features of ANGLOR
include sequence profiles, predicted secondary structure
and solvent accessibility. The mean absolute error (MAE)
of the φ/ψ prediction was reported to be 28°/ 46°. Later
Song et al. developed TANGLE based on a two-level sup-
port vector regression approach using a variety of features
derived from amino acid sequences, including the evolu-
tionary profiles and natively disordered region as well as
other global sequence features [25]. The MAE of the φ/ψ
was 27.8°/ 44.6°. Xue et al. established a neural network
method called Real-SPINE, with sequence profiles gen-
erated from multiple sequence alignment and predicted
secondary structures as inputs [26]. In 2015, they pre-
sented SPIDER2 [27] by improving SPIDER [28] through
iterative learning, which used a deep artificial neural net-
work (ANN) with three hidden layers of 150 nodes. They
fed the predicted torsion angles of last layer as the input
to the following generation and reported 19° and 30° for
mean absolute errors of backbone φ and ψ angles, respec-
tively. As it is impossible to introduce all methods here,
interested readers can refer to excellent reviews [29, 30].
Although there has been tremendous development,

their performance is still limited by their shallow archi-
tectures. Inspired by the excellent performance of convo-
lution neural network in predicting secondary structure
[31] and order/disorder regions [32] and also the success
of residual framework to do contact prediction [33], we
adopt the ultra deep residual framework of convolutional
neural network to do k-means basin label probability
prediction.
However, even though a protein backbone conforma-

tion can be highly accurately rebuilt from its respective
native dihedral angles, accumulation of errors in predicted
angles can lead to large deviation in three-dimensional
structures, which prevents angle prediction from its direct
use in building protein structures [27]. It is of great sig-
nificance to produce the corresponding confidence scores
for the real value predictions, i.e., we need to know the
confidence level of the predictions. Otherwise the effect
of predicted dihedral angles as restraints for three dimen-
sional structure prediction would be limited [34]. Zhou
et al. had developed SPIDER2 [27] to predict real-valued
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angles and then separately SPIDER2-Delta [35] to predict
error of those predicted structural properties. Here we
describe a simple hybrid technique to predict angles and
confidence scores simultaneously.
Another problem that need to be considered is the peri-

odicity of angles. For example, if an angle θ = 179°
is predicted to be −179°, the error would be treated
as 358° instead of 2°. There are some approaches pro-
posed to reduce the impact of cyclic nature of angles.
One was angle shifting to reduce confusion at 0° and
360° (or −180° and 180°), e.g., shifting ψ by 100° and φ

by −10° [26] or adding 100° to the angles between −100°
and 180° and adding 460° to the angles between −180°
and −100° [34]. But the improvement was limited and
strongly depended on the angle range. For amino acids
such as alanine that had minimal residues in the affected
range, angle shifting made little difference [29]. A bet-
ter choice was to take advantage of the inherent angle
periodicity of trigonometric functions, that is, mapping
the angles to their sine and cosine values [27], which has
achieved best performance so far. Inspired by this, we deal
with equivalent trigonometric representations of dihedral
angle pairs, rather than real value angles.
Considering dihedral angles share similar patterns in

alpha helix and beta strand, the acceptable (φ,ψ) patterns
are limited. Moreover, it is much easier to do classifica-
tion than regression. Also indebted to mixture models
and Expectation-maximization algorithm, we develop a
hybrid method of k-means clustering and deep learning to
do angle prediction, combining advantages of discrete and
continuous representation of dihedral angles. Specifically,
we firstly generate a set of clusters of (φ,ψ) from training
data, in which we could get the distribution of each clus-
ter; then we use deep learning methods to predict discrete
labels; lastly we predict real value angles by mixing empir-
ical clusters with their predicted probabilities. We employ
a residual framework of convolutional neuron network in
RaptorX-Angle to predict the cluster label probabilities.
We test our method on filtered PDB25 dataset as well as
CASP (Critical Assessment of protein Structure Predic-
tion) targets and compare with other three state-of-art
methods. Tested on the subset of PDB25, our method
gains about 0.5°and 1.4°for φ and ψ better MAE than
SPIDER2, currently among the best backbone angle pre-
dictors. Our method also performs better than SPIDER2
on the CASP11 and CASP12 test targets. The advantage is
even more obvious when looking into detailed secondary
structural regions.

Methods
K-means clustering of angle vectors
Genearating k-means “centers” from angle vectors
For a dihedral angle pair (φ,ψ), we can equivalently
denote it by an angle vector

v = (cos(φ), sin(φ), cos(ψ), sin(ψ)) .

Conversely, given the vector representation v, we
can easily derive the corresponding angles φ and ψ

(Additional file 1: S1.1). We run k-means on angle
vectors to cluster dihedral angle pairs in training set
into K = 10, 20, . . . , 100 clusters. Then we normal-
ize the K centres {Ck}Kk=1 and get the final “centers”
{
C̃k = (̃ck0, c̃k1, c̃k2, c̃k3)

}K
k=1, so that each “centre” C̃k is

a valid representation for some angle pair (Additional
file 1: S1.2).

Predicting “true” labels from k-means

Given the K normalised vector “centres”
{
C̃k

}K
k=1, we

could assign the “true” label for each dihedral angle pair as
the one whose corresponding normalised centre was clos-
est to its respective vector representation. Then the “true”
labels can be used as the training labels to build a deep
learning model as a classifier to predict labels for testing
data.

Deep learning model details
Deep Convolutional Neural Network (DCNN)
DCNN consists of multiple convolutional blocks. A con-
volutional block is a neural network that implements
a composite of linear convolution and nonlinear acti-
vation transformation. Convolution is used in place of
general matrix multiplication, which can better capture
local dependency. It has been widely accepted that pro-
tein torsion angles strongly depend on neighbour residues
[36–38]. So DCNN is ideal to abstract angle information
from sequence.

Residual Network (ResNet)
DCNN can integrate features in hierarchical levels and
some work has shown the significance of depth [39]. How-
ever, with the depth increasing, accuracy gets saturated
and even degraded. That is because adding more layers
may lead to higher training error as identity mapping is
difficult to fit with a stack of nonlinear layers [40]. ResNet
was proposed as a residual learning framework to ease the
training of substantially deeper networks [41]. Figure 1
demonstrates the basic architecture of ResNet in RaptorX-
Angle. Figure 1a is a residual block, which consists of 2
convolution layers and 2 activation layers, and the ResNet
consists of stacked residual blocks (Fig. 1b). The activa-
tion layer conducts a simple nonlinear transformation of
its input depending on the activation function with no
additional parameters. In this work, we used the ReLU
activation function [42].

Logistic regression layer
DCNN and ResNet can capture information from data
and output abstract features. To do classification for
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Fig. 1 Illustration of the ResNet model in RaptorX-Angle. a A building block of ResNet with xi and xi+1 being input and output, respectively. b The
ResNet model architecture as a classifier with stacked residual blocks and a logistic regression layer. Here L is the sequence length of the protein or
total number of residues under prediction and K is the number of clusters

residues, a logistic regression layer is added as the final
layer in RaptorX-Angle, which could output the marginal
probability of K labels (Fig. 1b).

Loss function
We trainmodel parameters throughmaximizing the prob-
ability of angle pairs belong to the “true” labels. Naturally,
the loss function is defined as the negative log-likelihood
averaged over all residues of the training proteins.

Regularization and optimization
As is widely used in machine learning, the log-likelihood
objective function is penalized with a L2-norm of the
model parameters to prevent overfitting. Thus, the
final objective function has two items: loss function
and regularization item, with a regularization factor λ

to balance the two items. That is, the final objective
function is:

max
θ

logPθ (Y |X) − λ‖θ‖2

where X is the input features, Y is the output labels, θ is
the model parameters and λ is the regularization factor
used to balance the log likelihood and regularization. We
use Adam [43] to minimize the objective function, which
usually can converge within 20 epochs. The whole algo-
rithm has been implemented by Theano [44] and mainly
run on a GPU card.

Input features
For each residue in each protein sequence, we generate a
total of 66 input features, of which 20 from position spe-
cific scoring matrix(PSSM) of PSI-BLAST [45], 20 from
position-specific frequency matrix (PSFM) of HHpred
[46, 47], 20 from primary sequence, 3 from predicted sol-
vent accessibility (ACC) and 3 from predicted secondary
structure(SS) probabilities (Additional file 1: S1.3).

Predicting real-value angles from predicted marginal
probability
From the last logistic regression layer of the deep learn-
ing model, we could predict the marginal probability P =
(p1, p2, . . . , pK ) of an angle pair for each label. We use
the marginal probability rather than the single predicted
label to reduce bias. Concretely, we calculate the weighted
mean by:

v̂ = (v0, v1, v2, v3) =
K∑

k=1
pkC̃k,

Finally, we normalise v̂ to get

̂cos(φ) = v0√
v02 + v12

, ̂sin(φ) = v1√
v02 + v12

,

̂cos(ψ) = v2√
v22 + v32

, ̂sin(ψ) = v3√
v22 + v32

.

and we could derive the predicted real values φ̂, ψ̂
from this angle vector (Additional file 1: S1.1). We also
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tried to predict real-value angles from labels with top
R(R < K ) probabilities when K is well chosen (Additional
file 1: S2.3).

Programs to compare and evaluation metrics
We compare our method with three available standalone
softwares SPIDER2 [27], SPINE X [11], and ANGLOR
[24]. All the programs are run with parameters suggested
in their respective papers.
We evaluate the performance by Pearson Correlation

Coefficient (PCC) and Mean Absolute Error (MAE) as
described by [48], for assessing the prediction of φ/ψ
angles. Considering the periodicity of angles, PCC is cal-
culated between the cosine (sine) values of predicted and
experimentally determined angles. MAE is the average
absolute difference between predicted and experimentally
determined angles. The periodicity of an angle has been
taken care of by utilizing the smaller value of the abso-
lute difference d

(= |θpred − θexp|
)
and 360−d for average,

where θpred is the predicted angle and θexp is the true angle
value.

Results
Datasets
Weuse the targets fromPDB25 updated in February, 2016.
The set consists of 10820 non-redundant protein chains,
in which any two chains share nomore than 25% sequence
identity. To remove impact of disordered regions, we fil-
ter out proteins with internal disordered regions by DSSP
[49]. Finally we get 7604 proteins. We then randomly
select 5070 proteins as the candidate training set, 1267
as validation set (VL1267, see Additional file 2) and the
remaining 1267 as test set (TS1267, see Additional file 3).
We also test on 85 CASP11 targets (see Additional file 4)
and the latest 40 CASP12 targets (see Additional file 5)
with publicly released native structures. To remove redun-
dancy between training proteins and CASP targets, we
run MMseqs2 [50], which is similar but more sensitive
and faster than BLAST (PSI-BLAST) for protein sequence
homology search, with seqID cutoff 0.25 and also E-value
cutoff 0.001 to filter 5070 the candidate training pro-
teins, resulting in 5046 training proteins (TR5046, see
Additional file 6).

Choosing a proper number of clusters
A vital problem is how to select the number of clusters,
which can be reduced to defining measures for cluster-
ing evaluation. Here we adopt two measures: (i) entropy
loss based on discrete distribution; (ii) loglikelihood based
on continuous distribution to evaluate 10 different clus-
terings (K = 10, 20, . . . , 100). Firstly, we do k-means clus-
tering on TR5046 and get K empirical clusters. Secondly,
we train the deep learning models and do classification
on VL1267, then we can obtain the predicted marginal

probability of the K clusters Pi = (pi1, pi2, . . . , piK ) , i =
1, 2, . . . ,N , where i is the index of residue and N is the
total number of residues in VL1267.

Entropy loss
Entropy H(·) is always used to measure the infor-
mation of a distribution. From k-means clustering on
TR5046, the background distribution among clusters
P0 = (p01, p02, . . . , p0K ) could be derived. Then the
entropy loss of this clustering onVL1267 can be calculated
as the mean difference between entropy of background
distribution and predicted marginal distribution:

EL = 1
N

N∑

i=1
(H (P0) − H (Pi))

= 1
N

N∑

i=1

( K∑

k=1
p0k log (p0k) −

K∑

k=1
pik log (pik)

)

which can roughly evaluate the information gain from the
clustering. Here N is the number of residues in VL1267.

Loglikelihood
To demonstrate the detailed information of each clus-
ter, we need a continuous angular(circular) distribution
defined on the torus. Mixture bivariate von Mises distri-
butions are successfully used to describe the local bias of
torsion angle pair (φ,ψ) [21–23], we assume that angle
pairs belong to the same cluster k obey a common bivari-
ate von Mises distribution fk with parameters �k =(
κk
1 , κ

k
2 , κ

k
3 ,μk , νk

)
. Here,

fk (φ,ψ) = c
(
κk
1 , κ

k
2 , κ

k
3

)
exp

{
κk
1 cos

(
φ − μk

)

+κk
2 cos

(
ψ − νk

)
+κk

3 cos
(
φ − μk − ψ + νk

)}

where μk and νk are the mean value of φ and ψ , respec-
tively; κk

1 , κ
k
2 are the concentrations, κk

3 allows for the
dependency between the two angles and c

(
κk
1 , κ

k
2 , κ

k
3

)
is a

normalization constant:

c
(
κk
1 , κ

k
2 , κ

k
3

)
=(2π)2

⎧
⎨

⎩
I0

(
κk
1

)
I0

(
κk
2

)
I0

(
κk
3

)
+2

∞∑

p=1
Ip

(
κk
1

)
Ip

(
κk
2

)
Ip

(
κk
3

)
⎫
⎬

⎭

in which Ip(κ) is the modified Bessel func-
tion of the first kind and order p. Parameters
{
�k =

(
κk
1 , κ

k
2 , κ

k
3 ,μk , νk

)}K

k=1
can be intuitively esti-

mated from the empirical clusters {(φ,ψ)k}Kk=1 [51]. Then
the density function for the torsion angle pair (φ,ψ) can
be approximately described as:

f (φ,ψ) =
K∑

k=1
pkfk(φ,ψ)
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where pk is the predicted marginal probability of (φ,ψ)

belongs to cluster k. Then the log-likelihhod for the
VL1267 can be calculated as:

LL = 1
N

N∑

i=1
log f (φi,ψi) = 1

N

N∑

i=1
log

K∑

k=1
pikfk(φi,ψi)

Selecting proper K
Figure 2 shows the result of entropy loss and loglikeli-
hood with respect to the number of clusters. As expected,
the loglikelihood increases along with K, which means it
can better describe the data with more clusters. But when
K goes larger than 30, there is an obvious decrease in
entropy loss. Maybe that is because the more clusters are
used, the more challenging it would be to do angle predic-
tion. As there is a soaring information gain when K goes
from 10 to 20 and little difference when K increases from
20 to 30, we test every single clustering between 20 and 30
and there is no significant benefit with more clusters. So
we just choose K = 20 to do following studies.

Feature contribution study
The features can be divided into three categories:
sequence information including amino acid (aa) and pro-
file, predicted secondary structure (SS) and solvent acces-
sibility (ACC). Sequence profile information are generated
from PSI-BLAST (PSSM) and HHpred (PSFM) (See
Additional file 1: S1.3 for more details). To test the impact
of different feature combinations, we design six experi-
ments: (1) basic1 = 20 PSSM + 20 aa; (2) basic2 = 20
PSFM + 20 aa; (3) basic = 20 PSSM + 20 PSFM + 20 aa;
(4) basic + 3 ACC; (5) basic + 3 SS; (6) basic + 3 ACC
+ 3 SS. The network architecture is fixed as Nlayers =
5,Nnodes = 100, halfWinSize = 3 (ResNet 5-100-3), and
the regularization factor is fixed to be 0.0001.
Table 1 shows theMAE performance of different feature

combinations on TS1267. From the first three experi-
ments with only sequence information involved, there is
little performance difference between PSSM and PSFM,

and the combination of PSSM and PSFM gains the best
accuracy. So PSSM and PSFM are complementary and
both unignorable. ACC and SS both contribute signifi-
cantly and also the combination gain the best accuracy.
Finally we use the whole set of features.

Overall PCC performance of cosine values compared with
other methods
To tune proper regularization factor and also network
architectures, we perform 5-fold cross validation on
TR5046 (Additional file 1: S2.1 and S2.2). Finally, we
choose an ensemble of 6 networks (Additional file 1:
S2.2). We test our method on TS1267 and also the pop-
ular CASP targets, including 85 CASP11 targets and 40
CASP12 targets. Table 2 shows the PCC performance of
cosine values on the three benchmarks. RaptorX-Angle
has gained the highest PCC on all datasets. We also evalu-
ate PCC performance of sine values (See Additional file 1:
S2.4) and get similar results.

Overall MAE performance compared with other methods
Table 3 shows the MAE performance on the three bench-
marks in different secondary structural regions of our
RaptorX-Angle comparing with other three methods. All
methods have larger MAE on CASP targets than on
TS1267. It is reasonable since CASP targets are usually
hard to predict. It can be seen that RaptorX-Angle per-
forms the best on all benchmarks, with about 0.5° and
1.4° for φ andψ betterMAE on both TS1267 and CASP12
and slightly better performance on CASP11 than the sec-
ond best method SPIDER2. We perform Student’s t test of
absolute errors between RaptorX-Angle and SPIDER2. As
a result, the p-values for φ/ψ are 8.65e − 12/2.79e − 33,
5.13e − 2/8.36e − 2 and 1.28e − 5/2.59e − 8 on TS1267,
CASP11 and CASP12, respectively. That is , the advantage
of RaptorX-Angle over SPIDER2 on TS1267 and CASP12
is statistically more significant than on CASP11. These
results demonstrate the rationality of representing the
Ramachandran plot with a limited number of clusters, say

Fig. 2 Selecting proper number of clusters K. Left: relationship between entropy loss of discrete label probabilities and number of clusters K ; Right:
relationship between loglikelihood of mixture bivariate von Mises distribution and number of clusters K
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Table 1 The mean absolute error of different feature combinations with ResNet 5-100-3 on TS1267

Feature combination Phi Psi Phi_H Psi_H Phi_E Psi_E Phi_C Psi_C

basic1=PSSM+aa 19.97 31.97 9.82 17.57 20.70 26.97 29.84 49.66

basic2=PSFM+aa 20.02 31.78 9.86 17.68 20.46 26.38 30.10 49.39

basic=PSSM+PSFM+aa 19.27 30.04 9.11 15.58 19.70 24.64 29.35 48.02

basic+ACC 19.08 29.30 9.07 15.44 19.36 23.18 29.11 47.10

basic+SS 19.19 28.73 8.56 13.76 19.29 22.43 31.00 47.95

basic+ACC+SS 18.58 27.98 8.45 13.37 19.03 22.14 28.61 46.21

Phi and Psi denote MAE for all residues
Phi_H and Psi_H denote MAE for residues in helix region
Phi_E and Psi_E denote MAE for residues in beta strand region
Phi_C and Psi_C denote MAE for residues in coil region

20 clusters, and also reflect the power of deep learning
methods.

Mean absolute error performance study in VL1267
In methodology, the conversion from angle pair to
trigonometric vector is nonlinear, the prediction error
may depend on angles. And in biology, prediction error
may differ for different amino acids with different micro-
scopic biochemical properties, and also for different pro-
tein classes with different macroscopic structures. So we
perform detailed studies on prediction error in VL1267.

Studymean absolute error performance for different clusters
As each cluster corresponds to a certain angle region, we
calculate theMAE for each cluster in VL1267.We observe
that the 20 clusters are well consistent with Ramachan-
dran plot and also the two peaks for φ and ψ [11] (Fig. 3
Left). And the prediction errors differ a lot between clus-
ters. It turns out that clusters with more residues in coil
region tend to result in larger prediction errors. Moreover,
prediction error for φ is smaller than for ψ . But there are
three uncommon clusters with larger MAE for φ, i.e., 5, 6
and 10 (Fig. 3 Right). Clusters 5 and 6 are totally in one of
the peak areas in Ramachandran plot, which may indicate
some interesting biological discoveries.

Mean absolute error performance for each amino acid type
As different amino acids have different stereochemical
and physiochemical properties, they are anticipated to

Table 2 Pearson correlation coefficient of cosine values between
predicted and true angles

TS1267 CASP11 CASP12

cos(φ)/ cos(ψ) cos(φ)/ cos(ψ) cos(φ)/ cos(ψ)

RaptorX-Angle 0.7111/0.7576 0.6585/0.7103 0.6539/0.6979

SPIDER2 0.6893/0.7427 0.6485/0.7095 0.6299/0.6761

SPINE X 0.6410/0.6543 0.5015/0.4891 0.4990/0.5039

ANGLOR 0.4775/0.6226 0.4437/0.5868 0.4431/0.5772

have different degrees of difficulty for the torsion angle
prediction. In Table 4, we examine the MAE performance
for each of 20 amino acid types. Glycine, with no side-
chain atom except for a proton, has least steric restric-
tion to backbone dihedral angle motions. As a result,
it has the largest prediction error (43.32° / 39.59° for
φ/ψ). In contrast, Proline has the least MAE (8.84°) for
φ but has an unusually large MAE (33.00°) for ψ pre-
diction due to its special side-chain structure, which is
consistent with [24]. In addition, three of the amino
acids (Ile, Leu and Val) with the smallest MAE are all
hydrophobic.

Mean absolute error performance for different protein classes
After studying on MAE performance in microcosmic
view, we intend to study the performance for different
macroscopical structures. We abstract 99, 117, 171, 117
proteins from VL1267 (resulted in 17696, 24874, 47304
and 19645 residues) in all α, all β , α/β and α + β

classes, respectively. We calculate the absolute error for
every residue in each class. Figure 4 shows the vio-
lin plot of prediction error for φ (Left) and ψ (Right).
A violin plot is similar to box plot except that it also
shows the probability density of the data. We can see
although the MAE for φ are smaller for all protein
classes, prediction errors belong to each protein class have
their own distribution pattern and the pattern is similar
between φ and ψ . Overall, prediction errors are small-
est in all α proteins and largest in all β for both φ and ψ

predictions.

Estimating confidence score of predicted angles
Generally, variance σ 2 includes variance within cluster σ 2

w
and variance between cluster σ 2

b . To produce the con-
fidence score of our predicted angles, we calculate the
standard deviation from variances within a cluster. Specif-
ically, for each cluster k, we can get the in-cluster variance
σ 2
k (θ) from training data, where θ = φ or ψ . Then we

derive the variance of prediction by:
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Table 3 Mean absolute error of four methods for different secondary structural regions on three benchmarks: TS1267, 85 CASP11
targets and 40 CASP12 targets

(°) Phi Psi Phi_H Psi_H Phi_E Psi_E Phi_C Psi_C

TS1267

RaptorX-Angle 18.08 26.68 8.35 12.98 18.24 20.94 27.88 44.11

SPIDER2 18.57 28.02 8.59 14.52 19.28 23.09 28.28 44.73

SPINE X 20.31 34.05 9.32 16.69 22.23 31.23 30.32 53.42

ANGLOR 24.01 43.59 9.29 26.41 27.47 40.88 36.89 62.72

CASP11

RaptorX-Angle 20.00 30.14 9.49 15.65 18.82 23.58 29.87 46.89

SPIDER2 20.18 30.32 9.53 16.05 19.77 24.50 29.88 46.84

SPINE X 24.85 46.58 13.57 29.65 26.25 43.65 33.88 63.49

ANGLOR 25.69 46.17 9.99 27.72 28.08 43.85 37.96 64.03

CASP12

RaptorX-Angle 20.69 32.73 9.28 16.73 19.94 26.06 31.22 51.02

SPIDER2 21.13 34.17 9.13 17.19 21.35 28.56 31.95 52.76

SPINE X 24.85 46.57 11.52 26.34 26.98 46.04 35.85 65.33

ANGLOR 25.79 47.37 9.69 28.81 29.11 44.79 38.65 65.74

Same notations with Table 1

var(θ) = σ 2(θ) =
K∑

k=1
pkσ 2

k (θ)

Figure 5 shows the mean standard deviation for φ and
ψ in different regions. As expected, the smallest variance
appears in helix region, and then strand and lastly coil
region. The standard deviation in disordered regions are
rather large and quite similar to coil regions, which is con-
sistent with our prior knowledge that disordered region
resembles loop region and is rather flexible.
Figure 6 demonstrates the relationship between MAE

and mean standard deviation for φ and ψ in different
regions on VL1267. Roughly, the relationship is linear
(R2 = 0.8911). So the MAE can be bounded well by

the standard deviation. We predict the error for each
residue in each target from TS1267 and calculate corre-
sponding Pearson and Spearman correlation coefficients
(PCC and SCC) between prediction errors and true errors,
and also the mean absolute error for prediction errors
(MAEPE). Finally, we obtain PCC = 0.3109, SSC =
0.5427,MAEPE = 13.94 for φ and PCC = 0.2597, SCC =
0.4751,MAEPE = 26.21 for ψ . We also try to fit two
linear models for φ and ψ separately on the all data
points in VL1267 and get similar testing results. This
indicates that the mean for different secondary struc-
tural regions almost contains enough information about
the relationship between the estimated standard deviation
and prediction error (Additional file 1: S2.6).

Fig. 3Mean absolute error performance for different clusters in VL1267. Left: visualization of 20 cluster centers on the Ramachandran plot with
smaller number indicating smaller size. Right: mean absolute error for different clusters
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Table 4 Mean absolute error performance for each amino acid
type in VL1267

Amino acids Abundance Frequency(%) φ( ° ) ψ ( ° )

A (Ala) 22527 8.46 13.87 22.92

C (Cys) 3151 1.18 20.50 28.66

D (Asp) 15946 5.99 20.71 30.80

E (Glu) 18326 6.89 14.75 23.97

F (Phe) 10812 4.06 18.13 26.10

G (Gly) 19133 7.19 43.32 39.59

H (His) 5989 2.25 22.04 31.12

I (Ile) 15302 5.75 12.79 20.12

K (Lys) 15299 5.75 16.71 25.83

L (Leu) 24731 9.29 12.49 21.37

M (Met) 5833 2.19 16.71 24.86

N (Asn) 11383 4.28 27.38 32.04

P (Pro) 11977 4.50 8.84 33.00

Q (Gln) 10163 3.82 15.96 24.72

R (Arg) 13529 5.08 16.81 25.45

S (Ser) 15991 6.01 20.83 33.92

T (Thr) 14309 5.38 17.12 30.92

V (Val) 18612 6.99 13.70 20.94

W (Trp) 3854 1.45 18.05 27.61

Y (Tyr) 9287 3.49 18.83 27.02

Total 266154 100 18.32 27.15

Computational cost analysis
All mentioned methods could do angle prediction target
by target, so the computational cost is bounded by the
longest protein (i.e., protein with the largest number of
residues). To generate angle predictions for 1xdoA, the
largest protein in TS1267 with 685 residues, it takes 726s,
123s, 370s and 524s for ANGLOR, spineX, SPIDER2 and
RaptorX-Angle, respectively.

As far as we see, the computational cost is mainly deter-
mined by method outline, network complexity, feature
engineering and technical resources. ANGLOR is a com-
posite method and the technology was not so developed
at that time, it needs the most time. While spineX just
adopted a simple network, SPIDER2 used more features
iteratively in a more complex network and it takes longer
than spineX.
Compared with the second best SPIDER2, RaptorX-

Angle used much deeper networks and also adopted
profile information from hhblits (PSFM), besides PSSM
from PSI-BLAST harnessed by spineX and SPIDER2. As
a result, it takes SPIDER2 360s to generate features with 4
CPUs and 20s to predict angles using a CPU, while it takes
RaptorX-Angle 385s to generate features with 4 CPUs, and
200s to predict angles from the features using a GPU card.
However, we can integrate the features of a total

batch of proteins and run them all at once. Actually,
it just takes 750s to do angle prediction for all pro-
teins in TS1267, while other methods needs many CPUs
in parallel. Overall, our method is faster for predic-
tion of many proteins and has gained better prediction
accuracy.

Discussion
We have transformed the hard real-valued prediction
problem into a discrete label assignment problem, which
has simplified the problem and also gained better results.
Overall, our RaptorX-Angle gains the best PCC in terms
of cosine and sine of angles on all datasets. It has
about 0.5° and 1.4° for φ and ψ better MAE than the
second best method SPIDER2 on a subset of PDB25.
We have also calculated the two-state accuracy to see
how much improvement there would be in large angle
errors. RaptorX-Angle performs the best and has about
0.15 and 1 percent improvement over SPIDER2 for φ

and ψ on TS1267(See Additional file 1: S2.5). Our
method also works very well on the CASP targets.

Fig. 4Mean absolute error performance for different protein classes in VL1267. Left: for φ prediction. Right: for ψ prediction
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Fig. 5Mean standard deviation for different secondary structural
regions in TS1267

Moreover, we have estimated the prediction errors at
each residue by a mixture of the clusters with their
predicted probabilities. It has been shown that there is
approximately linear relationship between the real pre-
diction error and in-cluster standard deviation. That is
a unique feature of our method. In addition, we check
the prediction for disordered regions. As there is no
angle information, we just analyze the standard devia-
tion and get quite large values and similar patterns to
coil region. It is consistent with our prior knowledge
that disordered region is rather flexible and resembles
loop region. We also do comprehensive studies on pre-
diction performance in VL1267, both in microscopic and
macroscopic view.
This simple technique has gained better performance

than other state-of-art methods. It demonstrates that for

Fig. 6 Relationship betwee n prediction error and standard deviation.
Eight points are for two kinds of angles (φ,ψ) in four secondary
structural regions (total, helix, strand, coil)

protein structures, the 20 clusters contain enough infor-
mation for (φ,ψ) , which is an efficient compression of
information. The idea that to predict dihedral angles from
clustering has turned out to be successful due to three
aspects. The first is the continuous growth of the solved
structures [52], so we have enough training data. The
second is the novel idea to predict real-value angles by
mixing a set of clusters with their respective predicted
probabilities. Conversely, such good performance demon-
strated that the distribution of protein backbone dihedral
angles can be described through a set of clusters. Last
but not the least, the everlasting development of deep
learning models and optimization methods proves to be
a powerful tool to promote new ideas and exploit new
methods.
But there is still room for improvement. RaptorX-Angle

just used one-dimensional features and adopted 1D CNN.
It cannot extract information of long range interaction.
Heffernan et al. has developed more accurate SPIDER3
employing Long Short-Term Memory (LSTM) Bidirec-
tional Recurrent Neural Networks (BRNNs), which are
capable of capturing long range interactions [53]. That
is, considering pairwise interaction can further increase
prediction accuracy.We will include two-dimensional fea-
tures and exploit 2D CNN to see how much improvement
could be achieved.
Moreover, as mentioned before, accumulation of pre-

diction errors has buried the usefulness of torsion angles
to construct 3D models. There is a great demand to
develop a proper technique to deal with the errors. A gen-
eral pipeline to add angle restraints and confidence to
improve protein tertiary structure prediction need to be
developed.

Conclusions
In conclusion, this study has made a more reliable predic-
tion of dihedral angles and may facilitate protein struc-
ture prediction and functional study. In the near future,
we can use the angle restraints to do tertiary struc-
ture prediction, which should be considered carefully
to deal with errors and flexibility. We can also adopt
the angle prediction to aid structure alignment and fold
recognition.
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