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Abstract

Background: The application of high-throughput sequencing in a broad range of quantitative genomic assays (e.g.,
DNA-seq, ChIP-seq) has created a high demand for the analysis of large-scale read-count data. Typically, the genome
is divided into tiling windows and windowed read-count data is generated for the entire genome from which
genomic signals are detected (e.g. copy number changes in DNA-seq, enrichment peaks in ChIP-seq). For accurate
analysis of read-count data, many state-of-the-art statistical methods use generalized linear models (GLM) coupled
with the negative-binomial (NB) distribution by leveraging its ability for simultaneous bias correction and signal
detection. However, although statistically powerful, the GLM+NB method has a quadratic computational complexity
and therefore suffers from slow running time when applied to large-scale windowed read-count data. In this study,
we aimed to speed up substantially the GLM+NB method by using a randomized algorithm and we demonstrate here
the utility of our approach in the application of detecting copy number variants (CNVs) using a real example.

Results: We propose an efficient estimator, the randomized GLM+NB coefficients estimator (RGE), for speeding up
the GLM+NB method. RGE samples the read-count data and solves the estimation problem on a smaller scale. We first
theoretically validated the consistency and the variance properties of RGE. We then applied RGE to GENSENG, a
GLM+NB based method for detecting CNVs. We named the resulting method as “R-GENSENG". Based on extensive
evaluation using both simulated and empirical data, we concluded that R-GENSENG is ten times faster than the
original GENSENG while maintaining GENSENG’s accuracy in CNV detection.

Conclusions: Our results suggest that RGE strategy developed here could be applied to other GLM+NB based
read-count analyses, i.e. ChIP-seq data analysis, to substantially improve their computational efficiency while
preserving the analytic power.
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Background
High-throughput sequencing (HTS) has been used in a
range of genomic assays in order to quantify the amount of
DNA molecules (DNA-seq), or genomic regions enriched
for certain biological processes (ChIP-seq, DNase-seq,
FAIRE-seq) [1–4]. Typically, sequencing reads are first
aligned to the reference genome and a summary met-
ric is then defined per counting unit (e.g., a window)
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and used as a method of quantification in the subse-
quent comparative analysis. In DNA-seq, windowed read
counts, defined as the number of reads falling into con-
secutive windows of fixed size tiling the genome (e.g.,
200bp, 500bp), are used to detect regions of copy num-
ber changes (i.e., CNVs such as deletions and duplications)
[5–11]. Similarly, windowed read counts are used in ChIP-
seq, DNase-seq, and FAIRE-seq to detect regions with
strong local aggregations of mapped reads, referred to as
“enriched regions" [12, 13]. These windowed read counts
are by nature a series of counts, for which the negative-
binomial (NB) distribution has been shown to be the
suitable distribution in statistical modeling [10, 14–16].
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The NB model is flexible for modeling genomic read-
count data because its dispersion parameter allows a
larger variance and therefore is less restrictive than the
Poisson distribution. Further, via GLMs [17], the NB
model provides a powerful framework simultaneously
to account for confounding factors (e.g., genomic GC
content and mappability) and to determine the true
relationships between read-count signals and biological
factors [10].
A large number of statistical methods and software tools

have been developed to create GLM+NB models for ana-
lyzing genomic read-count data. For example, GENSENG
[10] was developed for detecting CNVs using DNA-seq;
ZINBA [16] for detecting enriched regions using ChIP-
seq, DNase-seq, or FAIRE-seq. However, while statisti-
cally powerful, GLM+NB methods encounter a big data
problem [18] when applied to whole-genome windowed
read count data with tens of millions of windows. Such
applications include detecting CNV from whole-genome
DNA-seq data [8, 10], detecting enrichment peaks from
whole-genome ChIP-seq data [19], and finding associ-
ation between histone modification or open chromatin
with DNA sequence content [20].
The iterative reweighed least square (IRLS) algorithm

is the standard approach used to fit GLMs [21]. The
complexity of IRLS algorithm is quadratic with respect
to the number of coefficients, and IRLS needs to be
run multiple times until it converges. The large com-
putation cost of GLM hinders the computational effi-
ciency of the GLM+NB methods when applied to large
scaled windowed read-count data. The popular methods
to tackle this problem include sampling (i.e. random-
ized algorithms) and distributed computing. Sampling
based methods intend to obtain analysis results com-
parable to full data sets analysis with smaller com-
putational cost by analyzing only a subset of the full
data sets [22]. The distributed computing based meth-
ods intend to perform the analysis in parallel on
distributed computation environment. Although the dis-
tributed computation environment is not uncommon in
many academic institutes, it is expensive to maintain
a cluster and the distributed computation environment
is not easily accessible to many other researchers, such
as those who work in companies. In this study, we
aimed to improve substantially the computational effi-
ciency of the GLM+NB methods by using a randomized
algorithm.
The randomized algorithm is a general computational

strategy that has been widely studied by multiple disci-
plines, such as theoretic computer science and numer-
ical linear algebra [23]. The basic idea is to sample a
subset of rows or columns from the input data matrix
and solve the problem on the sampled data with its
much reduced and manageable scale. The randomized

algorithm is asymptotically faster than existing determin-
istic algorithms and is faster in numerical implementation
in terms of clock time [23, 24]. This feature is especially
appealing with respect to the problem of GLM+NBmeth-
ods because of the quadratic computational complexity of
the IRLS algorithm [22, 25–31]. The choice of sampling
strategies used to select the data subset is important to
the performance of the randomized algorithm. Recent
analyses have evaluated the algorithmic and statistical
properties of various sampling strategies under regres-
sion models, including uniform sampling and weighted
sampling (a.k.a. probability sampling) [22, 32]. Uniform
sampling selects rows from the input data matrix uni-
formly at random, whereas weighted sampling selects
rows with probability proportional to its empirical sta-
tistical leverage score of the matrix. While both uniform
and weighted sampling strategies provide unbiased esti-
mates of the regression coefficients, the variance prop-
erties may vary depending on their applications [22].
In this study, we introduce RGE (randomized GLM+NB
coefficients estimator) as a viable approach for accel-
erating the GLM+NB-based read-count analysis. In the
application of RGE for CNV detection, we have chosen
the weighted sampling strategy, based on our empirical
evidence that it yields smaller estimation variance than
uniform sampling.
To illustrate the utility of RGE, we used a GLM+NB-

based CNV detection method GENSENG [10] as an
example and named the resulting RGE-GENSENG as “R-
GENSENG”. In a genome sequencing experiment, the
relationship between the windowed read-counts and the
underlying copy numbers is distorted by various sources
of bias. In order to accurately detect CNVs, the effects of
biases must be corrected and, if bias correction is inte-
grated into read-count analysis, the improvement in CNV
detection is more substantial than if the bias correction
is otherwise integrated [8, 10]. GENSENG implements a
hiddenMarkov model (HMM) and the GLM+NBmethod
to integrate bias correction and read-count analysis in
a one-step procedure. In GENSENG, the HMM emis-
sion probability describes the likelihood of the observed
read-count data and is computed as a mixture of uni-
form distribution and the NB regression model (a form of
GLM); therefore, this method simultaneously accounts for
multiple confounding factors (e.g., GC content and map-
pability) by including them as regression covariates and
the NB dispersion parameter accounts for the unknown
sources of bias.
As described below, we first evaluated the consistency

and the variance properties of RGE. We concluded that
RGE is a consistent GLM+NB regression estimator and
that its implementation using a weighted sampling strat-
egy yields smaller regression coefficients and estimated
variance than those obtained using a uniform sampling
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strategy. We then performed simulation and real-data
analysis to evaluate R-GENSENG and to compare it
with the original GENSENG.We concluded R-GENSENG
is ten times faster than the original GENSENG while
maintaining GENSENG’s accuracy in CNV detection.
Our results suggest that RGE and the strategy devel-
oped in this work could be applied to other GLM+NB
based read-count analyses to substantially improve their
computational efficiency while preserving the analytic
power.

Methods
In this section, we first introduce RGE’s critical statisti-
cal properties concerning consistency and variance and
then we introduce R-GENSENG. We evaluated the con-
sistency of RGE because RGE uses a subset of the data
points to estimate NB regression coefficients.We required
the sampling strategy applied in RGE yielding a non-
singular sampled matrix. Given such a sampling strategy
we show that, the resulting estimates converge in proba-
bility to the true coefficient values as the number of data
points used increasing indefinitely. We evaluated the vari-
ance of RGE because RGE applies a weighted sampling
strategy to select the subset of data and we wanted to
investigate the effects of the sampling strategy on the vari-
ance. Below we show that a weighted sampling approach
yields a smaller estimated variance than does a uniform
sampling strategy.

The consistency of RGE
Following notations, we summarize the main theory in
Theorem 1 and defer the detailed proof to the [see
Additional file 1].
We denote by X ∈ R

n×p the design matrix that is
composed of n rows and p columns, and y ∈ R

n the n-
dimensional response vector. Let xj = (

x1j, ..., xnj
)T be the

j-th column of X, and xi,j ∈ R be the element at the i-th
row and j-th column of X. Let XT be the transpose of X.
Let ‖v‖∞ be the maximum absolute value of the elements
of a vector v.
We consider the response vector y with all its elements

independently generated from an exponential family dis-
tribution with the density function

fn (y;X,β) ≡
n∏

i=1
f0 (yi; θi,ϕ) =

n∏

i=1

{
exp

[
yiθi − b(θi)

ϕ
+ c( yi,ϕ)

]}

where
{
f0 (yi; θi,ϕ)

}
is a distribution in the exponential

family with canonical parameter θi and GLM dispersion
parameter ϕ > 0.
A negative binomial distribution is in the exponential

family when its over-dispersion parameter φ is fixed. Let

ηi = xTi β = g(μi) = E(yi), where g is a link func-
tion. Given a log link function, ηi = g(μi) = log(μi), the
unknown p-dimensional vector of regression coefficients
β = (

β1, ...,βp
)T in the negative binomial model can be

estimated with the IRLS procedure. In step t of the proce-
dure the parameter β(t) is updated with the Fisher scoring
equation

[
XTW (t−1)X

]
β(t) = XTW (t−1)

[
Xβ(t−1) + ζ

]
, (1)

where W is a diagonal n × n matrix, with the i-th diag-
onal element wi = μi/(1 + μiφ), ζ is a vector of length
n, with the i-th element ζ i = (yi − μi) /μi. The NB over-
dispersion parameter φ is fixed in this step. The details
of the GLM-NB estimation are described in Additional
file 1, page 1, Section 1.1. In each step, after β is estimated,
the NB over-dispersion parameter can be then estimated
with fixed β . The estimation of φ with fixed coeffi-
cients is described in Additional file 1, page 9, Section
2.4.8. The randomized approach applies when coeffi-
cients are estimated by fixing the NB over-dispersion
parameter φ.
Let β0 = (

β01, ...,β0p
)
be the coefficients of Eq. (1)

updated with the full data, we will show that there exists a
solution that is inside the hypercube of β0 using sampled
data.
Let the sampling indicator for the i-th entry, i = 1, ..., n

be

mi =
{
1 if i-th entry is sampled,
0 otherwise.

For equation

f (β) = X̄T (
m ◦ X̄β

) − X̄T(m ◦ ȳ), (2)

where X̄ = XW 1/2
(t−1), ȳ = W 1/2

(t−1)z is a known vector
of length n with zi = xiβ(t−1) + (yi − μi)/μi, ◦ is the
Hadamard (component wise) product, we have

Theorem 1 For sufficient large n, there exists a solution
β̂ ∈ R

p for Eq. (2) of X̄T (
m ◦ X̄β

) − X̄T(m ◦ ȳ) = 0 inside
the hypercube

N0 =
{
δ ∈ R

p : ‖δ − β0‖∞ ≤ dn = O(n−γ0
√
log n)

}
,

assuming the sampled matrix X̄Tdiag (m) X̄ is not sin-
gular, dn ≡ 2−1 min1≤j≤p

{|β0j|
} = O

(
n−γ0

√
log n

)
for

some γ0 ∈ (0, 1/2).

The variance of RGE
RGE applies a weighted sampling strategy since this
approach potentially yields an estimated variance which is
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smaller than that obtained using uniform sampling. Using
a one-way NB regression model as an example, we evalu-
ated and compared the inverses of the Fisher information
matrix between RGE’s weighted sampling and uniform
sampling.
The co-variance matrix of the maximum likelihood esti-

mator (MLE) β is the inverse of the Fisher information
matrix−E

(
∂2	
∂β2

)
. The Fisher information matrix is a p×p

matrix, and its (j, k)-th element equals to

−E
(

∂2	

∂βj∂βk

)
=

n∑

i=1

μ2
i

Var(yi)
xijxik ,

if the link function is the log function.
We illustrate the method using a simple one-way NB

regression model: log(μ) = β0 + β1(CN), where the link
function is the log link function, μ is the mean value
of read-count, β0 is the intercept, and β1 is the coeffi-
cient of the copy number CN. The CN measurements take
three values: 0 for deletions, 1 for copy number neutral,
and 2 for duplications. This model includes the general
characteristics of the read-count analysis: a biological fac-
tor (e.g., copy number in CNV detection, or chromatin
state in ChIP-seq) with three states including one state
representing the baseline (e.g., copy number neutral) and
two states representing the bidirectional differences from
the baseline (e.g., deletions and duplications). In real-life
applications, it is important to account for potential con-
founding factors (such as mappability, GC content etc.)
in read count analysis [10, 16]. Confounding factors can
be incorporated into this model by fitting all those terms
together and then using them as the offset (i.e. fixing the
coefficients of those terms).
Under this regression model, the Fisher information

matrix is a 2× 2 matrix including the intercept. The (1, 1)
element is

∑n
i=1

1
Var(yi) , the (1, 2) and the (2, 1) elements

are
∑n

i=1
1

Var(yi)xi, and the (2, 2) element is
∑n

i=1
1

Var(yi)x
2
i ,

where xi is the copy number of the i-th observation. The
inverse of a 2 × 2 matrix could be obtained analytically.
Here we are interested in the variance of the coefficient
of the copy number, which is the (2, 2) element of the
inverse matrix. Define p1 as the probability of deletion
event happening, p2 as the probability of copy number
neutral happening, and p3 as the probability of duplication
happening. With the log link function, the (2, 2) element
equals

p1r + p2s + p3t
n (p1p2rs + 4p1p3rt + p2p3st)

, (3)

where r = (
e−β0 + φ

)−1, s = (
e−β0−β1 + φ

)−1, and t =
(
e−β0−2β1 + φ

)−1.
From Eq. (3) we find that when the uniform sampling

is applied, p1, p2 and p3 would be the same in the sam-
pled rows, but nwould be smaller depending on the size of

the sample. As a result, the variance would become larger.
For example, if we uniformly sample 10% of all rows, the
variance would be 10 times larger. Thus, the coefficients
estimated from the sampled data have larger variances
than using the full data.
We next compare the uniform sampling strategy with

the weighted sampling strategy used in RGE by finding
the minimum solution of Eq. (3) (i.e., the distribution of
p1, p2 and p3 in the sampled data which yielded a mini-
mum variance given the same sample size). We list below
the Karush-Kuhn-Tucker (KKT)-conditions for minimiz-
ing Eq. (3), subject to constraints. First, the objective
function under the KKT-conditions is

p1r + p2s + p3t
n (p1p2rs + 4p1p3rt + p2p3st)

+ λ (1 − p1 − p2 − p3) − μ1p1 − μ2p2 − μ3p3,
where λ and μ1, μ2, and μ3 are KKT multipliers. And the
necessary conditions for the minimum solution are
Stationarity

r(p2s+2p3t)2
n(p1p2rs+4p1p2rt+p2p3st)2

= λ + μ1,
s(p1r−p3t)2

n(p1p2rs+4p1p2rt+p2p3st)2
= λ + μ2,

t(p2s+2p1r)2
n(p1p2rs+4p1p2rt+p2p3st)2

= λ + μ3.

Primal feasibility and Dual feasibility

p1 + p2 + p3 = 1,
p1 ≥ 0, p2 ≥ 0, p3 ≥ 0,
μ1 ≥ 0,μ2 ≥ 0,μ3 ≥ 0.

Complementary slackness

μ1p1 = 0,μ2p2 = 0,μ3p3 = 0.

Three possible solutions satisfy the KKT conditions.

Solution1
p1 = 0, p2 =

√
st√

st+s , p3 =
√
s√

s+√
t ,

objective function = (
√
1/s+√

1/t)2

n

Solution2
p1 =

√
t√

r+√
t , p2 = 0, p3 =

√
rt√

rt+t ,

objective function = (
√
1/r+√

1/t)2

4n
Solution3
p1 =

√
s√

r+√
s , p2 =

√
rs√

rs+s , p3 = 0,

objective function = (
√
1/r+√

1/s)2

n
The objective function introduced above describes the

scale of the inverse of the Fisher information matrix (i.e.,
the scale of the estimated variance).We thus want to know
when the minimal solution of the objective function could
be achieved. Within the setting, log(μ) = β0 + β1(CN),
where CN is the copy number from 0,1,2. In this case,
when CN = 0 (deletion), β0 = log(μ), where μ is the
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expected read count for copy deletion, thus β0 ≥ 0. The
read count will increase with the copy number in a lin-
ear manner (i.e., the read count of the copy number two
region should be about twice the read count of the copy
number one region), which suggests that the coefficient
for CN β1 should be close to 1. Given β0 ≥ 0 and β1 
 1,
we have 1/r < 1/s < 1/t, and it is straightforward to
see solution 3 is smaller than solution 1. We next com-
pare solution 2 with solution 3. With a reasonable μ =
0.1, we numerically solve the equation

(√
1/r+√

1/t
)2

4 <
(√

1/r + √
1/s

)2 using the symbolic equation function in
Matlab and conclude that solution 2 is the minimal solu-
tion. In solution 2, p2 = 0, which means that the variances
obtained using sampled data will be minimized when only
the rows representing CNVs are sampled.
The variance studies above show that (1) the regres-

sion coefficients estimated from the sampled data have
a larger variance than using the full data; (2) the vari-
ances using the sampled data will be minimized when
only the rows representing true CNVs (“CNV-rows" here-
after) are sampled. In the CNV detection problem, we
do not have information regarding which rows are CNV-
rows, but we can obtain the probability that each row
represents a true CNV given the observed read-count
data (e.g., the hidden Markov model posterior probabil-
ity computed from GENSENG). Recent surveys of genetic
variation found that there are >1000 CNVs in the human
genome, accounting for∼ 4million bp or 0.1% of genomic
difference at the nucleotide level [5, 33–35]. We there-
fore expect that CNV-rows are rare (<1%) in the input
read-count data matrix. By assigning higher sampling
probability to rows with higher probability of being CNV-
rows, we would samplemore CNV-rows than we would by
using uniform sampling with equal probabilities. Conse-
quently, we expect that this weighted sampling (weighted
by the HMM posterior probability of a specific row
being a CNV-row) would yield smaller variances of the
coefficient estimates than a uniform sampling approach
would obtain. We thus have chosen to use a weighted
sampling strategy in the application of RGE to CNV
detection.

Applying RGE to speed up CNV detection
In this section, we demonstrate an example usage of RGE
to speed up GENSENG, a GLM+NB based CNV detec-
tion method from read-count data of germline samples.
GENSENG implements an HMM method. The underly-
ing copy number is the hidden state variable, which emits
probabilistic observations (i.e., the windowed read-count
data). The main feature and advantage of GENSENG [10]
is its ability simultaneously to segment read-count data
and to correct the effect of confounders by fitting a NB
regression in the HMM emission probability [10]. The

NB regression model has the windowed read-counts as
the response variable, copy number as the independent
variable, and known confounders GC-content and map-
pability as covariates. GC-content is computed as the pro-
portion of G or C bases in each window in the reference
genome; andmappability is computed as the proportion of
bases that can be uniquely aligned to the reference given
a specific read length. Given the HMM setup, GENSENG
applies the Baum-Welch algorithm [36] to estimate iter-
atively the most likely copy number for each window. In
the Estimation step, it calculates the emission probability
from the regression coefficients estimated in the previ-
ous round, while in the Maximization step it runs IRLS to
estimate NB regression coefficients. RGE is implemented
in the Maximization step such that only the sampled
data of much reduced scale will be passed on to IRLS
for estimating the NB regression coefficients. After each
round of the Estimation-Maximization (E-M) iteration,
the Baum-Welch algorithm generates the posterior prob-
ability of a window belonging to different copy numbers
for each window. The iterations end when the algorithm
converges. The GENSENG framework then assigns the
copy number with the largest posterior probability to each
window as the most likely copy number.
Algorithm 1 details R-GENSENG - the integration of

RGE with GENSENG. In the equations below, y is the
response variables vector (i.e., the read-counts in each
window); X is the design matrix (i.e., copy number and
covariate values in each window); A ∈ R

n×m is the poste-
rior probabilities matrix with nwindowns andm states. aij
is the posterior probability that the i-th window belonging
to the j-th state; q ∈[ 0, 1] is the proportion of the sam-
ple size to the entire size. RGE samples the rows using
a weighted approach by assigning a sampling probabil-
ity h ∈[ 0, 1] to the i-th window if it is a copy number
variation window according to pi; otherwise RGE assigns
1 − h to it as the sampling probability. To illustrate RGE
in this study, we used a heuristic technique to choose a
fixed value of h = 0.99 or a downsampling rate of 1%,
which is inspired by the CNV domain knowledge that
less than 1% of windows have CNV. In real-life applica-
tions, the downsampling rate could be considered as a
parameter for optimization, where runtime and sensitiv-
ity of RGE can be evaluated at a series of values of h and
an optimal choice can then be made based on users spe-
cific needs on the runtime and sensitivity trade-off. Note
that the weights are the posterior probabilities, which are
available in each round of HMM inference, so there is
no extra cost to obtain the weights. After sampling the
reduced size data X′ and y′, an IRLS algorithm is applied
to estimate the NB regression coefficients β̂ from X′ and
y′ as an approximation of coefficients estimated from X
and y. β̂ will be used in the next round Estimation step in
GENSENG.
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Algorithm 1: Algorithm to integrate RGE with
GENSNEG
Data: X ∈ R

n×p, y ∈ R
n, A ∈ R

n×m, q, h ∈[ 0, 1]
Result: β̂
initialize a weights vector with length n all 0
w =< w1, ...,wn >;
for i = 1 to n do

if the largest item in ai represents copy number
variation then

wi = h;
else

wi = 1 − h;
end if
s = nq;
repeat

generate random number v ∈ (0, 1);
sample idx row if v < wi;

until s rows in X has been sampled;
denote sampled rows of the designed matrix as
X′ ∈ R

s×p, sampled response vector as y′ ∈ R
s;

estimate β̂ using the standard IRLS algorithm
from GLM regressions with input X′ and y′;

end for

Results and discussion
We conducted simulation and real data analyses to val-
idate the statistical properties of RGE and to evaluate
R-GENSENG’s performance (compared with GENSENG)
for CNV detection.

Validation of RGE’s statistical properties
We studied two properties of RGE. In the consistency
study, we claim that the regression coefficients estimated
by RGE will converge asymptotically at their true values.
In the variance study, we claim that the weighted sampling
used in our RGE yields a smaller estimated variance than
that obtained using uniform sampling. In this section, we
describe the empirical validation of these two properties
using simulation.
We first simulated a series of read count data, each of

which follows the NB distribution and is affected by the
copy number variable and the covariates as described in
the following NB regression model.

log(μ) = β0 + β1 log(CN) + β2 log(l) + β3 log(gc) (4)

where μ is the mean value of the read count data, CN
is the copy number, l is the mappability score, gc is the
GC content and the link function is the log link func-
tion [10]. We first generated the design matrix where each
row represents a window and each of its three columns

represents corresponding values for l, gc, and CN. To gen-
erate the covariate values, we used the chromosome 1 of
the human reference genome (NCBI37) as the template
and calculated the GC content and mappability in 106
non-overlapping windows of 200bp in size (see Additional
file 1). To generate the copy number values, we randomly
selected 1% of the windows to be deletions (copy number
0 or 1) or duplications (copy number 3 to 6) and assigned
the remaining 99% of windows to have copy number 2 (i.e.,
copy number neutral).We set the values of the coefficients
β1,β2,β3 as 1,1 and 0.55 based on our experience.We then
passed the design matrix (106 rows and 3 columns) and
the coefficients to the garsim function from R/gsarima
to simulate read-count data with the mean of the NB
regression following Eq. 4.
We next applied RGE to the simulated read-count data

using two sampling proportions: 10% and 50%. Given each
sampling proportion, we ran RGE 200 times. In each run,
RGE sampled a subset of the data and returned coefficient
estimates using the sampled data. By studying the distri-
bution of the coefficient estimates from 200 replication
runs, we can evaluate the convergence and the variance
properties of RGE. To demonstrate the improvements
RGE furnishes, we compared the coefficient estimates
obtained by RGE to those by several alternative strate-
gies: 1) the ground truth coefficients < 1, 1, 0.55 >; 2) the
coefficients estimated using the entire dataset; and, 3) the
coefficients estimated using a uniformly sampled subset of
the data.
The results from our simulation study are summarized

in Fig. 1. We observe that 1) the RGE estimates converge
at the ground truth, and 2) RGE yields a smaller estimated
variance than does the uniform sampling subset. These
results strongly support our claim that RGE is a consistent
estimator with the desired variance property. Note that
although the simulation experiments above were in CNV
detection background, the conclusions are applicable in
the more general GLM+NB based read-count analyses.

R-GENSENG performance evaluation
Given the consistency and variance properties of RGE,
we expect that R-GENSENG would be much faster
than GENSENG while maintaining GENSENG’s accu-
racy in CNV calling. We carried out analyses on simu-
lated and real data to evaluate empirically R-GENSENG’s
performance.

Simulation study
The simulation study mimics a real-world scenario where
we aim to detect CNVs from paired-end sequencing data
generated from a CNV-containing chromosome. First,
we created an artificial CNV-containing chromosome by
implanting 200 CNVs into the chromosome 1 of the
human reference genome (NCBI37). An implanted CNV
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Fig. 1 Simulation results for evaluating the RGE coefficient estimates
on CN. The x-axis: sampling proportion; the y-axis: CN coefficient
estimates. The ground truth is 1 at the y-axis. Boxplots are used to
summarize the distributions of the coefficient estimates from 200
replication runs for each sampling strategy. The blue bars represent
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and 0.5. The green bars represent RGE (uniform sampling) given the
sampling proportion (x-axis) 0.1 and 0.5. The segment at the
x-axis-value of 1 represents the coefficient estimates using the entire
dataset

is specified by its starting position (start_pos), ending
position (end_pos) and type (duplication or deletion). To
implant a duplication, we copied the base pairs within
the affected region (start_pos to end_pos) immediately
next to the affected region to create a tandem dupli-
cation. To implant a deletion, we removed the base
pairs in the affected region similarly. Among the 200
CNVs, there were 119 deletions and 81 duplications.
Among the implanted CNVs, there were 20 small CNVs
(<1kbs), 86 median-size CNVs (between 1k and 3k bps),
and 94 large CNVs (>3kbs). Next, we used the artifi-
cial chromosome as a template and applied wgsim, a
sequencing simulator (part of the SAMTools) [37], to
generate 100bps paired-end reads from the template. A
total of 50 million paired-end reads were simulated
yielding a sequencing coverage of 40x. The simulated
reads were then aligned to the original chromosome 1
(NCBI37) to obtain the .bam file. Next, we divided the
original chromosome 1 (NCBI37) into non-overlapping
windows and computed read-count in each window.
We chose four window sizes (i.e., 100bps, 200bps,
500bps, and 1000bps) to generate four sets of read-
count data. Finally, we applied both GENSENG and R-

GENSENG to each of the four read-count datasets. For
R-GENSENG, we choose 0.99 for the sampling parameter
h based on the fact that less than 1% of windows have
CNV.
Using the implanted CNVs as the ground truth, we

calibrated the sensitivity and false discovery rate (FDR)
of R-GENSENG in comparison to GENSENG. Following
[10], a true discovery is a reported CNV that satisfies two
conditions: 1) having ≥ 50% reciprocal overlap with the
ground truth CNV, and 2) having the same type (deletion
or duplication) as the ground truth CNV. The sensitivity is
calculated as the total number of true discoveries divided
by the total number of ground truth CNVs. Similarly, a
false discovery is a reported CNV that satisfies two con-
ditions: 1) having < 50% reciprocal overlap with a ground
truth CNV, and 2) having the same type (deletion or dupli-
cation) as the ground truth CNV. The false discovery
rate is calculated as the total number of false discover-
ies divided by the total number of reported CNVs. We
compared the sensitivities and FDRs between GENSENG
and R-GENSENG. The results are summarized in Tables 1
and 2.
In summary, the sensitivities of R-GENSENG are lower

than that of GENSENG in all situations (i.e., different win-
dow sizes or different CNV types), but the differences
in their sensitivities are small (< 5% in all situations).
These results suggest that R-GENSENG has comparable
sensitivity with GENSENG. For read-count-based meth-
ods, the size of the windows is a tuning parameter [38].
Typically, as the window size gets larger relative to the
size of the CNVs, it becomes more difficult to detect the
CNVs. Our simulation results show that, when window
size <1000bps, the sensitivities of both GENSENG and R-
GENSENG were greater than 80%, whereas when window
size was equals to 1000bps, it was hard to detect the small
to median size CNVs, resulting in reduced sensitivities
(<65%).
The FDRs of R-GENSENG are higher than the FDRs

of GENSENG in all situations (i.e., different window
size or different CNV type), but the differences in their
FDRs are also small (< 4.3% in all situations). These
results suggest that R-GENSENG has a comparable FDR
with GENSENG. In most of the situations (when win-
dow size>100bps), the FDRs of both GENSENG and
R-GENSENG are small (< 10%). When the window size
is small (<100bps), both GENSENG and R-GENSENG
have a relative higher FDR (> 10%), presumably because
it is more difficult to distinguish noise from true signal,
especially for small CNVs.
In summary, our simulation study concluded that R-

GENSENG has performance comparable to GENSENG
in terms of sensitivity and FDR, and that both R-
GENSENG and GENSENG are high in sensitivity and low
in FDR.
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Table 1 Sensitivity comparison between GENSENG and R-GENSENG

Window
Methods comparison (G:GENSENG,R:R-GENSENG)

Total CNV Deletion Duplication

Size G R G R G R

100bps
188/200 187/200 112/119 112/119 76/81 75/81

94% 94% 94% 94% 94% 93%

200bps
187/200 183/200 111/119 111/119 76/81 72/81

94% 92% 93% 93% 94% 89%

500bps
169/200 168/200 99/119 99/119 70/81 69/81

85% 84% 83% 83% 86% 85%

1000bps
125/200 121/200 78/119 75/119 47/81 46/81

63% 61% 66% 63% 58% 57%

Real data analyses
To further evaluate the relative performance of R-
GENSENG, we applied R-GENSENG and GENSENG
to the whole-genome sequencing data from three
HapMap individuals sequenced as part of the 1000
Genomes Project [34, 35] (1000GP FTP sites: https://
ftp.ncbi.nlm.nih.gov/1000genomes/ftp/pilot_data/data/).
Specifically, the CEU parent-offspring trio of Euro-
pean ancestry (NA12878, NA12891, NA12892), were
sequenced to 40X coverage on average using the Illu-
mina Genome Analyzer (I and II) platform. Sequencing
reads were a mixture of single-end and paired-end
with variable lengths (36bp, 51bp) and were aligned
to the human reference genome NCBI37. The com-
plete genome sequence data were obtained in the
form of .bam alignment files from the 1000 GP FTP
sites.
We focused on analyzing the 22 autosomes. Read quality

control and input data preparation was done as previously
described [10] (see Additional file 1). For each individ-
ual genome, we computed four sets of input data based
on a varying window size of 100bps, 200bps, 500bps, and
1000bps.

First, we evaluated the running time of R-GENSENG
compared to GENSENG, using four different window
sizes (100bps, 200bps, 500bps and 1000bps) and corre-
sponding numbers of windows 25 million, 12.5 million, 5
million, and 2.5 million. The running time includes the
time to read the input, the inference time, and the the
time to write output to disk. The time to generate the read
count data, which is the same between R-GENSENG and
GENSENG, is excluded. We recorded the running time
on inference in seconds for each sample and averaged
the running time among the three samples. We com-
pared the average running time between GENSENG and
R-GENSENG across varying window sizes in Fig. 2. From
Fig. 2 we find that: 1) R-GENSENG is nearly one order of
magnitude faster than GENSENG across all window sizes;
and, 2) when the window size is small (100bps) and the
scale of the data is huge (25 million windows), the reduc-
tion in running time with AS-GENSENG is remarkable
(i.e., R-GENSENG uses 6 hours but GENSENG uses 60
hours).
Next we evaluated the relative accuracy of R-GENSENG

for CNV calling. We had evaluated previously the accu-
racy of GENSENG using the same data [34, 35] and

Table 2 FDR comparison between GENSENG and R-GENSENG

Window
Methods comparison ((G:GENSENG,R:R-GENSENG))

Total CNV Deletion Duplication

Size G R G R G R

100bps
18/206 28/215 10/122 16/128 8/84 12/87

8.7% 13.0% 8.2% 12.5% 9.5% 13.8%

200bps
10/197 14/197 3/114 5/116 7/83 9/81

5.1% 7.1% 2.6% 4.3% 8.4% 11.1%

500bps
5/174 7/175 0/99 0/99 5/75 7/76

2.9% 4% 0% 0% 6.7% 9.2%

1000bps
0/125 4/125 0/78 0/75 0/47 4/50

0% 3.2% 0% 0% 0% 8%

https://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/pilot_data/data/
https://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/pilot_data/data/
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compared GENSENG to the best performing read-count-
based method CNVnator [8]. We found that GENSENG
had a sensitivity of 50% averaged over the three samples,
which is better than CNVnator ( 10% higher sensitiv-
ity and comparable specificity) [10]. In this study, we
use the CNV calls from GENSENG as the benchmark
data, intersected the CNV calls from R-GENSENG with
that of GENSENG (using a 50% reciprocal overlapping
condition), and reported the proportions of GENSENG
calls overlapped by R-GENSENG. The results are sum-
marized in Table 3. Given the consistency and variance
properties demonstrated in the previous Sections, we
expected that R-GENSENG would be highly concordant
with GENSENG calls. From Table 3, we found that the
overlapping proportions are >0.92 for most cases, which
is acceptable when speed is a concern. The only sce-
nario when the discrepancy can be high (18%) is when

Table 3 The proportions of GENSENG calls overlapped by
R-GENSENG calls

Window Size NA12878 NA12891 NA12892

100bps 0.95 0.84 0.82

200bps 0.92 0.95 0.93

500bps 0.98 0.98 0.97

1000bps 0.97 0.97 0.97

the window size is 100bp. However, modern day sequenc-
ing technologies use reads that are more than100bp and
therefore a window-size of 100bp will never be used in
practice (window size must be at least 2 times of the read
length).
In summary, R-GENSENG runs much faster than

GENSENG while preserving the accuracy of GENSENG
in CNV calling.

Conclusions
A variety of genomic assays have adopted the HTS
technologies to quantify the amount of molecules
or enriched genome regions in the form of read-
count data. However, while the GLM+NB based meth-
ods provide a statistically powerful tool to discover
the true relationship between biological factors from
the read count data, the computational bottleneck of the
GLM+NB methods hinders their application to large-
scale genomic data. In this study, we have proposed an
efficient regression coefficients estimator, RGE, to accel-
erate substantially the estimation procedure. Based on
a randomized algorithm, RGE selects a subset of data
with remarkably reduced size and estimates the regres-
sion coefficients based on the data subset. We have
shown both theoretically and empirically that RGE is
statistically consistent and yields a low variance. As
a demonstration of the application of RGE to exist-
ing GLM+NB methods, we also introduced the algo-
rithm to embed RGE in the read-count based CNV
detection framework GENSENG [10]. The resulting R-
GENSENG method not only runs much faster than
GENSENG but also keeps GENSENG’s CNV calling accu-
racy, based on both simulation and empirical studies.
Comparing R-GENSENG with GENSENG, R-GENSENG
is almost identical to GENSENG except for applying
the RGE to estimate the sub-optimal regression coeffi-
cients estimator in each round of the iteration. As we
have demonstrated, R-GENSENG is much faster than
GENSENG but has a slight deficiency in terms of the
accuracy. For applications using large-scale windowed
read count data, such as whole-genome CNV detec-
tion with DNA-seq data, peak detection with ChIP-
seq data and genome-wide epigenetic studies, we rec-
ommend using the randomized approach when the
speed/computation cost is a concern. The randomized
approach is not appropriate for RNA-seq data analysis,
where reads are counted using a gene as the count-
ing unit and differential analysis is done gene by gene
[14, 15, 39–43].

Additional file

Additional file 1: Proof of Theorem 1 and descriptions of the GLM+NB
HMMmodel. (PDF 301 kb)

https://doi.org/10.1186/s12859-018-2077-6


Wang et al. BMC Bioinformatics  (2018) 19:74 Page 10 of 11

Abbreviations
CNV: Copy-number variants; GLM: Generalized linear models; HTS:
High-throughput sequencing; NB: Negative-binomial; RGE: Randomized
GLM+NB coefficients estimator

Acknowledgements
Not applicable.

Funding
JPS was funded by the National Institutes of Health (No. K01MH093517,
R21MH104831). WS was funded by the National Institutes of Health (No.
R01GM105785). WW was funded by the National Science Foundation (Nos.
IIS1313606, DBI1565137) and by the National Institutes of Health (Nos.
R01GM115833, U01CA105417, U01CA134240, MH090338, and HG006703).

Availability of data andmaterials
The datasets analysed during the current study are available in the 1000GP
repository, https://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/pilot_data/data/,
[34, 35]. The source codes of R-GENSENG are freely available at https://
sourceforge.net/projects/genseng/.

Authors’ contributions
WBW developed the model, created software package, performed the analysis
and wrote the paper and Additional file 1. WS provided support with
developing the model, performing the analysis, and reviewed the manuscript.
WW provided support with performing the analysis and reviewed the
manuscript. JPS directed the project, provided support with performing the
analysis, and wrote the paper. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, University of North Carolina at Chapel Hill,
201 S. Columbia St., 27599-3175 Chapel Hill, USA. 2Biostatistics Program, Fred
Hutchinson Cancer Research Center, 1100 Fairview Ave N, 19024 Seattle, USA.
3Department of Computer Science, University of California, Los Angeles, 580
Portola Plaza, 90095-1596 Los Angeles, USA. 4Department of Genetics,
University of North Carolina at Chapel Hill, 120 Mason Farm Road, 27599-7264
Chapel Hill, USA.

Received: 9 July 2017 Accepted: 20 February 2018

References
1. Wheeler DA, Srinivasan M, EgholmM, Shen Y, Chen L, McGuire A, He W,

Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL,
Irzyk GP, Lupski JR, Chinault C, Song X.-z, Liu Y, Yuan Y, Nazareth L, Qin X,
Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM. The
complete genome of an individual by massively parallel DNA sequencing.
Nature. 2008;452(7189):872–6. https://doi.org/10.1038/nature06884.

2. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J,
Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J,
Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA,
Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS,
Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IMJ,
Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A,
Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS,
Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC,

Bailey DMD, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA,
Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS,
Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC,
Carter NP, Castillo N, Chiara E Catenazzi M, Chang S, Neil Cooley R,
Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B,
Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M,
Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ,
Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF,
Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM,
Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA,
Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z,
Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X,
Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG,
McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling
Ng B, Novo SM, O’Neill MJ, Osborne MA, Osnowski A, Ostadan O,
Paraschos LL, Pickering L, Pike AC, Pike AC, Chris Pinkard D, Pliskin DP,
Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A,
Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A,
Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM,
Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL,
Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N,
Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y,
Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L,
Zuerlein M, Rogers J, Mullikin JC, Hurles ME, McCooke NJ, West JS,
Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ. Accurate
whole human genome sequencing using reversible terminator
chemistry. Nature. 2008;456(7218):53–9.

3. McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF,
Clouser CR, Duncan C, Ichikawa JK, Lee CC, Zhang Z, Ranade SS,
Dimalanta ET, Hyland FC, Sokolsky TD, Zhang L, Sheridan A, Fu H,
Hendrickson CL, Li B, Kotler L, Stuart JR, Malek JA, Manning JM,
Antipova AA, Perez DS, Moore MP, Hayashibara KC, Lyons MR,
Beaudoin RE, Coleman BE, Laptewicz MW, Sannicandro AE, Rhodes MD,
Gottimukkala RK, Yang S, Bafna V, Bashir A, MacBride A, Alkan C, Kidd JM,
Eichler EE, Reese MG, De La Vega FM, Blanchard AP. Sequence and
structural variation in a human genome uncovered by short-read,
massively parallel ligation sequencing using two-base encoding.
Genome Res. 2009;19(9):1527–41.

4. Minoche AE, Dohm JC, Himmelbauer H. Evaluation of genomic
high-throughput sequencing data generated on Illumina HiSeq and
Genome Analyzer systems. Genome Biol. 2011;12(11):112.

5. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and
genotyping. Nat Rev Genet. 2011;12(5):363–76. https://doi.org/10.1038/
nrg2958.

6. Medvedev P, Stanciu M, Brudno M. Computational methods for
discovering structural variation with next-generation sequencing. Nat
Methods. 2009;6(11 Suppl):13–20. https://doi.org/10.1038/nmeth.1374.

7. Medvedev P, Fiume M, Dzamba M, Smith T, Brudno M. Detecting copy
number variation with mated short reads. Genome Res. 2010;20(11):
1613–22. https://doi.org/10.1101/gr.106344.110.

8. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to
discover, genotype, and characterize typical and atypical CNVs from
family and population genome sequencing. Genome Res. 2011;21(6):
974–84. https://doi.org/10.1101/gr.114876.110.

9. Heinzen E, Feng S, Maia J, He M, Ruzzo E, Need A, Shianna K, Pelak K,
Han Y, Goldstein D, Gumbs C, Singh A, Zhu Q, Ge D, Cirulli E, Zhu M.
Using ERDS to Infer Copy-Number Variants in High-Coverage Genomes.
2012;91(3):408–421. https://doi.org/10.1016/j.ajhg.2012.07.004.

10. Szatkiewicz JP, Wang W, Sullivan PF, Wang W, Sun W. Improving
detection of copy-number variation by simultaneous bias correction and
read-depth segmentation. Nucleic Acids Res. 2013;41(3):1519–32. https://
doi.org/10.1093/nar/gks1363.

11. Jiang Y, Oldridge DA, Diskin SJ, Zhang NR. CODEX: A normalization and
copy number variation detection method for whole exome sequencing.
Nucleic Acids Res. 2015;43(6):39. https://doi.org/10.1093/nar/gku1363.

12. Rashid NU, Giresi PG, Ibrahim JG, Sun W, Lieb JD. ZINBA integrates local
covariates with DNA-seq data to identify broad and narrow regions of
enrichment, even within amplified genomic regions. Genome Biol.
2011;12(7):67. https://doi.org/10.1186/gb-2011-12-7-r67.

13. Laird PW. Principles and challenges of genomewide DNA methylation
analysis. Nat Rev Genet. 2010;11(3):191–203. https://doi.org/10.1038/
nrg2732.

https://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/pilot_data/data/
https://sourceforge.net/projects/genseng/
https://sourceforge.net/projects/genseng/
https://doi.org/10.1038/nature06884
https://doi.org/10.1038/nrg2958
https://doi.org/10.1038/nrg2958
https://doi.org/10.1038/nmeth.1374
https://doi.org/10.1101/gr.106344.110
https://doi.org/10.1101/gr.114876.110
https://doi.org/10.1016/j.ajhg.2012.07.004
https://doi.org/10.1093/nar/gks1363
https://doi.org/10.1093/nar/gks1363
https://doi.org/10.1093/nar/gku1363
https://doi.org/10.1186/gb-2011-12-7-r67
https://doi.org/10.1038/nrg2732
https://doi.org/10.1038/nrg2732


Wang et al. BMC Bioinformatics  (2018) 19:74 Page 11 of 11

14. Robinson MD, Smyth GK. Small-sample estimation of negative binomial
dispersion, with applications to SAGE data. Biostatistics. 2008;9:321–32.
https://doi.org/10.1093/biostatistics/kxm030.

15. Anders S, HuberW. Differential expression analysis for sequence countdata.
Genome Biol. 2010;11:106. https://doi.org/10.1186/gb-2010-11-10-r106.

16. Rashid NU, Giresi PG, Ibrahim JG, Sun W, Lieb JD. ZINBA integrates local
covariates with DNA-seq data to identify broad and narrow regions of
enrichment, even within amplified genomic regions. Genome Biol.
2011;12:67. https://doi.org/10.1186/gb-2011-12-7-r67.

17. McCullagh P. Quasi-likelihood functions. Ann Stat. 1983;11(1):59–67.
https://doi.org/10.1214/aos/1176346056.

18. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R,
Schatz MC, Sinha S, Robinson GE. Big data: astronomical or genomical?
PLoS Biol. 2015;13(7):1002195. https://doi.org/10.1371/journal.pbio.
1002195.

19. Xu J, Zhang Y. A generalized linear model for peak calling in ChIP-seq
data. J Comput Biol. 2012;19(6):826–38. https://doi.org/10.1089/cmb.
2012.0023.

20. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB,
Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F,
Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N, Simon JM, Song L,
Trinklein ND, Altshuler RC, Birney E, Brown JB, Cheng C, Djebali S,
Dong X, Dunham I, Ernst J, Furey TS, Gerstein M, Giardine B, Greven M,
Hardison RC, Harris RS, Herrero J, Hoffman MM, Iyer S, Kellis M, Khatun J,
Kheradpour P, Kundaje A, Lassmann T, Li Q, Lin X, Marinov GK, Merkel A,
Mortazavi A, Parker SCJ, Reddy TE, Rozowsky J, Schlesinger F, Thurman RE,
Wang J, Ward LD, Whitfield TW, Wilder SP, Wu W, Xi HS, Yip KY, Zhuang J,
Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M, Pazin MJ,
Lowdon RF, Dillon LAL, Adams LB, Kelly CJ, Zhang J, Wexler JR,
Green ED, Good PJ, Feingold EA, Bernstein BE, Birney E, Crawford GE,
Dekker J, Elnitski L, Farnham PJ, Gerstein M, Giddings MC, Gingeras TR,
Green ED, Guigó R, Hardison RC, Hubbard TJ, Kellis M, Kent WJ, Lieb JD,
Margulies EH, Myers RM, Snyder M, Stamatoyannopoulos JA,
Tenenbaum SA, Weng Z, White KP, Wold B, Khatun J, Yu Y, Wrobel J,
Risk BA, Gunawardena HP, Kuiper HC, Maier CW, Xie L, Chen X,
Giddings MC, Bernstein BE, Epstein CB, Shoresh N, Ernst J, Kheradpour P,
Mikkelsen TS, Gillespie S, Goren A, Ram O, Zhang X, Wang L, Issner R,
Coyne MJ, Durham T, Ku M, Truong T, Ward LD, Altshuler RC, Eaton ML,
Kellis M, Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A,
Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J,
Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F,
Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Batut P, Bell I, Bell K,
Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J,
Dumais E, Dumais J, Duttagupta R, Fastuca M, Fejes-Toth K, Ferreira P,
Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena HP,
Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Li G,
Luo OJ, Park E, Preall JB, Presaud K, Ribeca P, Risk BA, Robyr D, Ruan X,
Sammeth M, Sandhu KS, Schaeffer L, See LH, Shahab A, Skancke J,
Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J,
Yu Y, Hayashizaki Y, Harrow J, Gerstein M, Hubbard TJ, Reymond A,
Antonarakis SE, Hannon GJ, Giddings MC, Ruan Y, Wold B, Carninci P,
Guigó R, Gingeras TR, Rosenbloom KR, Sloan CA, Learned K, Malladi VS,
Wong MC, Barber GP, Cline MS, Dreszer TR, Heitner SG, Karolchik D,
Kent WJ, Kirkup VM, Meyer LR, Long JC, Maddren M, Raney BJ, Furey TS,
Song L, Grasfeder LL, Giresi PG, Lee BK, Battenhouse AA. An integrated
encyclopedia of DNA elements in the human genome. Nature.
2012;489(7414):57–74. https://doi.org/10.1038/nature11247.

21. Green PJ. Iteratively reweighted least squares for maximum likelihood
estimation, and some robust and resistant alternatives. J R Stat Soci Series
B (Methodological). 1984;46(2):149–92.

22. Ma P, Mahoney MW, Yu B. A statistical perspective on algorithmic
leveraging. J Mach Learn Res. 2015;16(1):861–911. https://doi.org/10.
1002/wics.1324.1306.5362.

23. Boyd MWM. Randomized algorithms for matrices and data. Foundations
Trends® Mach Learn. 2010;3(2):123–224. https://doi.org/10.1561/
2200000035.

24. Halko N, Martinsson PG, Tropp JA. Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix
decompositions. SIAM Rev. 2011;53(2):217–88. https://doi.org/10.1137/
090771806.

25. Drineas P, Mahoney MW, Muthukrishnan S. Sampling algorithms for l 2
regression and applications. In: Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm - SODA ’06. New York: ACM
Press; 2006. p. 1127–36. https://doi.org/10.1145/1109557.1109682.
http://portal.acm.org/citation.cfm?doid=1109557.1109682.

26. Rokhlin V, Tygert M. A fast randomized algorithm for overdetermined
linear least-squares regression. Proc Natl Acad Sci U S A. 2008;105(36):
13212–7.

27. Tygert M. A fast algorithm for computing minimal-norm solutions to
underdetermined systems of linear equations. arXiv preprint
arXiv:0905.4745. 2009;1(3):1–13.

28. Avron H, Maymounkov P, Toledo S. Blendenpik: Supercharging LAPACK’s
Least-Squares Solver. 2010. https://doi.org/10.1137/090767911.

29. Drineas P, Mahoney MW, Muthukrishnan S, Sarlós T. Faster least squares
approximation. Numerische Mathematik. 2010;117(2):219–49. https://doi.
org/10.1007/s00211-010-0331-6.

30. Meng X, Saunders MA, Mahoney MW. LSRN: A Parallel Iterative Solver for
Strongly Over- or Underdetermined Systems. SIAM J Sci Comput.
2014;36(2):95–118. https://doi.org/10.1137/120866580.

31. Drineas P, Magdon-Ismail M, Mahoney MW, Woodruff DP. Fast
approximation of matrix coherence and statistical leverage. J Mach Learn
Res. 2012;13(1):3475–506. https://doi.org/10.1.1.297.1717.

32. Ma P, Sun X. Leveraging for big data regression. Wiley Interdiscip Rev
Comput Stat. 2015;7:70–6. https://doi.org/10.1002/wics.1324.

33. Malhotra D, Sebat J. CNVs: Harbingers of a Rare Variant Revolution in
Psychiatric Genetics. 2012. https://doi.org/10.1016/j.cell.2012.02.039.

34. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A,
Yoon SC, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F,
Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM,
Konkel MK, Korn J, Khurana E, Kural D, Lam HYK, Leng J, Li R, Li Y, Lin CY,
Luo R, Mu XJ, Nemesh J, Peckham HE, Rausch T, Scally A, Shi X,
Stromberg MP, Stütz AM, Urban AE, Walker J. a, Wu J, Zhang Y,
Zhang ZD, Batzer MA, Ding L, Marth GT, McVean G, Sebat J, Snyder M,
Wang J, Ye K, Eichler EE, Gerstein MB, Hurles ME, Lee C, McCarroll S,
Korbel JO. Mapping copy number variation by population-scale genome
sequencing. Nature. 2011;470(7332):59–65. https://doi.org/10.1038/
nature09708.

35. Abecasis GR, Auton A, Brooks LD, DePristo Ma, Durbin RM, Handsaker RE,
Kang HM, Marth GT, McVean GA. An integrated map of genetic variation
from 1,092 human genomes. Nature. 2012;491(7422):56–65. https://doi.
org/10.1038/nature11632.

36. Baum LE, Petrie T, Soules G, Weiss N. A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov
chains. Ann Math Stat. 1970;41(1):164–171.

37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R. The Sequence Alignment/Map format and
SAMtools. Bioinformatics (Oxford, England). 2009;25(16):2078–9. https://
doi.org/10.1093/bioinformatics/btp352.

38. Wang W, Wang W, Sun W, Crowley JJ, Szatkiewicz JP. Allele-specific
copy-number discovery from whole-genome and whole-exome
sequencing. Nucleic Acids Res. 2015. https://doi.org/10.1093/nar/gkv319.

39. Robinson MD, Smyth GK. Moderated statistical tests for assessing
differences in tag abundance. Bioinformatics. 2007;23:2881–7. https://doi.
org/10.1093/bioinformatics/btm453.

40. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package
for differential expression analysis of digital gene expression data.
Bioinformatics. 2009;26:139–40. https://doi.org/10.1093/bioinformatics/
btp616.

41. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of
multifactor RNA-Seq experiments with respect to biological variation.
Nucleic Acids Res. 2012;40:4288–297. https://doi.org/10.1093/nar/gks042.

42. Sun W, Liu Y, Crowley JJ, Chen TH, Zhou H, Chu H, Huang S, Kuan PF,
Li Y, Miller D, Shaw G, Wu Y, Zhabotynsky V, McMillan L, Zou F,
Sullivan PF, de Villena FP-M. IsoDOT Detects Differential RNA-isoform
Usage with respect to a Categorical or Continuous Covariate with High
Sensitivity and Specificity. 2014.

43. Zhou X, Lindsay H, Robinson MD. Robustly detecting differential
expression in RNA sequencing data using observation weights. Nucleic
Acids Res. 2014;42:. https://doi.org/10.1093/nar/gku310.

https://doi.org/10.1093/biostatistics/kxm030
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/gb-2011-12-7-r67
https://doi.org/10.1214/aos/1176346056
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1089/cmb.2012.0023
https://doi.org/10.1089/cmb.2012.0023
https://doi.org/10.1038/nature11247
https://doi.org/10.1002/wics.1324.1306.5362
https://doi.org/10.1002/wics.1324.1306.5362
https://doi.org/10.1561/2200000035
https://doi.org/10.1561/2200000035
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1145/1109557.1109682
http://portal.acm.org/citation.cfm?doid=1109557.1109682
https://doi.org/10.1137/090767911
https://doi.org/10.1007/s00211-010-0331-6
https://doi.org/10.1007/s00211-010-0331-6
https://doi.org/10.1137/120866580
https://doi.org/10.1.1.297.1717
https://doi.org/10.1002/wics.1324
https://doi.org/10.1016/j.cell.2012.02.039
https://doi.org/10.1038/nature09708
https://doi.org/10.1038/nature09708
https://doi.org/10.1038/nature11632
https://doi.org/10.1038/nature11632
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/nar/gkv319
https://doi.org/10.1093/bioinformatics/btm453
https://doi.org/10.1093/bioinformatics/btm453
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/nar/gks042
https://doi.org/10.1093/nar/gku310

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	The consistency of RGE
	The variance of RGE
	Applying RGE to speed up CNV detection

	Results and discussion
	Validation of RGE's statistical properties
	R-GENSENG performance evaluation
	Simulation study
	Real data analyses


	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

