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Abstract

Background: Comprehensively understanding the dynamics of biological systems is among the biggest current
challenges in biology and medicine. To acquire this understanding, researchers have measured the time-series
expression profiles of cell lines of various organisms. Biological technologies have also drastically improved, providing
a huge amount of information with support from bioinformatics and systems biology. However, the transitions
between the activation and inactivation of gene regulations, at the temporal resolution of single time points, are
difficult to extract from time-course gene expression profiles.

Results: Our proposed method reports the activation period of each gene regulation from gene expression profiles
and a gene regulatory network. The correctness and effectiveness of the method were validated by analyzing the
diauxic shift from glucose to lactose in Escherichia coli. The method completely detected the three periods of the shift;
1) consumption of glucose as nutrient source, 2) the period of seeking another nutrient source and 3) consumption of
lactose as nutrient source. We then applied the method to mouse adipocyte differentiation data. Cell differentiation
into adipocytes is known to involve two waves of the gene regulation cascade, and sub-waves are predicted. From
the gene expression profiles of the cell differentiation process from ES to adipose cells (62 time points), our method
acquired four periods; three periods covering the two known waves of the cascade, and a final period of gene
regulations when the differentiation to adipocytes was completed.

Conclusions: Our proposed method identifies the transitions of gene regulations from time-series gene expression
profiles. Dynamic analyses are essential for deep understanding of biological systems and for identifying the causes of
the onset of diseases such as diabetes and osteoporosis. The proposed method can greatly contribute to the progress
of biology and medicine.
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Background

Acquiring a comprehensive understanding of biological
systems dynamics is among the biggest challenges in biol-
ogy and medicine. The processes of all organisms (includ-
ing humans) are time-variant. Cells cycle and divide,
change their internal states and differentiate into other
cell types when stimulated from the outside. Abnormal
cell differentiation causes diseases and cancer. Dynamic
systems are universal in organisms.

Biological systems dynamics can now be under-
stood through advanced biological technologies. On-
chip hybridization and DNA sequencing has enabled the
simultaneous measurement of the expression levels of
many genes. Many of the accumulated data are regis-
tered in public databases such as GEO (Gene Expression
Omnibus) [1, 2], Array Express [3] and Sequence Read
Archive [4]. Special-purpose databases are also accessi-
ble. The references of mammalian tissue gene expressions
are stored in RefEx (Reference Expression Dataset) [5],
whereas the data from human tissues, cell lines and can-
cers are distributed through the Human Protein Atlas [6].
Mouse data are archived in the specialized database GXD
(Gene expression database) of the Mouse Genome Infor-
matics resource [7]. These databases are freely accessible
to all users.

The above databases store the time-course movements
of the gene expression levels in multiple organisms. For
example, a search for “time-course” (2017/7/12) returned
913 datasets in GEO and 7623 entries in SRA. Based
on these data, researchers have revealed the biological
mechanisms of processes such as cell cycling [8] and
diauxic shifts [9]. The adipogeneses of mice and humans
have also been compared using time-course profiles [10].
These studies cover a broad range, from biology, through
medicine, to pharmacology.

Numerous systems operate in living cells. Examples are
metabolism, genetic and environmental information pro-
cessing, cellular processes, and organismal systems [11].
Concurrent functioning of these systems in vivo main-
tains the life activities of the cell. Systems have been
extensively researched and summarized as pathways in
the KEGG (Kyoto Encyclopedia of Genes and Genomes)
database [11]. Control of gene expression levels is another
life-sustaining system. Gene regulation defines the rela-
tion between a controlling agent and its target gene. The
gene regulatory system can be represented as a network
of nodes (genes) connected by directed edges (regulation
of a downstream gene by an upstream gene). The gene
regulatory networks of model organisms are available in
databases such as RegulonDB [12, 13], which contains the
nearly-complete gene regulation of Escherichia coli, and
the yeast network databases YEASTRACT [14-17]. The
FANTOM projects have attempted to exhaustively reveal
the relations between mouse and human in many tissues
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[18-22]. Gene regulatory networks are also provided
in commercial databases such as TransFac [23, 24] and
Quiagen’s Ingenuity Pathway Analysis [25]. The regulatory
relations between genes, at least in the model organisms,
will be revealed exhaustively in the near future. However,
although databases provide numerous gene regulations,
the relationships are basically static. Each database entry
supplies a gene regulatory relation and the experimen-
tal environment in which the relation was activated. Very
few entries include the chronological order of the acti-
vations, despite our increasing knowledge of signaling
pathway cascades. When the chronological order is given,
the experimental environment includes the cell cycles and
diauxic shift of the nutrient source. Adipocyte differenti-
ation is accompanied by a rough sketch of the transition
of active expression controls [26] (see Fig. 1). The differ-
entiation involves a single transition point and two waves
of activated gene regulations, although more than two
waves have been suggested [26]. The dynamics of gene-
expression control is a new research topic, with many
unknowns at present.

Gene regulation activity can be dynamically analyzed
from gene expression profiles. Given time-course data,
researchers have sought the transformations in the gene
regulatory network through models, such as ordinary
differential equations and graphical models. Ordinary dif-
ferential equations can explain the activity level of a
gene regulation. The explanatory and objective variables
are the expression levels of the upstream genes and the
downstream genes, respectively [27-29]. Graphical mod-
els describe the control relations in the gene expression
as a network of nodes (genes) with directed edges (con-
trols). The dynamics of biological systems can be analyzed
by a graphical Gaussian model with a Markov property
[30, 31], which measures the independence of any two
genes using partial correlations.

Other graphical models are the gene relevance net-
work and the Bayesian network. The former generates
a gene regulatory network from the mutual information,
and measures the degree of association between gene
expression levels [32—34]. This model can also manage
time-course gene expression profiles [35].

In the Bayesian network, a directed edge represents
the probabilistic relationship between two genes by
information-theoretic approaches. The plausibility of the
network is measured by the Bayesian information cri-
terion and the minimum description length [36, 37].
Bayesian networks have been extended to time-course
data by introducing Markov properties into the joint prob-
ability distribution. The time-dependent Bayesian net-
work is called a dynamic Bayesian network [38, 39].

The above-described methods have analyzed not only
the gene expression profiles, but also general data.
Researchers have obtained meaningful results from all
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Fig. 1 The gene regulatory network of murine cell differentiation into adipocytes occurs in two waves (distinguished by different colors) [26]
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data except time-course gene expression profiles, which
are most severely limited by the small number of time
points. Figure 2 shows the distribution of time points in
the GEO database. There are 913 datasets with time-series
expression profiles. The average, mean and standard devi-
ation of the time points are 4.66, 4, and 2.82, respectively.
The number of time points is far below the numbers of
other common data. To clarify this fact, Table 1 lists the
number of data points in benchmark problems for infer-
ring causal relationship networks [37, 40—44]. All of these
benchmarks are included in bnlearn of the R package [44].
Comparing Fig. 2 and Table 1, we observe that the number
of time points is two orders of magnitude lower in the
time-series expression profile than in the benchmarks.
This data limitation not only prevents the estimation of
correct relationships, but also stifles the dynamic analyses.
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Fig. 2 Number of time points in datasets returned by a “time course
or time-course” query in the Gene Expression Omnibus. The average,

mean and standard deviation of the distribution are 4.66, 4 and 2.82,
respectively

Takenaka et al. [45] proposed a method that captures the
dynamic changes in gene expression control from time-
course expression profiles with a small number of time
points. Their method quantifies the intensity at which
genes control the expression levels of other genes. The
temporal resolution of intensity is one time point (the
observation unit of the time-course gene expression pro-
file). Single time-point resolution is finer than the resolu-
tions of other methods [46—49]. Assuming a profile with
N time points, the method generates N sub-profiles, each
omitting one time point. The effectiveness of the method
was confirmed in the diauxic shift of E.coli [9] and the
adipocyte cell differentiation in mouse tissue [45, 50, 51].
The results detected the time of the diauxic shift in E.
coli, and two waves of active regulations during adipocyte
cell differentiation (Fig. 3). The authors concluded that
the method effectively reveals the dynamics of gene reg-
ulations. But the method does not have any procedure
how to determine the number of breakpoints and when
the breaks happen. Therefore, finding the breakpoint of
active gene expression control by this approach is some-
what subjective, and is undeniably influenced by already
known biological findings. In this research, we propose a
mechanical method that eliminates this subjectivity.

Table 1 Numbers of samples and variables in benchmark
problems for inferring causal relationship networks

Benchmark #Samples #Variables
Learning.test 5000 6
Cigaussian.test 5000 8

Asia 5000 8

Alarm 20000 37
Insurance 20000 27
Hailfinder 20000 56
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Fig. 3 Six waves and one calm period during adipocyte cell
differentiation. The tables show the strengths of the gene regulations
calculated by [45]. Eight genes are regulated by other genes, and the
strength changes between 0 and 196 h (white and red cells denote
low and high strengths of the gene regulation, respectively). The
period of each wave is also shown in the table. The left side of the
figure presents the active gene regulations in each wave. The waves
before and after the calm period correspond to the two waves
reported in [26]. This analysis was performed by Takenaka and
presented at Recomb 2016 [51]
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Method

We propose a method that analyzes the dynamics of
gene regulations from time-series gene expression pro-
files. Here, the dynamics of gene regulations take two
meanings. The first interpretation considers the dynam-
ics of each gene regulation; whether the control of gene
expression level by other genes is activated or inactivated
at each time point in the time-series data. The second con-
siders the dynamics of the gene regulatory network; the
periods and pairs of their start and end times. The peri-
ods (sometimes called states, waves, or phases) are often
biologically meaningful. The most well-known period is
the cell cycle, which has two states; interphase and cell
division. The interphase is divided into three sub-states
called phases (Gapl, Synthesis, and Gap2), each with sub-
phases. The cell cycle has four phases in total. Under these
dynamics, the number of periods in a cell cycle is not
fixed. The same situation occurs in other biological pro-
cesses. Therefore, determining the number of periods in
a biological process is a difficult task, and the dynamics
of the gene regulatory network are difficult to analyze,
especially in a manual analysis.

Notations

To analyze the dynamics of gene regulations in the two
interpretations by an automated approach, we formulate
the analysis as an optimization problem. The notations of
the formulation are listed below.

Exp : time-course gene expression profiles with | 7| time
points and |G| genes.

T :asetof time points in Exp. If i < j, thent; € T is
earlier than ¢; € T.

G :asetof genesin Exp.

M :atwo-dimensional matrix |G| x |T|, where M;; rep-
resents the intensity at which the expression of gene
g € G is controlled by others at time t; € T. M is
calculated from Exp by the method proposed in [45].

In our method, the activity of gene regulation is rep-
resented by a binary number, with 1 and 0 denoting
active and inactive, respectively. The notations of the
gene-regulation dynamics are explained below.

ag  :abinary vector of length | T'| representing the activ-
ityof geneg € Gattimet; € T.

Act :abinary matrix of size |G| x |T'|, where Act; equals
dag,.

Tra : a subset of |T| representing the breaks between
periods. For example, if Tra = {t3}, the system has
two periods; the first ending at #3 and the second
starting at t4. If Tra is an empty set, no transi-
tion of the gene regulation occurs throughout the

period.
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Score function
As previously mentioned, we analyze the dynamics of
gene regulations by solving the optimization problem,; that
is, by finding the most plausible dynamic model of the
gene regulations. This model is conditional on the activity
of each gene and the model complexity. Regarding the first
condition, a positive M;; indicates high likelihood of acti-
vating the gene g; at time point #;. The second conditional
expression describes the penalty term of the Bayesian
information criterion. Here, the complexity of the model
is defined as the number of periods in the model, which
deals with the trade-off between the goodness of fit to the
model and the tractability of the model.

To find a plausible model for M, we must optimize the
following score:

G| |7]
Score(Act) = » Y " My-Actjj—|Tral|-In(|G|-|T1), (1)
i=1 j=1

where Tra is calculated from Act. A time point ¢; € T is a
member of Tra if JjActy # Acti(jy1).

Algorithm
The algorithm that finds the most plausible dynamic
model of gene regulation is described below.

Input a Matrix M calculated from the gene expression
profile and a gene regulatory network by the method
in [45].
Output a Matrix Act, a set Tra, and a score.
Measure Maximize the score function Score(Act).
Variables
k: The integer k represents the number of breaks
between the periods in the model.
V: A set of binary vectors of length |T|. Each
element of V represents the activity of a gene regula-
tion.

step 1 Initialize k <— 0 and Tra < {}
step 2 Generate a set of vectors V' by the following sub-
steps.

(1) add a zero vector to V/
(2) add a one vector to V

step 3 scorey <— 0
step 4 for each g; € G, select a vector v € V that
maximizes the g; score in the following sub-steps.

(1) select avector vin V that maximizes M; - v/,
where M; is the i-th row of M.

(2) scorey += M; - V!

(3) insert vector v into the i-th row of Act;
Act; < v.

step 5 scorepesy <— scoreg; Actpesy <— Act; Trape < Tra
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step6 k += 1;If k = |T|, goto Step 9.
step 7 for each Tra = {t|t € T}, where |Tra| = k,

step 7-1 generate a set of vectors V as follows:

(1) for each period i of Tra, generate a set V; with
two elements; a zero vector and a unit vector
with lengths equal to that of the period.

(2) generate V as the direct product of all V;.

step 7-2 scorey < —2-k-In(|T| - |G])
step 7-3 for each g; € G, select a vector v € V that
maximizes the score by the following sub-steps.

(1) select a vector v in V that maximizes M; - v/,
where M; is the i-th row of M.

(2) scorex += M; -V

(3) insert vector v into the i-th column of Act;
Act; < v.

step 7-4 if scorey > Scorepes, SCOTepest <— Scoreg;
Actpesy < Act; Trapesy <— Tra.

step 8 if scorey > scorer_1, goto Step 6.
step 9 output Actpess, Trapess and scorepeg;.

The above algorithm is a brute-force search with poor
computational efficiency. However, as the gene expression
profile contains very few time points, the above algorithm
satisfies our requirements.

For larger datasets, the calculation time can be short-
ened by using a hash function from a gene and a period to
the sub-score. Meanwhile, the computational complexity
can be reduced by dynamic programming.

Results and discussion

The effectiveness of the proposed method was tested on
two biological datasets. The results of our method were
also compared with a manual analysis of the periods in
the time series. The first dataset contains the time-course
gene expression profiles during the diauxic shift from glu-
cose to lactose metabolism in E. coli. In this test, the
method was assessed by its ability to detect the time of the
diauxic shift.

The second dataset reports the adipocyte cell differen-
tiation in the house mouse Mus musculus. Two periods
(called waves in [26]) of gene regulation have been iden-
tified during this differentiation, and more waves are
expected. This test evaluated whether the method can
detect three or more plausible periods.

Diauxic shift

Material

The first dataset is the time-course gene expression pro-
file GSE7265 in the GEO dataset. The diauxic shift was
observed in E. coli MG1655 and isogenetic mutants
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cultured in a medium containing glucose and lactose [9].
The expression levels of the genes were measured in
oligonucleotide microarrays containing 70-base oligonu-
cleotide probes. The wild-type profile contains 17 time
points from 780 min. to 1089 min. after inoculation.
At each time point, the triplicated expression values
were averaged to obtain the representative expression
level.

The time points are divided into two phases; the first
lasting from 780 min. to 939 min., the second from 969
min.to 1089 min. The diauxic shift from glucose to lac-
tose has been recognized in the first half, but information
on the second half is completely lacking. Although the
GS2765 gene expression profile contains 17 time points,
the original paper [9] trimmed the profile to 10 time
points (830-939 min. post-inoculation), and reported the
growth ratio in the first half only. Therefore, the full
dynamics of the diauxic shift can only be surmised.

The gene regulatory network of the diauxic shift com-
prises 31 genes and 50 gene regulations [45]. Fourteen
enzymes are related to the glycolytic and lactose metabolic
pathways. According to RegulonDB [12, 13], the expres-
sion levels of the enzymes are controlled by 14 transcrip-
tion factors (TFs), and 50 TF-enzyme interactions are
known. The present study adopts the gene list and the
gene regulatory network used in [45].

The proposed method was implemented in R, and the
matrix M representing the intensities of the gene regula-
tions was calculated by an R package from GitHub https://
github.com/takenakayoichi/tacs. The computed matrix M
was input to the proposed method.

Results

The proposed method detected five periods during the
diauxic shift of wild type E. coli. The maximum score
during each period is tabulated in Table 2. Although the
proposed algorithm identified 6 periods, the maximum
score was recorded over 8 periods for reference. The score

Table 2 Maximum scores in each period of diauxic shift in E. coli
(central column) and differentiation to murine adipocytes (right
column) (maximum scores are in bold)

#Period Diauxic shift Adipocyte
1 16.42 1.50E-13
2 23.57 5038

3 26.23 70.30

4 28.00 74.76

5 28.44 7341

6 26.81 72.02

7 25.02 69.25

8 23.14 67.87
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peaks during Period 5 and the between-period break-
points are 878 min., 908 min., 999 min. and 1049 min.
The first, second and third periods belong to the first half
of the diauxic shift; the remainder belong to the second
half. The periods are also indicated by the vertical lines in
Fig. 4.

Takenaka et al. [45] manually detected three periods in
the GS2765 gene expression profile, with breakpoints at
approximately 888 — 908 min. and 1070 — 1089 min. The
breakpoints were expressed as ranges because they were
difficult to pinpoint by the manual approach. In their anal-
ysis, the first and second periods belonged to the first half
of the diauxic shift, and the third period belonged to the
second half.

First half

Our method divided the first half of the experiment into
three periods. Figure 4 shows the growth ratios in each
period. During the first and third periods, the E. coli
exist in the logarithmic growth phase and are consum-
ing glucose and lactose, respectively. The second period is
consistent with cessation of cell proliferation.

In comparison, the manual curation identified only two
periods in the first half. The division point was exactly
centered in the growth arrest period. From the difference
between our results and the manually curated results, we
can identify whether a mechanism that regulates the gene
expression level exists independently in the logarithmic
and growth-arrest phases.

Which of these methods expresses more realistic bio-
logical properties? Manual curation suggests that lactose
consumption begins immediately after glucose deple-
tion. On the other hand, the proposed method suggests
that once the glucose is depleted, the cells cease grow-
ing while seeking a new nutrient source, and resume
growth when an alternative nutrient is found. We con-
sider that the proposed method presents a more plausible
dynamic model than manual curation. One expects that
the E. coli cells cannot immediately access a new nutrition
source once the original source is depleted. If this were
possible, logarithmic growth would continue without
interruption.

Second half

The second half of the experiment was continuous in the
manual curation, but divided into two periods in the pro-
posed method. Once the E. coli had consumed the glucose
and lactose in their nutrient medium, they began seek-
ing the next nutrition source. When no further source
was found, the gene expression regulations changed suf-
ficiently for detection by both methods. However, as the
expression profile provides the only available information
in the second half, the actual number of periods in the
second half of the experiment is difficult to judge.
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Fig. 4 Expression levels of 31 genes (colored plots) and growth ratio (solid black line) during diauxic shift in E. coli. Vertical lines delineate the periods

Adipocyte differentiation

Materials

The second dataset was a time-course gene expression
profile of mouse adipocyte differentiation. The RNAs in
this dataset were collected from mouse ST2 bone marrow
stroma cell-derived stem cells (RCB0224) obtained from
the RIKEN BioResource Center (BRC, Tsukuba, Japan).
ST2 cells were induced by changing the medium from
RMPI1640 to DMEM supplemented with 10% FBS, 0.5
mM 3-isobutyl-1-methylxanthine (MIX), 0.25 uM DEX,

and with insulin-transferrin-selenium-X supplement con-
taining 5ug/ml of insulin and 1 uM rosiglitazone. After
48 hours, the differentiation medium was replaced with
DMEM supplemented with 10% FBS. The RNAs col-
lected at 62 time points during adipocyte differentiation
were measured using an Affymetrix GeneChip Mouse
Genome 430 2.0 Array. The time points were 0, 5, 15, 30
and 45 min., hourly from 1 to 30 h, and 6-hourly from
36 to 192 h after adipogenesis induction. Each datum
was background-subtracted and normalized in the robust
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Fig. 5 Expression Levels of 14 genes during murine adipocyte differentiation. Blue and red lines indicate the expression levels of genes belonging to
the first and second waves in Fig. 1, respectively. The red line with square markers plots the expression levels of pparg, a marker gene of adipose cells
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Intensitty of expression control

Fig. 6 Intensity of genes whose expression levels are controlled by other genes. Blue and red lines show the intensities of genes belonging to the
first and second waves in Fig. 1, respectively. The red line with square markers plots the intensity of pparg, a marker gene of adipose cells
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multi-array analysis (RMA). The gene expression profiles
are available from the Genome Network Platform [50].

Previous research has unveiled the important regula-
tors of adipocyte development and a two-wave cascade
in this process [26] (see Fig. 1). The network includes 24
regulations between 14 genes, but undetected sub-waves
have been predicted [26].

The expression levels of the 14 genes are shown in
Fig. 5. Among them, the line with square indicates pparg,
a known marker of adipocyte cells. The expression level
of pparg increases from 2 to 6 h and then decreases. The
decline is followed by a gradual rise after 14 h.

Figure 6 shows the intensities of the expression levels
controlled by other genes, which constitute the intensity
matrix M of our algorithm. The intensities were calculated
from the gene expression profiles in Fig. 5 and the gene
regulatory network in Fig. 1.

Result

The proposed method detected four periods of adipocyte
differentiation. The maximum score in each period is
listed in Table 2. The algorithm terminated after five
periods, but 8 periods are included for referencing pur-
poses. The score peaks during period 4, and the between-
period breakpoints are 2 h, 26 h and 72 h. Figure 7
shows the dynamics of the gene regulatory network. In the
figure, we classify the gene whose expression level during a
period is controlled by upstream genes or not by the aver-
age of the intensity during the period is larger than zero
or not.

The two waves of the known cascade in Fig. 1 appear
in the four periods detected by our algorithm. During the
first period of adipocyte differentiation, the expression
controls of the most upstream genes (Klf4 and Knox20)
are activated. During the second period, the expressions
of Cebpp and Cebpé are controlled and the regulations of
the second wave (Thro/8 and Srebp-1c) begin activating.
The pparg and cebpa genes are regulated during the third
period, and the most downstream genes are regulated
during the fourth period. The four-period differentiation
identified by our method includes the known waves, but
appears to be more precise.

The four periods detected by our method differ from
the two-wave differentiation in two ways. First, the reg-
ulations of Pparg and Cebpa are activated twice. Once
at the first period, and re-activated in the second wave
composed of third and fourth periods. Pparg is a marker
of adipose cells and a known regulator of adipocyte
differentiation. The two activations of the pparg gene are
confirmed in Fig. 5. The expression level of Pparg peaks
at 6 h and 114 h. Most of the gene expression regulations
are activated in the fourth period. By the start time of this
period (78 h), the cells will have produced lipid droplets
[52]. Therefore, we consider that the differentiation into
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adipocytes was completed during the fourth period, and
was stabilized thereafter. It appears that many regula-
tions of the adipocyte-related gene expression levels are
activated in the fourth period.

Conclusions
We proposed a method that detects the dynamics of gene
regulatory networks at the temporal resolution of single
time points in the underlying gene expression profiles.
The dynamics are modeled as periods of activated regula-
tions. The plausibility of the model was quantified using
the Bayesian information criterion. The problem consti-
tutes a combinatorial optimization problem that find the
highest-scoring model. The algorithm inputs the gene
expression profiles and a gene regulatory network, and
returns the activated regulations, divided into periods.
The effectiveness of the method was validated in two
datasets; the diauxic shift from glucose to lactose in E.
coli and adipocyte differentiation in the mouse. In both
datasets, the proposed method detected more plausible
dynamic models than existing models. We believe that
the proposed method can precisely reveal the dynamics of
biological systems.
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