
Lin et al. BMC Bioinformatics  (2018) 19:82 
https://doi.org/10.1186/s12859-018-2078-5

METHODOLOGY ARTICLE Open Access

Characterization and visualization of RNA
secondary structure Boltzmann ensemble via
information theory
Luan Lin1†, Wilson H. McKerrow2† , Bryce Richards3, Chukiat Phonsom4 and Charles E. Lawrence2*

Abstract

Background: The nearest neighbor model and associated dynamic programming algorithms allow for the efficient
estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure
only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is
multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to
exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or
more specifically mutual information, provides a method to identify those basepairs that are key to the secondary
structure.

Results: To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary
structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but
also provides a large amount of information about which other pairs are present or not present. We find that a few
basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small
changes to sequence or stability that will have a large effect on structure.

Conclusion: We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a
multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.
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Background
RNA plays an important role in many biological pro-
cesses, and next generation sequencing technologies have
revealed a large number of novel non-coding RNA
transcripts whose roles in biological processes are only
beginning to be understood. Because the structure of
macromolecules is often key to their function, the discov-
ery of RNA structure has become increasingly important.
While much progress has been made in the experimen-
tal determination of RNA structure, the disparity between
RNA structure and sequence has continued to grow [1].
Thus computational tools that illuminate the physics of
RNA structure are as important as ever.
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Because secondary structure (SS) provides by far the
largest contribution to the overall stability of an RNA
molecule and precedes 3-D contact formation in the
folding process, algorithms for the prediction of RNA
SS continue to be an important component of struc-
tural prediction [2]. RNA SS algorithms have been devel-
oped for the prediction of structure from multiple related
sequences [3, 4] and for SS prediction from a sin-
gle RNA sequence. Here we focus on the latter class.
The most popular RNA SS algorithms use recursive
dynamic programming methods based on nearest neigh-
bor energy calculations: to find the minimum free energy
(MFE) structure [5–7]; to find the partition function
[8]; to sample from the Boltzmann weighted ensem-
ble [9] and to predict structures from the Boltzmann
ensemble [10, 11].
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However despite the progress that has been made,
prediction of RNA SS from a single sequence remains
challenging, especially for longer sequences. Many RNA
structures are bistable, forming different structures in
different contexts. Others form pseudoknots: structural
features that are excluded from standard RNA secondary
structure prediction methods. But even for sequences
with a single, known native structure containing no pseu-
doknots, the Boltzmann distribution is rarely unimodal.
This has led to efforts to find clusters of structures when
no single representative structure exists. Methods include
standard clustering algorithms [11–13] and strategies tai-
lored to RNA SS: RNAshapes [14–16] finds structures
that share a common “shape”, and Rogers et al. [17] group
structures that share common helices in a process called
“profiling”. Both of these strategies simplify the RNA fold-
ing problem by abstracting from individual basepairs to
the helices that define RNA SS.While grouping structures
based on common features does allow for a simplified
description, such methods do not provide insight into the
underlying features – conflicting basepairs – that drive
multimodality in the Boltzmann distribution. Identifying
these conflicting pairs will provide insight into how these
alternate structures interact.
Recent work on so called “riboSNitches” has shown that

many SNPs in noncoding sequences have wide ranging
and potentially disease inducing effects on RNA struc-
ture [18–20]. The presence of disease associated variants
in noncoding regions highlights the need to understand
the relationship between sequence variation and RNA SS
[20]. However predicting potential riboSNitches remains
difficult [21]. Finding a few basepairs that are key to the
secondary structure indicates that a mutation prevent-
ing the formation of one of these pairs will send the
structure into an alternate conformation with potentially
harmful effect. Furthermore, for some RNAs, such as viral
genomes, alternative structures are necessary for proper
function [22]. Even if the alternate conformations differ
widely, the differences can often be reduced to the pres-
ence or absence of a few pairs. Finding these pairs provides
an insight into how the transition between conformations
is controlled. Finally, the rapid folding of an RNA into its
native structure requires avoiding kinetic traps [23]. Thus,
identifying key conflicting basepairs indicates which pairs
must be avoided and which pairs must form in order for
an RNA to fold quickly.
We employ information theory, or more specifically

mutual information to find these key conflicting base-
pairs. Information entropy has been used to measure
the complexity of the Boltzmann ensemble [24, 25], and
the mutual information between aligned sequences has
been used to construct a consensus sequence [26, 27].
However less focus has been given to the mutual infor-
mation between the basepairs of a single RNA molecule.

Using the nearest neighbor model (excluding pseudo-
knots), as implemented in the RNAstructure package [28],
our algorithm finds the basepairs that provide the most
information about other basepairs: the most informative
base pairs (MIBPs). We then visualize the effect of these
pairs by plotting the marginal basepairing probabilities
conditioned on the presence or absence of the MIBPs.

Methods
Nearest neighbor model
An RNA secondary structure (SS) is a string of bases (A,
C, G, or U), called the sequence, together with a set of
basepairs between non-adjacent letters. Basepairs are two
element sets, where {i, j} denotes a pair between the ith and
jth bases. For 1 ≤ i < j ≤ n, Xij is a random variable that is
1 when the {i, j} pair is present and 0 when it is not. Only
Watson-Crick (A-U, G-C) and wobble (G-U) pairs are
considered. The space of allowable secondary structures
is constrained by the following two requirements:

1. (No triples):
∑

j Xij ≤ 1 for all i.
2. (No pseudoknots): Xij + Xkl ≤ 1 for all i < k < j < l.

If these requirements prevent two basepairs from exist-
ing simultaneously, we say that they conflict. Namely {i, j}
and {k, l} conflict if i or j equals k or l, if i < k < j < l,
or if k < i < l < j. If we draw basepairs as lines through
a circle as in Fig. 1, conflicting pairs intersect on or inside
the circle.
The free energy of a structure is given by experi-

mentally derived parameters detailing the stability of

Fig. 1 Visualization of Tremella encephala 5s rRNA (5s3_201 in the test
set). Nucleotides are arranged around the edge of a circle and
basepairs are drawn as chords connecting the paired bases. MIBPs
that are constrained to be present are highlighted in red. Those that
are absent are highlighted in blue. The darkness of a plotted basepair
is proportional to its probability
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various configurations of helices, loops and bulges. The
Boltzmann probability is then proportional to the expo-
nent of the negative free energy. In this paper we use
the RNAstructure software [28] to calculate Boltzmann
probabilities and to sample structures directly from this
distribution.

Most informative basepair
We equate the complexity (or simplicity) of a distribution
with how unsure we are about the value of the correspond-
ing random variable. The uncertainty in a basepair {i, j} is
measured using information entropy:

H[Xij]= −pij log2 pij − (1 − pij) log2(1 − pij) (1)

where pij = P(Xij = 1), 0 log 0 = 0 and the units of H are
in bits. When we are less sure about a basepair, pij is closer
to 1/2 and H[Xij] is larger. Conversely when we are more
sure about a basepair, pij is closer to 0 or 1 and H[Xij] is
smaller.
Now if we condition on another basepair Xkl, we

have two conditional distributions: P(Xij|Xkl = 1) and
P(Xij|Xkl = 0), each with corresponding entropies:
H[Xij|Xkl = 1] and H[Xij|Xkl = 0]. The conditional
entropy is defined to be

H[Xij|Xkl]= (1 − pkl)H[Xij|Xkl = 0]+pklH[Xij|Xkl = 1]
(2)

and is the average uncertainty in Xij after we learn the
value of Xkl. Therefore the amount of information that Xkl
tells us about Xij is

I(Xij;Xkl) = H[Xij]−H[Xij|Xkl] (3)

This value is referred to as the mutual information
between Xij and Xkl and it is symmetric [29]. By Eqs. 2
and 3, on average the distribution of Xij conditioned on
Xkl is I(Xij;Xkl) bits simpler than the unconditioned distri-
bution. We can then measure the amount of information
that a basepair provides about the rest of the secondary
structure by adding up its mutual information with each
other basepair.We can then condition on the basepair that
has the greatest sum of mutual information to get a less
complex conditional distribution.We call this basepair the
most informative basepair:

Definition 1 The most informative basepair (MIBP) is
the basepair that has the largest sum of mutual informa-
tion:

MIBP = argmax
kl

∑

ij
I(Xij;Xkl)

Calculating mutual information requires the joint prob-
ability of every pair of basepairs, a computationally inten-
sive task. However we can quickly estimate the mutual

information from sampled structures. Structures can be
sampled from the Boltzmann ensemble for a sequence of
length n in O

(
n3

)
time using RNAstructure or a similar

tool. We can find the MIBP from sampled structures as
follows:

Algorithm 1
1. Get 1000 samples from the Boltzmann distribution
2. Considering only pairs that appear in at least 10 and

less than 990 samples, estimate the joint probability for
each pair of pairs.

3. Use the estimates to calculate mutual information for
each pair of basepairs.

4. Sum the mutual information of each basepair.
5. Find the basepair that has the greatest sum.

Basepairs that appear in fewer than 10 or more than
990 samples will have low entropy and so will not make
a significant contribution to mutual information. Thus we
can improve computational efficiency without sacrificing
accuracy by ignoring them. In general we find that 1000
samples is enough to get an accurate estimate of base
pairing probabilities.

Tree based clustering
We greedily employ the MIBP algorithm to build a binary
tree that clusters structures based on the presence of
MIBPs. We first split the space into a cluster that includes
the MIBP and one that does not. We then find the condi-
tional MIBP in each of the clusters and split those clusters
in two. We continue this process until the product of
the cluster probability and estimated mutual information
falls below 2 bits. The algorithm creates a binary tree of

Algorithm 2
1. Label ensemble cluster ‘’.
2. For all clusters x:

(a) Calculate MIBP
(b) If P(x) ∗ MI > 2 bits: Split x into cluster x0

without MIBP and cluster x1 with MIBP.

3. Repeat step 2 until no new clusters are made.

nested clusters, where each branch corresponds to condi-
tioning on the presence or absence of a particular MIBP.
The leaves of this tree are then an exhaustive set of clus-
ters. An html file is created that draws the tree and plots
the marginal basepairing probabilities at each node. See
the “Results” section for examples. Algorithms that use
mutual information to create binary trees, such as ID3
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and C4.5 [30], are used widely in classification problems.
This algorithm employs a similar concept, but it uses the
mutual information between basepairs as there is no nat-
ural labelling for RNA secondary structures as would be
the case in a classification problem.

Conflicting basepairs and other cluster calculations
Once we have found MIBPs and divided the space, we can
examine the individual clusters. First we look for base-
pairs that conflict with the MIBP. For each MIBP split, we
first find the basepair that conflicts with the MIBP and is
most probable. Because the MIBP and the conflicting pair
cannot be present in the same structure, the most prob-
able conflicting pair is also the conflicting basepair that
has the most pairwise mutual information with the MIBP
(see “Additional methods” section). We then continue in
a greedy fashion, repeatedly finding the most probable
basepair that conflicts with the MIBP and all previous
conflicting pairs. We stop once we have found a total of
five conflicting pairs. When conflicting pairs are present,
they provide an explanation for the presence of divergent
clusters.
We can also use RNAstructure to calculate the marginal

probability of each basepair in each cluster and use that
information to calculate the conditional entropy in each
cluster. Finally, we can calculate the number of structures
in each cluster by setting the free energy, E(x), equal to 0
for all structures x and then calculating the partition func-
tion. Note that RNAstructure counts structures with the
same basepairs but different coaxial stacking separately.

Results
To test our algorithm, we used a set of sequences and
corresponding native structures provided to us by David
Mathews. This data is used by the Mathews group to test
the RNAstructure software package. The sequences are
compiled from the following publications: [31–40]. The
test set includes sequences from ten families whose sec-
ondary structures have been verified by comparative anal-
ysis: 5s, 16s and 23s rRNA, group 1 and 2 introns, RNAse
P (RNAp), signal recognition particle (SRP), telomerase,
tmRNA and tRNA. The 16s and 23s rRNA sequences were
divided into four and six folding domains respectively [32,
33] to make the computation more tractable. For 5s, 16s,
SRP, telomerase, tmRNA and tRNA, we considered only
10 randomly selected sequences from each family as the
test set included a large number of sequences from these
families. A list of all sequences considered can be found at
the visualization site described in the next section.

Visualizations
Visualizations of the Boltzmann ensembles of these
sequences can be found at http://ccmbweb.ccv.brown.
edu/wmckerro/MIBP/ Visualizations should be viewed in

the firefox browser. Longer sequencesmay be slow to load.
The visualizations draw the binary tree described in the
“Methods” section. Clicking on a node in the tree reveals
the conditional probability of each basepair in the corre-
sponding cluster, showing how the presence or absence
of MIBPs affects the structure. Figure 1 shows the circle
diagrams arranged in a tree for an example RNAmolecule.

Entropy reduction
To see how adding new clusters affects the conditional
entropy, we ran our algorithm for 100 steps on one
sequence from each family, yielding 101 clusters for each
sequence. As a function of the number of clusters, the
entropy closely follows a power law with an exponent
that varies from -0.1 for the Chinchilla brevicaudata
telomerase (AF221937.99-545 in the test set) and trna
sequences to -0.4 for the Clostridium perfringens tmRNA
sequence (Clos.perf._CP000246_1-361). (See Fig. 2.)
We also test how the default 2 bit cutoff (see

“Methods” section) affects the conditional entropy. Across
all the seqeunces tested, the 2 bit cutoff yielded an average
of 3.4 clusters with average entropy reduction of nearly

Fig. 2 Entropy as a function of number of clusters for one sequence
from each of the ten families. Power law functions of the form
y = axb are estimated by linear least squares regression after log-log
transform and plotted as lines. The value of b is given parenthetically.
The two bit cutoff is highlighted by a filled circle

http://ccmbweb.ccv.brown.edu/wmckerro/MIBP/
http://ccmbweb.ccv.brown.edu/wmckerro/MIBP/
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a half (See Fig. 3). This reduction is slightly larger than
would be predicted by the power law because the first cou-
ple splits often provide greater entropy reduction. It would
be possible to use a smaller cutoff, yielding more clusters,
but the power law functions indicate that this would likely
yield only a modest decrease in ensemble entropy.

Entropy constraints and number of structures
Constraining basepairs with low entropy excludes most of
the possible structures, but retains most of the probability
mass. This is consistent with concentration of measure
phenomena often seen in high dimensional probability
distributions [41]. Basepairs with entropy less than 0.002
bits were constrained to be unpaired if they have prob-
ability near 0 and paired if they have probability near
1. For every sequence, the entropy constraints removed
less than 5% of the probability mass but resulted in
about a one fourth reduction in the orders of magnitude
for the total number of possible structures. For a short
sequence such as Spirocodon saltatrix 5s rRNA (5s3_220)
this means a reduction of 8 orders of magnitude from
4 × 1031 to 6 × 1023. However for a longer sequence
such as a Saccharomyces cerevisiae group II intron (ya1)
the entropy constraints result in a reduction of almost
50 orders of magnitude: from 1 × 10172 to 9 × 10126
(see Fig. 4).

Cluster with native structure
Consistent with previous observations [11] the fact that
a cluster contains more probability does not necessarily

Fig. 3 Ensemble entropy vs conditional entropy. Running the MIBP
algorithm with a 2 bit cutoff yields an entropy reductions of nearly a
half. For example the Chlamydomonas 5s rRNA (5s_13 in the test set)
has an ensemble entropy of 49 bits, but after conditioning on the
MIBPs, only 25.5 bits of uncertainty remains. Each point represents
one of the sequences from one of the ten families described at the
beginning of the results section

Fig. 4 Number of structures before and after basepairs with entropy
less than 0.002 bits are constrained. Constraining basepairs reduces
the orders of magnitude by about one fourth. Each point represents
one of the sequences from one of the ten families described at the
beginning of the results section

mean that it will contain the native structure. In fact, for
the sequences tested, the probability of the native cluster
is not significantly larger than the probability of a clus-
ter chosen uniformly at random (permutation p-value =
0.47). This is likely due to the fact that secondary struc-
ture prediction algorithms struggle to provide accurate
predictions for some of the longer sequences considered.
If we rerun the analysis on the 309 5s RNA sequences in
the RNAstructure test set, we find that the average native
cluster size is 41.5% – significantly higher than the mean
random cluster size of 37.0% (permutation p-value = 0.02).
However it is still far short of the mean expected clus-
ter size of 51.9%. This indicates that, at least for smaller
sequences, the native structure is more likely to be found
in a higher probability cluster, but that it less likely to be
found in such a cluster than the Boltzmann ensemble indi-
cates. Permutation tests were done in R using the coin
package with 10,000 samples.

Conflicting basepairs
We find that many MIBPs are part of a pair of conflicting
basepairs, but we also find that in many cases the MIBP is
part of a set of more than two mutually conflicting base-
pairs. Each pair in the set of mutually conflicting pairs is
somewhat probable on its own, but due to the no pseudo-
knots and no triples constraints, only one can be present
in a given structure.
For 40% of MIBPs, the MIBP represents a binary choice

between two basepairs. In such cases there is a conflicting
base that is present in at least 90% of sampled structures
that do not include the MIBP. In other cases the MIBP is
one choice among a set of mutually conflicting pairs. For
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84% of MIBPs, 90% of samples that do not include the
MIBP include one member of a set of up to five basepairs
that conflict with each other and the MIBP.

Mutations to the MIBP nucleotides
In this subsection we consider a 118 nucleotide 5s rRNA
from the freshwater alga Hydrurus foetidus (5s3_71 in the
test set). The MIBP algorithm finds one most informa-
tive basepair – (17, 61) – dividing the Boltzmann space
into two classes. 82% of structures that do not contain the
MIBP contain the conflicting pair (29, 107). This implies
that mutating the sequence so that one of these two base-
pairs cannot form would bias the structure to fall into one
class over the other. Indeed, editing the 17th nucleotide
from a C to a A yields a Boltzmann distribution that
is similar to conditioning on the absence of the MIBP.
Editing the 29th position from a C to a G yields a structure
that is similar to conditioning on the presence of theMIBP.
However a different set of basepairs constitute one of the
helices (see Fig. 5).

Mutual information and RiboSNitches
Woods and Laederach [42] use SHAPE data to classify
mutations into three categories based on whether they
cause (i) “no differences or small differences”, (ii) “local
differences”, or (iii) “global differences” to the RNA sec-
ondary structure. We focus on one of the sequences
considered by Woods and Laedarach: a 16s rRNA 4 way
junction (16SFWJ_1M7_0001 in RMDB: https://rmdb.
stanford.edu/). While the ends of the MIBP (146,216) are
not mutated, nearby positions that are likely to form a
helix with the MIBP are mutated: a G to C mutation at
position 125 causes local differences, and C to G muta-
tions at positions 214 and 221 causes global differences.
Most of the mutations considered (74%) cause little or no
difference to the RNA SS. The third mutation that affects
global change, a G to C mutation at position 177, forms
the conflicting pair for one of the three additional MIBPs
found with the standard 2 bit cutoff.
We also compare the mutation category to the maxi-

mum sumofmutual information for a basepair originating

Fig. 5Mutating the ends of the MIBP or conflicting pair has a large effect on the resulting RNA SS. a Basepair probabilities conditioned on the
presence of MIBP. b Basepair probabilities conditioned on the absence of MIBP. c Basepair probabilities when conflicting pair is mutated. d Basepair
probabilities when MIBP is mutated. 5s rRNA from the freshwater alga Hydrurus foetidus (5s3_71 in the test set) is the sequence considered

https://rmdb.stanford.edu/
https://rmdb.stanford.edu/
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from the mutated position. The mean mutual informa-
tion for mutations that cause global changes in RNA
SS (9.85 bits) is greater than the mean MI for posi-
tions local changes (7.36 bits) and much greater than
the mean MI for positions that cause little or no change
(3.06 bits). Figure 6 shows the mutual information at all
the mutated positions. The html visualization for this
molecule can be accessed at: http://ccmbweb.ccv.brown.
edu/wmckerro/MIBP/16SFWJ_1M7_0001.html.

A viral RNA with a key alternate conformation
Hepatitis Delta Virus (HDV) normally adopts a rod
shaped configuration, but HDV Genotype III must also
form a branched structure in order to undergo an essential
RNA editing event [43]. We ran our MIBP algorithm on
a section of the HDV Genotype III (reverse complement
of GenBank: HF679406.1, nucleotides 499-1097). Most
sampled structures form a rod shaped structure (Fig. 7a),
but some form the branched structure described in [43]
(Fig. 7b). The MIBP algorithm shows that the branched
structure forms when the MIBP – (1020, 1086) –
is present and the rod structure forms when it is absent.

SHAPE
The MIBP algorithm can also be used to show how the
inclusion of experimental data, such as SHAPE (selective
2’-hydroxyl acylation analyzed by primer extension) [44]
affects the probability distribution. SHAPE data is used
by RNAstructure to calculate a “pseudoenergy”: E∗(X) =
E(X) +C(X,D) where C(X,D) is a “pseudoenergy change

Fig. 6Mutual information sum and label assigned by Woods and
Laederach [42] for the 16s rRNA four way junction (16SFWJ_1M7_0001
in RMDB: https://rmdb.stanford.edu/). A label of 1 indicates that the
mutation causes little or no change in RNA SS. A label of 2 indicates
that the mutation causes significant but primarily local changes to
the RNA SS. A label of 3 indicates that the mutation causes global
changes to the RNA SS

a

b

Fig. 7 Structure predictions for Hepatitis Delta Virus Genotype III.
aWithout MIBP, a rod shaped structure forms. bWith the MIBP, the
branched structure described in [43] forms. The edited position is
indicated with an asterisk. Structures were drawn using the mfold
webserver [49]

term” that reflects how well the structure X fits the
experimental data D [45]. Since Boltzmann probability is
calculated by exponentiating the free energy, this is equiv-
alent to using the nearest neighbor model as a Bayesian
prior and then updating it with a likelihood term cal-
culated from the SHAPE data. The data we use is from
[46] and [45].
The inclusion of SHAPE data yields a simpler distri-

bution with fewer conflicting pairs and samples that are
more similar to the native structure. When SHAPE data
is included, entropy is lower by a factor ranging from 2 to
17.3. On average the expected difference between a sam-
pled structure and the native structure measured in base-
pairs different decreases by a factor of 9.6. Figure 8 shows a
visualization of the distribution with and without SHAPE
data for the most dramatic example – a phenylalanine
tRNA. In two cases the inclusion of SHAPE yields a dis-
tribution in which no basepair has at least 2 bits of mutual
information. For the other four sequences, the largest
cluster contains the native structure. This is only true for two
of the six sequences without SHAPE data “See Table 1”.

Discussion
Our algorithm provides a characterization of the Boltz-
mann weighted space by iteratively dividing the secondary
structure space based on the presence or absence of
MIBPs. Mutual information allows us to find a small
number of basepairs that account for about half of the
uncertainty in the Boltzmann ensemble. We can then
visualize the ensemble distribution as a finite mixture of a
small set of simpler distributions.

http://ccmbweb.ccv.brown.edu/wmckerro/MIBP/16SFWJ_1M7_0001.html
http://ccmbweb.ccv.brown.edu/wmckerro/MIBP/16SFWJ_1M7_0001.html
https://rmdb.stanford.edu/
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Fig. 8 Visualization of E. coli tRNA (Phe) Boltzmann space with and without SHAPE data. Nucleotides are arranged around the edge of a circle and
basepairs are drawn as chords connecting the paired bases. MIBPs that are constrained to be present are highlighted in red. Those that are absent
are highlighted in blue. The darkness of a plotted basepair is proportional to its probability. The native structure forms a clover-leaf shape as in the
left most cluster and the cluster with SHAPE data

Ourmethod differs from similar methods [14, 15, 17, 47]
by focusing on the basepairs that cause the Boltzmann dis-
tribution to be multimodal. Our method not only groups
similar structures, but also identifies the most informative
basepairs that determine which group a structure falls
into. The RNA profiling method [17] does provide a
branching set of helices for each class. However using
mutual information we are able to condense that set of

Table 1 Summary statistics for six sequences, with and without
shape

Sequence Length Clusters Entropy Conditional
entropy

Mean error

Without SHAPE data

Riboswitch 71 3 25.3533 13.3428 5.5875

5s rRNA 120 4 51.293 30.8405 53.3667

P546 155 7 114.5027 54.0569 44.1121

RNase P 154 8 86.7581 39.7549 36.8573

HCV 95 5 37.893 11.3547 19.7718

tRNA (Phe) 76 4 52.1349 17.404 20.474

With SHAPE data

Riboswitch 71 1 4.9419 4.9419 1.1114

5s rRNA 120 3 21.376 11.5638 10.1141

P546 155 3 28.1101 16.4472 7.1615

RNase P 154 3 20.3484 11.4831 20.9432

HCV 95 2 18.6929 1.7029 6.4995

tRNA (Phe) 76 1 3.0043 3.0043 0.5634

Mean error is the expected number of basepairs that differ between the native
structure and a sampled structure

helices into a few key most informative basepairs. While
two alternate structures may include very different sets of
helices, it is often the case that one need only affect the
stability of a single most informative basepair to bias one
alternate structure over another.
With the realization that point mutations can change

the secondary structure of an RNA transcript enough to
cause misregulation and disease, there is a need to under-
stand how SNPs affect RNA SS [18, 20]. MIBPs show
that while alternate structures may have little overlap in
shape or basepairing, it is often the case that constrain-
ing a single basepair is enough to bias one structure over
another. Thus if a mutation disrupts the MIBP or its con-
flicting pair, it is likely to cause a global change in RNA
SS. Indeed we find that mutations at positions with high
mutual information are likely to have wide ranging effects
on structure. Furthermore as newmethods to edit specific
sites in an RNA molecule emerge [48], the need for tools
that can connect nucleotide changes to structure will only
increase.
Finding MIBPs, provides valuable insight into the for-

mation of alternate structures. The viral genome of HDV
Genotype III must adopt an alternate conformation in
order to undergo a key RNA editing event [43]. Our
algorithm shows that the conformation can be predicted
by the presence or absence of a single MIBP. This key
basepair provide a starting place for understanding how
and when this transition occurs.
Our results show that it only takes a few basepairs to

encode half of the information present in a sample from
the Boltzmann distribution. We also show that most pos-
sible basepairs have entropy near zero and are irrelevant to
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the Boltzmann distribution. If these low entropy pairs are
constrained, the size of the structure space shrinks dra-
matically. Finally, characterizing the Boltzmann ensemble
allows us to see how the incorporation of experimental
data affects structure prediction.
The MIBP algorithm is not limited to the nearest-

neighbor thermodynamic model. Most informative base-
pairs exist for any probabilistic model of RNA and can be
calculated either from samples or from the joint distribu-
tions of pairs of basepairs. In particular this strategy can
be applied with ease to any single sequence stochastic con-
text free grammar model. TheMIBP algorithm uses single
basepairs as its features, when it is generally whole helices
and other large structural features that define an RNA
secondary structure. In most cases a single MIBP can be
used a proxy for a whole helix, but this can make finding
conflicting basepairs difficult when two conflicting helices
partially overlap. Nevertheless, mutual information is not
limited to basepairs. Our algorithm could be combined
with a method that abstracts from basepairs to find a most
informative feature of some kind.

Conclusion
Most informative basepairs provide a novel method for
exploring and visualizing the RNA secondary structure
Boltzmann ensemble. Unlike other methods for charac-
terizing the Boltzmann ensemble, the MIBP method pro-
vides a set of key basepairs that determine which structure
will form from a given sequence. These pairs suggest that
small changes either to the sequence or to the stability of
specific pairs will bias a molecule to fold into one alternate
structure over another.

Additional methods
Claim 1 For fixed pij, if Xij and Xkl conflict, then

I(Xij;Xkl) is a monotonic increasing function of pkl.

Proof: Using the formula for I(X;Y ) given in [29] and
the fact that P(Xij = 1,Xkl = 1) = 0:

I(Xij;Xkl) = (1 − pij − pkl) log2
1 − pij − pkl

(1 − pij)(1 − pkl)

+ pij log2
pij

pij(1 − pkl)
+ pkl log2

pkl
pkl(1 − pij)

= (1 − pij − pkl) log2(1 − pij − pkl)
− (1 − pij) log2(1 − pij) − (1 − pkl) log2(1 − pkl)

Taking the derivative with respect of pkl yields:

dI(Xij;Xkl)

dpkl
= 1

log 2
[−2 log(1 − pij − pkl + 2 log(1 − pkl)

]

= 2
log 2

[

log
1 − pkl

1 − pij − pkl

]

> 0

Thus the claim is proved.
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